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ABSTRACT
The problem of search relevance in the E-commerce domain is a
challenging one since it involves understanding the intent of a
user’s short nuanced query and matching it with the appropriate
products in the catalog. This problem has traditionally been ad-
dressed using language models (LMs) and graph neural networks
(GNNs) to capture semantic and inter-product behavior signals,
respectively. However, the rapid development of new architectures
has created a gap between research and the practical adoption of
these techniques. Evaluating the generalizability of these models
for deployment requires extensive experimentation on complex,
real-world datasets, which can be non-trivial and expensive. Fur-
thermore, suchmodels often operate on latent space representations
that are incomprehensible to humans, making it difficult to eval-
uate and compare the effectiveness of different models. This lack
of interpretability hinders the development and adoption of new
techniques in the field. To bridge this gap, we propose Plug and
Play Graph LAnguage Model (PP-GLAM), an explainable ensemble
of plug and play models. Our approach uses a modular framework
with uniform data processing pipelines. It employs additive ex-
planation metrics to independently decide whether to include (i)
language model candidates, (ii) GNN model candidates, and (iii)
inter-product behavioral signals. For the task of search relevance,
we show that PP-GLAM outperforms several state-of-the-art base-
lines as well as a proprietary model on real-world multilingual,
multi-regional e-commerce datasets. To promote better model com-
prehensibility and adoption, we also provide an analysis of the
explainability and computational complexity of our model. We also
provide the public codebase and provide a deployment strategy for
practical implementation.

CCS CONCEPTS
• Information systems→Retrievalmodels and ranking;Query
representation; • Applied computing→ Online shopping.

KEYWORDS
Graphs, language models, search relevance, ensemble, plug and
play, e-commerce, query

This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike International 4.0 Li-
cense.

WWW ’24 Companion, May 13–17, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0172-6/24/05.
https://doi.org/10.1145/3589335.3648318

ACM Reference Format:
Nurendra Choudhary, Edward W Huang, Karthik Subbian, and Chandan
K. Reddy. 2024. An Interpretable Ensemble of Graph and Language Models
for Improving Search Relevance in E-Commerce. In Companion Proceedings
of the ACM Web Conference 2024 (WWW ’24 Companion), May 13–17, 2024,
Singapore, Singapore. ACM, New York, NY, USA, 10 pages. https://doi.org/
10.1145/3589335.3648318

1 INTRODUCTION
The rapid advancements in language modeling and graph neural
network research have created challenges for traditional industry
frameworks looking to adopt the latest developments. Adopting
a new model requires extensive experimentation to determine its
generalizability on practical datasets, but the ever-changing nature
of these datasets makes it difficult to compare old models with
new ones. As a result, all models and datasets must be carefully
considered before determining if a new model can be adopted in
practice. This presents a significant challenge for industry frame-
works seeking to incorporate the latest advancements in the field.
In this study, we focus on the specific issue of search relevance1
in the e-commerce industry, where the goal is to classify the rela-
tionship between a query and a product as one of exact, substitute,
complement, or irrelevant (ESCI), as shown in Figure 1. Human
annotation for the purpose of training classification models in the
domain of e-commerce search (ESCI) can be a resource-intensive
task. The datasets that are typically used for training these mod-
els tend to be significantly smaller than those used for training
relevance models, which often rely on anonymous, aggregated cus-
tomer shopping behavior data. This is particularly true for labeled
data that is available for training on a per-region basis, which tends
to be even smaller in size. However, e-commerce datasets do contain
additional information that may be useful for model training, such
as query-item graphs that capture interactions between queries and
items, and co-purchase behavior across products in a catalog. At
first glance, search relevance may appear to be a straightforward
multi-classification task. However, the short text nature of queries
and products [4] as well as the influence behavioral signals have
on their relationship make it a non-trivial problem.

Initial work in this field [21, 25] relied on the semantic features
of queries and products, but subsequent research has highlighted
the importance of incorporating behavioral signals [5] such as
click-through data and purchase data in learning representations.
However, these methods combine semantic and graph information
in a latent space, which results in a lack of interpretability. Further-
more, they are standalone models that must be individually trained
and evaluated for their specific scenario. This approach faces three

1We chose search relevance due to the practical impact of the problem and the
availability of public data. Our proposed methods are extensible to other problems.
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Figure 1: An illustration of the search relevance problem. Us-
ing the semantic information of queries and products along
with the behavioral relationships between them, the goal is
to classify the degree of relevance for unseen query-product
pairs (labeled with question marks) as exact, substitute, com-
plement, or irrelevant.

major challenges: (i) the dynamic nature of real-world data re-
quires frequent and costly updates to the deployment model, often
requiring the retraining of all previous candidates to maintain com-
parability, (ii) certain decisions, such as which semantic/behavioral
signals to include, cannot be automated, and (iii) model operations
in a latent space result in limited interpretability of the results.

To overcome these challenges, we propose Plug and Play Graph
LAnguage Model (PP-GLAM), a modular ensemble of LMs and GNNs
that relies on additive explanation values to automatically decide
on the inclusion of semantic and behavioral signals. Our model uses
an ensemble of LMs [13] to capture semantic information from the
query and product. While previous approaches [6, 25] also utilize
LMs, they generally default to a multilingual framework due to the
multilingual nature of e-commerce datasets. However, LMs specifi-
cally developed on resource-rich languages such as English tend to
outperform their multilingual counterparts [16]. Thus, it is advanta-
geous to combine the benefits of language-specific models with mul-
tilingual ones. Consequently, in PP-GLAM, we encode the query-
product semantic information using multiple language-specific and
multilingual LM models, and rely on a Gradient-Boosted Decision
Tree (GBDT) for effective model selection. However, a majority of
the language models only support a fixed number of tokens, which
are not sufficient for handling long product descriptions. While
recent works such as Longformers [45] are able to circumvent this
issue, they are computationally more expensive and add to both
inference time and cost. Thus, in our model, we denoise the product
description to a fixed token size using certain importance measures
[31]. More importantly, we also leverage several query-product
signals such as clicks, purchases, add-to-carts (or adds), impres-
sions, and consumes. These relations vary both in their density and
correlation with target variables (e.g., clicks are more common than
purchases, but purchases are more correlated to a query-product
match). This density-correlation trade-off of relations must be thor-
oughly studied for every task and deployment iteration, which adds
to the deployment time and effort. To alleviate this problem, we
automate these decisions by considering all the potential homoge-
neous (single-relation) and heterogeneous (multi-relation) GNNs in
a GBDT ensemble, subsequently eliminating the worst-performing
models using their ranking over explainable SHAP values [20].

Unlike MLP [28] and Attention models [39], which aggregate fea-
tures in a latent space, our GBDT based ensemble can be made
explainable using additive SHAP values. The additivity allows us
to independently decide the importance of individual LMs and re-
lational GNNs on the target variable and plug-and-play them to
improve model performance. Subsequently, automating the deci-
sion of including the best-performing models can be done based
on the computational constraints. We conduct extensive experi-
ments on large-scale e-commerce data to demonstrate that our
ensemble framework significantly outperforms the state-of-the-art
baselines in the e-commerce tasks of search relevance and irrelevant
detection, respectively. Furthermore, we conduct several studies
to analyze the computational complexity of our model. We also
demonstrate our model’s interpretability through reports of the
target variable’s dependence on the models and relations. Lastly,
we provide a deployment strategy to apply our modular framework
in a practical environment. To summarize, our main contributions
are as follows:
(1) In this paper, we present PP-GLAM, a modular ensemble of

LMs and relational GNNs that utilizes GBDTs for flexible model
selection in a practical environment.

(2) We demonstrate the effectiveness of PP-GLAM on search rele-
vance and irrelevant detection compared to state-of-the-art pub-
lic and proprietary baselines on a multi-regional e-commerce
dataset.

(3) We show the benefits of utilizing ensembles as an interpretable
strategy to aggregate semantic and behavioral signals and effi-
ciently select the most impactful models.

(4) We provide a detailed strategy to deploy ourmodular framework
in a practical environment with dynamic data sources.

The rest of the paper is organized as follows: Section 2 discusses the
relevant background and Section 3 describes our proposed model
architecture. Section 4 demonstrates our experimental results and
subsequent analysis. Section 5 details our deployment strategy and
Section 6 concludes our work.

2 RELATEDWORK
In this section, we discuss previous work related to our problem in
the areas of language models, graph neural networks, and graph-
enhanced language models.

Language Models (LMs). Transformer-based LMs are a type
of neural network architecture that has revolutionized the field
of natural language processing (NLP) in recent years. These mod-
els have achieved state-of-the-art performance on a wide range of
NLP tasks such as machine translation [1], language generation
[3], and search [8]. The development of transformer-based LMs
originated from the introduction of word embedding models, such
as Word2Vec [22] and GloVe [29], which represent words as contin-
uous vectors in a high-dimensional space to capture the semantics
and relationships between words. These embeddings have been
used as inputs to deep learning models, such as recurrent neural net-
works (RNNs) [37] and convolutional neural networks (CNNs) [35].
However, such methods are limited in their ability to capture word
sense and contextual semantics. Transformer-based models [39]
were introduced in conjunction with RNNs and CNNs to capture the
contextual dependencies between words in a sequence. However,
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further research [39] demonstrated their standalone effectiveness
and led to the rise of task-tunable pre-trained LMs such as BERT
[8] and XLNET [42]. Recent developments in LMs have focused on
multilingual extensions [7] and increasing the size and complexity
of the models. Given this rapid pace of advancement, it is important
that industry frameworks can quickly adopt and deploy the latest
LMs. Thus, we design PP-GLAM as a flexible modular ensemble.

Graph Neural Networks (GNNs). GNNs are a special type
of neural network architecture, designed to operate on graph-
structured data. Early research in graph processing predominantly
relied on matrix factorization [27, 33] and random walk-based
[9, 23, 38] approaches. Matrix factorization is a technique that
utilizes linear algebra techniques [18, 26] to simplify the represen-
tation of the relationships between nodes in a graph by decompos-
ing the adjacency matrix into a lower-dimensional, latent space.
Random walks use Markov chain models to simulate transitions
between nodes and learn their representations. These techniques
demonstrate the effectiveness of vector space models in graph rep-
resentation learning. However, they are limited in their ability to
capture node neighborhood relations. To address these limitations,
GNNs were adopted to effectively aggregate node neighborhood
features, typically for node classification [34], link prediction [17],
and graph classification [24]. These techniques include Graph Con-
volutions (GCNs) [17], Graph Attention (GAT) [40], and GraphSage
[10], which respectively use convolution filters, attention mecha-
nisms, and graph sampling to learn node and link representations
for downstream tasks. Current research in the area focuses on ap-
plying GNNs to heterogeneous graphs [41], temporal graphs [32],
and knowledge graphs [2]. Given the short text nature of queries in
the task of search relevance, we need to utilize behavioral graph sig-
nals to better understand users’ intent. However, with the diversity
of behavioral signals available in e-commerce datasets, it is difficult
to select the most significant candidates for a downstream task.
Therefore, our model utilizes SHAP values to select the set of best-
performing signals and corresponding GNNs in a computationally
constrained deployment environment.

Graph-Enhanced Language Models (GELM). Recently, re-
searchers have focused on integrating graph signals and text fea-
tures in unified GELM models. Initial studies, such as TextGNN
and TextGCN, used semantic features to initialize GNN models for
downstream tasks such as node classification and link prediction.
However, a primary limitation of this approach is its limited ability
to learn task-specific semantic embeddings. To overcome this issue,
Graphormers [43] combined manual graph features, such as spatial
encoding and centrality measures, with a text-based Transformer
architecture to capture hybrid features. This allows the model to
effectively handle both graph and text data. However, calculating
the required graph features is computationally expensive and re-
quires frequent model re-training with dynamic datasets. To avoid
this, the (proprietary) SALAM model [5] uses an attention mech-
anism to combine graph and text features in a scalable industry
setting. Furthermore, GreaseLM [46] employs intermediate MLP
units after each layer to combine graph (GNN layer) and text (LM
layer) features. However, aggregations in such models occur in a
latent space, and are hence not interpretable for decision-making.
Thus, we developed PP-GLAM for industry settings as a modular

combination of LMs and relational GNNs that use interpretable SHAP
values to decide on the model components.

3 PROPOSED FRAMEWORK
This section discusses the problem statement of the search relevance
task, describes the different components of our model, and explains
its training and inference pipeline.

3.1 Problem Statement
Let the set of query-product pairs be (𝑄, 𝑃) and the corresponding
query-product graphs of clicks, impression, adds, purchases, con-
sumes, and a combined heterogeneous version (any) be denoted
by their adjacency matrix G𝜓 : 𝑄 × 𝑃 , where signal 𝜓 ∈ {clicks,
impressions, adds, purchases, consumes, any}. Note that, “any” sig-
nal implies the presence of any of the mentioned relations. Each
element 𝐺𝜓

𝑞𝑝 indicates the rate of signal 𝜓 between query 𝑞 ∈ 𝑄
and product 𝑝 ∈ 𝑃 (e.g., the number of product clicks for a partic-
ular query). The objective of search relevance is to learn a model
𝑃𝜃 with parameters 𝜃 that classifies query-product pairs into the
following relevance classes: exact (E), substitute (S), complement
(C), and irrelevant (I). The model is formulated as:

𝑦 = argmax
𝑦′={𝐸,𝑆,𝐶,𝐼 }

𝑃𝜃 (𝑦′ |𝑥, 𝜃 ); 𝜃 = argmax
𝜃 ′

𝑃𝜃 ′ (𝑦 = 𝑦 |𝑥, 𝜃 ′) (1)

where 𝜃 ′ is a sample parameter set from the parameter search space,
𝑦,𝑦 ∈ {𝐸, 𝑆,𝐶, 𝐼 } are the ground-truth value and the model output
from 𝑃𝜃 for an input 𝑥 =

(
𝑞𝑖 , 𝑝 𝑗 ,𝐺

𝜓
)
, respectively.

3.2 Model Elements
This section describes the different elements of our model and
the ensemble of language and graph features for better generaliza-
tion over diverse e-commerce datasets. Our model pipeline starts
with the input query 𝑥 = (𝑞, 𝑝) with which the corresponding sub-
graph G𝜓 (𝑞, 𝑝) is constructed using the Graph Extraction module.
Subsequently, the textual information and subgraph are encoded
using multiple language models {𝐿𝑀𝑖 (𝑥)} |𝐿𝑀 |

𝑖=1 and relational GNNs
{𝐺𝑁𝑁 𝑗 (G𝜓 (𝑞, 𝑝))} |𝐺𝑁𝑁 |

𝑗=1 to produce the corresponding ESCI la-

bels 𝑌 =

{
𝑦𝐿𝑀1 , 𝑦𝐿𝑀2 , ..., 𝑦𝐿𝑀|𝐿𝑀 | , 𝑦

𝐺𝑁𝑁
1 , 𝑦𝐺𝑁𝑁

2 , ..., 𝑦𝐺𝑁𝑁
|𝐺𝑁𝑁 |

}
. These la-

bel outputs 𝑌 and certain manual features (such as language infor-
mation) are finally ensembled together in a GBDTmodel to produce
the final PP-GLAM output.

Graph Extraction. In this module, we extract the local neighbor-
hood subgraph pertaining to the input query-product pair𝑥 = (𝑞, 𝑝).
In our problem, we use the signals of𝜓 ∈ {clicks, impressions, adds,
purchases, consumes, any}, with a corresponding adjacency matrix
G𝜓 for each signal. To construct the local 𝑘-hop neighborhood sub-
graph G𝜓 (𝑞, 𝑝), we perform a breadth-first traversal around both 𝑞
and 𝑝 until a maximum depth of 𝑘 . We observe that this process is
independent for each (𝑞, 𝑝) pair, and hence, we parallelize it over
the CPU cores and store the subgraphs as hash maps for constant
time retrieval in the training and inference pipelines.

De-noising Product Information. Typical product data con-
sists of long text descriptions that are not supported by generic
language models. Hence, we utilize a TF-IDF [31] pre-processor



WWW ’24 Companion, May 13–17, 2024, Singapore, Singapore Nurendra Choudhary, Edward W. Huang, Karthik Subbian, & Chandan K. Reddy

Figure 2: An overview of the PP-GLAM architecture. The model contains four modules: (i) Data Processing handles the pre-
computation of graph neighborhoods and the de-noising of the product information, (ii) Model Training uses the training
samples with query-product pairs and corresponding ground-truth labels to learn the parameters of the GBDT-based ensemble
containing different language models and graph neural networks (GNNs), (iii) Model Selection module utilizes interpretable
SHAP values to eliminate low-performing models based on the constraints of the inference setup, and (iv) Model Inference
loads the selected set of models into memory for inference on new batches.

to rank the terms’ importance in the description and eliminate
words beyond the language model’s supported capacity 𝛾 . This is
formalized for a text sequence of tokens {𝑡𝑖 } |𝑝 |𝑖=1 ∈ 𝑝 as:

𝑇𝐹𝐼𝐷𝐹 (𝑡𝑖 , 𝑝) = 𝑇𝐹 (𝑡𝑖 , 𝑝) × log
(

|𝑃 |
𝐷𝐹 (𝑡𝑖 , 𝑃)

)
(2)

where 𝑇𝐹 (𝑡𝑖 , 𝑝) is the number of times 𝑡𝑖 occurs in 𝑝 and 𝐷𝐹 (𝑡𝑖 , 𝑃)
is the number of 𝑝 ∈ 𝑃 that contains 𝑡𝑖 . Letting𝑇𝐹𝐼𝐷𝐹 (𝑡𝛾 , 𝑝) be the
𝛾-th largest value in the sorted set of {𝑇𝐹𝐼𝐷𝐹 (𝑡𝑖 , 𝑝)} |𝑝 |𝑖=1, then the
filtered set 𝑝′ = {𝑡𝑖 ∈ 𝑝 |𝑇𝐹𝐼𝐷𝐹 (𝑡𝑖 , 𝑝) ≥ 𝑇𝐹𝐼𝐷𝐹 (𝑡𝛾 , 𝑝)}.

The query and product information is then merged with separa-
tor tokens as 𝑡 = 𝑞∥ [𝑆𝐸𝑃] ∥𝑝′, processed through the cross-encoder
tokenizers [36], and stored as hash maps for efficient retrieval in
the model pipelines.

Language Models. E-commerce datasets are generally diverse
since they typically span multiple geographical regions with multi-
ple languages. Hence, in ourmodel, we utilize an ensemble {𝐿𝑀𝑖 } |𝐿𝑀 |

𝑖=1
of language-specific LMs that work well for resource-rich languages
(English), including DeBERTa [13], COCOLM [44], BigBird [45],
and a multilingual LM - M-DeBERTa [12]2. The tokenized input
sequence 𝑡 is encoded using the LM encoders 𝐿𝑀𝑖 ∈ 𝐿𝑀 into its
encoding 𝑒 ∈ R𝑑 with a softmax layer 𝜙𝑙

𝑑
: R𝑑 → R𝑙 to obtain the

probability over 𝑙 output labels. The encoder is formalized as

𝑦𝐿𝑀𝑖 (𝑡) = 𝜙𝑙
𝑑
(𝑒𝑖 (𝑡)) , where 𝑒𝑖 (𝑡) = 𝐿𝑀𝑖 (𝑡) (3)

𝑌𝐿𝑀 (𝑡) =
{
𝑦𝐿𝑀𝑖 (𝑡)

���𝑖 ∈ [1, |𝐿𝑀 |]
}
, where 𝑦𝐿𝑀𝑖 (𝑡) ∈ R𝑙 (4)

Graph Models. To aggregate the structure signals, we use an
ensemble of |𝜓 | behavior signals over the GNN networks of GCN,
GAT, and GraphSage2. For an input query-product graph with 𝑣
nodes and adjacency matrix G𝜓 (𝑞, 𝑝) ∈ R𝑣×𝑣 , let the feature matrix
be ℎ0 ∈ R𝑣×𝑑 and (𝑖𝑞, 𝑖𝑝 ) be the indices of query and product node

2Note that we only listed the LM and GNN models used in our experiments. The
framework, however, supports most generic LM and GNN models.

in the feature matrix, then 𝐾-layer GNN models aggregate the node
neighborhood information as:

ℎ𝑘+1 = 𝜎
(
𝐷𝜁−1G𝜓 (𝑞, 𝑝)𝐷𝜁ℎ𝑘𝑊𝑘

)
, where 𝜁 ∈ [0, 1] (5)

𝑦𝐺𝑁𝑁
𝑖 (ℎ0) = 𝜙𝑙𝑑 (ℎ𝑘+1 [𝑖𝑞] ∥ℎ𝑘+1 [𝑖𝑝 ]), where 𝑦

𝐺𝑁𝑁
𝑖 (ℎ0) ∈ R𝑙 (6)

𝑌𝐺𝑁𝑁 (ℎ0) =
{
𝑦𝐺𝑁𝑁
𝑖 (ℎ0)

���𝑖 ∈ [1, |𝐺𝑁𝑁 |]
}

(7)

where 𝜁 is the factor of spectral filter dependent on the GNN model,
𝐷 ∈ R𝑣×𝑣 is the diagonal degree matrix and ∥ is the concatenation
operator. Note that we solve the search relevance as a link prediction
task in GNNs and hence only use (𝑖𝑞, 𝑖𝑝 ) in the final softmax layer
to compute the probabilities over 𝑙 output labels.

Interpretable Ensemble. To aggregate the features from differ-
ent models in an interpretable manner, we utilize Gradient Boosting
Decision Trees (GBDTs) [15]. GBDTs are a type of ensemble ma-
chine learning algorithm that combines the predictions of multiple
decision trees to improve the accuracy and stability of the model.
The algorithm works by adding decision trees to the model sequen-
tially, with each tree correcting the errors made by the previous
tree. The trees are trained using gradient descent optimization,
which minimizes the error between the predicted output and the
ground truth. The final prediction is obtained by averaging the pre-
dictions of all trees in the ensemble. For an input text 𝑡 , graph ℎ0,
and associated region information 𝑓 , the output of a GBDT model
is formulated as:

𝑦 =
1
𝑇

𝑇∑︁
𝑡=1

𝑜𝑡 (𝑌 ), where 𝑌 = 𝑌𝐿𝑀 (𝑡)∥𝑌𝐺𝑁𝑁 (ℎ0)∥ 𝑓 (8)

where 𝑦 is the final prediction, 𝑇 is the number of trees in the
ensemble, and 𝑜𝑡 (𝑌 ) is the prediction of the 𝑡-th tree. In our task,
we optimize the GBDT’s model parameters 𝜃 by minimizing the
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cross-entropy loss for 𝑙-labels 𝑌 = {𝑦1, 𝑦2, ..., 𝑦𝑙 } as follows:

𝐿(𝑦,𝑦) = −
∑︁
𝑦∈𝑌

(𝑦𝑙𝑜𝑔(𝑦) + (1 − 𝑦)𝑙𝑜𝑔(1 − 𝑦)) (9)

𝜃 = 𝜃 − 𝛼∇𝜃𝐿(𝑦,𝑦) (10)

We employ SHAP (SHapley Additive exPlanations) [20] to ad-
ditively interpret the contribution of each feature to the GBDT
ensemble. This helps us in model selection to add and eliminate
LMs and GNNs in a constrained practical application. SHAP cal-
culates the features’ contribution using a recursive algorithm that
traverses the decision tree and aggregates the contributions of ev-
ery feature at each node. The SHAP values for a feature are the
average change in the prediction caused by that feature, averaged
over all possible ways that the feature could be used in the decision
tree. For GBDTs, the SHAP value of a feature 𝑖 is calculated as:

Ω𝑖 =
∑︁

𝐹⊆𝜔𝑋

|𝐹 |!( |𝑋 | − |𝐹 | − 1)!
|𝑋 |! (Ω𝐹∪𝑖 − Ω𝐹 ) (11)

where Ω𝑖 is the SHAP value for feature 𝑖 , 𝐹 is a subset of features,
𝑋 is the set of all features, and 𝜔𝑋 is the set of all possible subsets
of 𝑋 . The SHAP values enable us to rank a model’s contribution
and use it for model selection. Note that, due to the additive nature
of SHAP values, we can compute a model’s contribution without
re-training all previous candidates.

3.3 Model Components
Computational constraints significantly vary in the training and in-
ference phase in industry settings. The training phase optimizes for
model accuracy and generalizability over broader datasets, whereas
the inference phase must additionally optimize for model latency
under constrained computational resources3. In this section, we
explain our model’s training phase, model selection setup, and
inference phase for a practical environment.

Training Phase. During the training phase, we have access to
a significant amount of both CPU and GPU memory. Thus, we can
optimally parallelize our data processing and model training steps.
Additionally, we note that e-commerce queries have a 20% − 25%
monthly update rate, i.e., we receive only 20%−25% new queries ev-
ery month while the rest overlap with previously processed queries.
Thus, given the monthly cycle of model update, the time-intensive
operations of Graph Construction and De-noising Product Infor-
mation do not significantly affect the model pipelines in practice.
However, we need to ensure that the models are compliant with
industry standards, and thus, we optimize our hyperparameters
(provided in Section 3.4) in a restricted search space (model size
limited to 2.5 GB in our case). The training phase receives an input
query-product pair with its corresponding relevance label. The in-
put pair is processed using the graph signals and input to update the
parameters of candidate LMs and GNNs through training. The final
trained models are stored as checkpoints. Algorithm 2 in Appendix
A presents the model’s training flow.

Model and Relation Selection. In this phase, our goal is to
restrict the number of candidate LMs and relation-based GNN mod-
els based on the inference constraints, while preserving the best
performance. For an inference metric Λ (additive units such as GPU

3Complete details of the computational setup are presented in Section 3.4.

VRAM, CPU RAM, or inference time) with constraint 𝐾 and the
set of candidate models {𝐿𝑀} |𝐿𝑀 |

𝑖=1 and {𝐺𝑁𝑁 } |𝐺𝑁𝑁 |
𝑗=1 , this phase

selects candidates𝑀 ⊆ 𝐿𝑀 ∪𝐺𝑁𝑁 , with the following constraints:∑︁
𝑚∈𝑀

Λ𝑚 ≤ 𝐾 ;
∑︁
𝑚∈𝑀

Ω𝑚 ≥
∑︁

𝑓 ∈𝐹−𝑀
Ω𝑓 (12)

We need to handle the selection in two scenarios: (i) initial setup
where𝑀 = ∅ and (ii) continuous deployment where𝑀 ≠ ∅. For the
initial setup, we rank the candidate models according to their SHAP
values (computed using Eq. (11)) and incrementally add them to𝑀
till the constraints hold. In the case of continuous deployment, we
follow a last-in, first-out (LIFO) strategy and compare the candidate
model 𝑓 against the last-inserted model𝑚𝑙 ∈ 𝑀 . We use the new
candidate only if Ω𝑓 > Ω𝑚𝑙

and
∑
𝑚∈𝑀−{𝑚𝑙 }+{ 𝑓 } Λ𝑚 ≤ 𝐾 . The

model selection algorithm is provided in Appendix A.
Inference Phase. In the inference phase, the model must handle

a large volume of query-product pairs, and hence, the scalability
and latency become crucial considerations. To address these con-
cerns, we relegate the Graph Computation and De-noising Product
Information modules to the pre-computation step. Thus, during
inference, we load PP-GLAM parameters on the available GPUs and
process the query-product pairs in parallel batches (retrieving the
graph and de-noised product information in constant time). One
potential issue with this method is that pre-computed graph and
de-noised product information may not be available for infrequent
query-product pairs. However, in typical e-commerce settings, we
have observed that this information is available for approximately
80%-85% of queries each month. For the remaining queries, we
can still use a subset of candidate models (which do not rely on
graph information) and obtain suboptimal results even with incom-
plete or noisy product information. It should be noted that, because
the candidate models’ predictions are independent, we can set up
reliability-availability trade-offs4 according to the downstream use
case. Our model’s inference pipeline is presented in Appendix A.

3.4 Implementation Details
PP-GLAM is implemented using the PyTorch framework with the
huggingface library for the LM models and the PyG library for the
graph neural networks. The model is trained on sixteen Nvidia V100
GPUs and optimized using AdamW [19] with standard beta param-
eters of 0.9 and 0.999, weight decay rate of 0.01, and mini-batch
gradient descent of batch size 64. The language models encode the
input tokens with a maximum length of |𝑡 | = 512 into a 𝑑 = 768-
dimensional vector to be classified into 𝑙 = 4 labels. For GNNs,
we use |𝜓 | = 5 behavioral signals in a 𝐾 = 2-layer GNN network
with 𝑙 = 4 final output labels. The graph extraction module obtains
the local 𝑘 = 2-hop neighborhood with a maximum size of 100
neighbors. The GBDT ensemble is implemented using the Light-
GBM library [15] with a cross-entropy objective, 1500 iterations,
0.005 learning rate, 15 leaves, 15 depth, and 200 bagging frequency.
The inference setup is constrained to four V100 GPUs, with a time
limit of 15 milliseconds per query-product sample. To avoid loading
overheads, we use LuaJIT compiler to load PP-GLAM’s parameters

4A focus on reliability would imply all models succeed, whereas, availability is
possible if any model succeeds.
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for inference. The implementation code of our model is available
here5. The dataset of query-product pairs is publicly available [30].

4 EXPERIMENTAL RESULTS
Our experimental setting investigates the performance of our model
for the ESCI classification problem and analyzes its components in
practical environments. More specifically, we study the following
research questions (RQs):
RQ1. How does PP-GLAM’s performance compare against current

alternatives on the search relevance tasks of ESCI classifica-
tion and irrelevant classification?

RQ2. Is PP-GLAM compatible with industry constraints? How
does the performance differ in such scenarios?

RQ3. Is the ensemble method of feature aggregation better than
other techniques?

RQ4. How do we make model decisions using the additive SHAP
values?

4.1 Datasets and Baselines
For our experiments on search relevance tasks, we utilize the pub-
licly available ESCI dataset [30]. The dataset contains ≈2 million
real-world query-product pairs with manually annotated ESCI la-
bels, collected from the regions of the United States (US), Japan
(JP), and Spain (ES). The regions are diverse in their languages, geo-
graphical location, and user behavior. This dataset is enriched with
five additional behavioral signals: impressions (user viewed the
product), clicks (user clicked on the product), adds (user added the
product to their cart), purchases (user purchased the product), and
consumes (user finally consumed the product). As shown in Figure
3, we found that certain behavioral signals such as adds and pur-
chases have a strong correlation with target ESCI labels, whereas
others such as impressions and clicks have a denser availability. The
dataset does not contain any customer information or personally
identifiable information. From the perspective of an e-commerce
search engine, we evaluate our model on two real-world tasks of
ESCI classification (applied in complementary product recommen-
dation [11]) and irrelevant classification (used for improving user
experience by increasing the precision of product recommendation).
Each task leads to a unique imbalanced class distribution, which
our model handles with class weights in the loss function. For the
experiments, we hold out the test set (10% of the dataset) for evalua-
tion and perform a five-fold cross-validation with a train-validation
split of 4:1. Further details on the datasets’ edge distribution and
edge correlation are provided in Table 1 and Figure 3, respectively.
Note that densely available behavioral signals such as impressions
and clicks have a low correlation to the target ESCI labels when
compared to sparser signals such as clicks and adds. Therefore, in
practical applications, it is crucial to carefully weigh the trade-off
between reliability and availability when selecting which signals
to use. The dataset for the query-product pairs is available here6.

For the baselines, we select (i) the popular language models of
DeBERTa, COCOLM, BigBird, and M-DeBERTa, (ii) GNN models of
GCN, GAT, and GraphSage, (iii) Relation-GNNmodels of GraphSage

5https://github.com/amazon-science/graph-lm-ensemble
6https://github.com/amazon-science/esci-data

Table 1: Distribution of the edges in the dataset. The columns
represent the number of edges and its proportion in the over-
all dataset.

Relation Number Proportion (%)
impressions 30,256,494 40.15
clicks 38,739,273 49.86
adds 3,886,923 5.25
purchases 1,445,229 1.93
consumes 118,440 0.17
exact 1,451,542 1.72
substitute 487,544 0.58
complement 64,481 0.08
irrelevant 223,804 0.27
Total 76,673,730 100

Figure 3: Correlation between edges of the dataset. Note that
dense signals such as impressions and clicks have a low cor-
relation with target edges of exact, substitute, complement,
and irrelevant, whereas sparser signals such as adds and
purchases are highly correlated. Hence, we must carefully
consider the reliability-availability trade-off in practice.

model trained using behavioral signal-attributed edges7, and (iv)
SALAM [5], which is a graph-based languagemodel for e-commerce
engines. Language models only utilize the query-product text infor-
mation. For graph models, the node features are initialized using
semantic embeddings from LM models (M-DeBERTa). SALAM uti-
lizes both the text information as well as the behavioral signals in
its framework.

4.2 RQ1: Search Relevance
In this experiment, we investigate the performance of our model
relative to other baselines on the search relevance tasks of ESCI
classification and irrelevant classification. The PP-GLAM model
predicts a single label for each query-product pair and the perfor-
mance is evaluated using ground-truth labels on the metrics of
accuracy, macro-F1, and weighted F1 scores.8 We evaluate both the
macro-F1 andweighted F1 scores due to class imbalance, and certain
downstream tasks such as recommendation systems require the
weighted F1 to be high. For other tasks, such as irrelevant detection,
it will be ideal to obtain a high macro-F1.

From our experimental results, reported in Table 2, we observe
that our model consistently outperforms the baselines in both the
tasks of ESCI classification and irrelevant classification. Among the

7the basic relations are impressions, adds, clicks, purchases, and consumes. How-
ever, we also use a homogeneous (All) and heterogeneous (Het-All) version of the
graph with all the basic relations.

8weights are given by the number of actual occurrences of the class in the dataset.

https://github.com/amazon-science/graph-lm-ensemble
https://github.com/amazon-science/esci-data
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Table 2: Performance comparison of PP-GLAM against baselines for search relevance tasks of ESCI classification and irrelevant
classification in the e-commerce regions of US, ES, and JP. Evaluation metrics (presented in the columns) include Accuracy
(Acc), Macro-F1 (MacF1), and Weighted-F1 (WtF1). The best results for each metric are in bold font. All the improvements of
PP-GLAM over SALAM and best-performing models are statistically significant with a p-value threshold of 0.05.

Task ESCI Classification Irrelevant Classification
Model Locale United States (US) Spain (ES) Japan (JP) United States (US) Spain (ES) Japan (JP)
Type Model Acc MacF1 WtF1 Acc MacF1 WtF1 Acc MacF1 WtF1 Acc MacF1 WtF1 Acc MacF1 WtF1 Acc MacF1 WtF1
LM (M)DeBERTa 84.42 70.00 84.42 76.84 66.99 76.84 75.91 64.33 75.91 95.71 87.10 95.61 86.52 46.39 80.27 90.20 81.52 90.18

COCOLM 81.19 64.19 81.19 - - - - - - 95.18 84.58 94.91 - - - - - -
BigBird 86.58 74.40 86.58 - - - - - - 95.92 90.96 95.89 - - - - - -

GNN GraphSage 75.29 46.91 71.85 63.79 40.61 59.23 64.67 40.93 60.84 90.41 47.49 85.87 86.52 46.41 80.27 86.22 46.45 79.86
GCN 71.47 34.53 64.15 60.34 34.78 55.46 60.99 35.25 55.28 90.40 47.49 85.85 86.54 46.39 80.28 86.20 46.42 79.82
GAT 72.14 38.99 66.75 60.65 35.60 56.13 61.92 37.23 57.22 90.43 47.49 85.86 86.53 46.39 80.27 86.22 46.44 79.85

Relation Impressions 72.38 37.80 66.06 61.49 37.07 56.76 62.56 36.95 57.12 90.40 47.51 85.84 86.53 46.40 80.30 86.21 46.41 79.84
GNN Adds 73.56 41.95 68.81 61.62 37.57 57.51 62.79 39.15 58.89 90.41 47.48 85.87 86.53 46.40 80.30 86.20 46.46 79.85

Clicks 72.43 38.16 66.19 61.37 37.15 56.78 62.51 36.70 56.90 90.42 47.48 85.85 86.53 46.40 80.30 86.21 46.42 79.83
Purchases 73.92 43.27 69.76 61.80 37.19 57.34 62.84 39.22 58.93 90.43 47.49 85.85 86.53 46.41 80.29 86.22 46.44 79.86
Consumes 73.90 44.81 70.72 61.88 36.75 57.21 62.21 39.75 59.26 90.43 47.50 85.86 86.53 46.40 80.29 86.20 46.51 79.87
All 72.22 37.23 65.59 61.45 36.91 56.64 62.37 36.26 56.54 90.43 47.48 85.85 86.53 46.41 80.28 86.21 46.39 79.83
Het-All 72.35 37.80 65.94 61.52 36.35 56.33 62.43 36.59 56.83 90.42 47.49 85.84 86.55 46.40 80.28 86.21 46.44 79.85

GNN SALAM 83.82 67.17 84.61 75.77 60.72 76.49 75.74 63.71 74.51 89.82 73.17 90.61 81.77 44.72 78.49 86.74 70.71 84.51
+LM PP-GLAM (Ours) 90.45 82.36 90.79 80.32 69.81 80.63 79.23 67.68 79.61 96.69 90.99 96.78 87.90 46.78 82.24 90.41 82.08 90.92

baselines, we note that LM models tend to outperform the graph
models, which underscores the importance of semantic features.
Even in the case of LM models for the US region, we notice that
the newer LM model (i.e., BigBird) outperforms the relatively older
models such as DeBERTa and COCOLM, which strengthens our
case for plug and play ensemble models with replaceable com-
ponents. PP-GLAM, with its ensemble framework, improves the
performance of both standalone LMs and GNNs by 4%-11% and 20%-
75%, respectively. Moreover, the model can also leverage further
research advances within LM models and GNNs in a non-intrusive
manner. This enables us to take advantage of the latest works in
an efficient pipeline. Additionally, we also see that PP-GLAM out-
performs the SALAM model, which also utilizes both LM and GNN
models. This is because SALAM gives more importance to graph
features, which are not available during the evaluation phase. Thus,
we conclude that an ensemble that can adapt its dependence on
language and graph features according to the dataset is the best fit
for a real-world industry scenario of search relevance.

Table 3: Comparison of memory and processing require-
ments for different models in the training and inference
pipelines. The Columns indicate the number of parameters
(Param), pre-training time (PTT), and fine-tuning time (FTT)
in seconds per epoch, inference time (IT) in milliseconds per
sample, VRAM requirement (Mem), and disk space require-
ment (Disk) in Gigabytes.

Model Param PTT FTT IT Mem Disk
LM 230M 128K 215 10.67 1.01 16.2
GNN 70M 133K 169 9.87 0.49 39.8
Relation-GNN 150M 130K 217 10.83 1.38 22.1
SALAM 279M 135K 231 11.05 2.57 169.1
PP-GLAM (Ours) 450M 138K 220 10.67 2.38 160.1
PP-GLAM (Red) 290M - - 10.50 0.98 160.1

4.3 RQ2: Practical Environment
To comprehend the suitability of PP-GLAM for industry settings,
we compare its memory and processing requirements against the
LM- and GNN-based baselines. We evaluate the models on the basis

of their number of parameters (Param), pre-training time (PTT),
fine-tuning time (FTT), inference time (IT), GPU RAM requirement
(Mem), and disk space requirement (Disk).

Results shown in Table 3 demonstrate that our model’s com-
putational and memory requirements are comparable to that of
the available alternatives and differ only by a negligible margin
of 3%-5%. This margin is easily manageable due to the monthly
update rate of query-product pairs, as discussed in Section 3.3. An
important challenge, however, is the additional time taken by the
Graph Extraction and De-noising product information modules. In
our pipeline, we shift these modules to the pre-computation step
and save the results as hash tables to enable constant-order retrieval.
However, this leads to a lack of availability of certain graphs for the
query-product pairs in the evaluation set and also adds to the disk
space requirement, which increases proportionally to the number
of unique query-product pairs. For the problem of search relevance,
our model can inductively handle the graph unavailability problem
by returning the results from the language model. Furthermore, the
additional disk requirement is not a concern since it is relatively
inexpensive. However, further applications of our model should
consider these limitations.

4.4 RQ3: Feature Aggregation
To confirm the effectiveness of the GBDT ensemble as a feature
aggregation mechanism, we compare its performance to other com-
monly used mechanisms of using multi-layer perceptrons (MLPs)
layer and attention layers. Both the MLP and attention layer per-
form their feature aggregation in a latent space. This leads to a
lack of interpretability and generalization over a new data distribu-
tion. In addition, both these approaches will require an expensive
re-training step for the entire model. In contrast, our GBDT based
ensemble consists of decision trees that are interpretable using ad-
ditive SHAP values. Also, they are trained on the outputs obtained
from different models, and thus, the training of the aggregation
mechanism (ensemble) for a new data distribution does not require
the re-training of component graph and language models. Further-
more, from Table 4, we note that GBDT ensembles perform better
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Table 4: Comparison of different feature aggregation methods (MLP and attention) and the constrained model variant (PP-
GLAM (Red)) of our model for the search relevance tasks of ESCI classification and irrelevant classification. Evaluation metrics
presented in the columns are accuracy (Acc), macro-F1 (MacF1), and weighted F1 (WtF1). The best results are in bold font.

Task ESCI Classification Irrelevant Classification
Locale United States (US) Spain (ES) Japan (JP) United States (US) Spain (ES) Japan (JP)
Model Acc MacF1 WtF1 Acc MacF1 WtF1 Acc MacF1 WtF1 Acc MacF1 WtF1 Acc MacF1 WtF1 Acc MacF1 WtF1
MLP 81.18 74.06 79.92 69.64 60.76 71.94 70.41 56.98 69.15 86.78 81.82 85.19 76.21 40.72 73.38 80.35 69.10 78.97
Attention 85.20 76.77 85.46 75.22 64.05 75.18 74.04 62.09 74.47 91.08 84.81 91.10 82.32 42.92 76.68 84.49 75.30 85.05
PP-GLAM (Ours) 90.45 82.36 90.79 80.32 69.81 80.63 79.23 67.68 79.61 96.69 90.99 96.78 87.90 46.78 82.24 90.41 82.08 90.92
PP-GLAM (Red) 89.04 80.86 89.31 79.03 68.43 79.50 78.07 66.28 78.36 95.18 89.33 95.20 86.49 45.86 81.09 89.09 80.38 89.49

by 6%-9% at feature aggregation than their alternatives because
they can better generalize over the evaluation dataset.

4.5 RQ4: Additive Explanations
In this experiment, we study the interpretability of our model by
analyzing the contribution of LM and GNN models and different
behavioral signals using additive SHAP explanations and aim to
compress the model for inference by removing the models with
lower contribution.

(a) Model contribution (b) Relation contribution

Figure 4: SHAP value-based additive contribution of differ-
ent features to the overall performance of our model. (a)
provides the contribution of different models, and (b) shows
the contribution of different relations.

From Figure 4a, we observe that LM models (around 16%-31%)
contribute significantly higher to our model’s performance com-
pared to GNN models (at 10% each). Diving deeper into the contri-
bution of different relations, we notice that GNN models that use
all features either as homogeneous graphs or heterogeneous graphs
have the highest contribution at 33%, followed by strong behavioral
signals such as adds and purchases at 9%-10%. Finally, relatively
weak behavioral signals have an insignificant contribution of 3% to
the model performance. Based on these contributions, we construct
an ensemble of reduced size, PP-GLAM (Red), with the highest
contribution models of (M)DeBERTa, BigBird, and GraphSage with
Het-All relations. We observe that the reduced ensemble leads to
a 57.8% reduction in the number of parameters (Table 3) with a
performance reduction of only 1.6% (Table 4).

5 DISCUSSION
This section describes a strategy to deploy PP-GLAM in an indus-
trial setting and then understand its impact on the search engine.

Deployment Strategy: As explained in Section 3.3, PP-GLAM
can be trained and ensembled offline using annotated labels. The
trained models can then be stored as checkpoints for inference.
These checkpoint models will be loaded in parallel GPUs using

LuaJIT platform, which enables faster real-time inference by re-
moving the overhead of loading weights for each iteration. During
inference, the model processes query-product pairs in batches and
saves the predicted labels for further utilization in downstream
tasks. The integration of the PP-GLAM method into existing work-
flows that utilize query-product pairs as input for classification
is a simple task with minimal modifications required. The graph
preprocessing step is also implemented with efficient caching and
real-time lookup mechanism with constant order retrieval. In par-
ticular, given the long-tailed distribution of product search queries,
we can pre-compute query and product neighborhoods for the most
frequently seen samples. Additionally, efficient online inference
methods [14] are employed to compute representations for less
frequently seen queries in real time. The inclusion of graph infor-
mation results in significant performance gains, while the impact
on inference time is negligible. Thus, the deployment of PP-GLAM
is a feasible and viable investment for practical applications.

Impact on Search Engine: In this section, we present the im-
pact of incorporating an ESCI classifier in a product search engine.
The ranking of e-commerce products relies on lexical, behavioral,
and semantic matching. However, behavioral data can be unreliable,
leading to biases in the data used to train these models. By imple-
menting an ESCI-based classification at the final stage, or using
these classification predictions as inputs for downstream models,
these issues can be mitigated. Additionally, the results from these
models can be utilized for customer messaging, providing explana-
tions for why a particular item was shown in response to a query.
Improving the ESCI classifiers’ performance can both enhance the
quality of product search and the customers’ trust in these systems,
ultimately allowing practitioners to better serve their end-users.

6 CONCLUSION
In this paper, we presented PP-GLAM, a modular ensemble of LMs
and relational GNNs that utilizes GBDTs for flexible model selection
in a practical environment. Through our experimental evaluation
on a multi-regional public e-commerce dataset, we have shown the
effectiveness of PP-GLAM on search relevance and irrelevant detec-
tion tasks of ESCI classification, outperforming current alternatives.
We have also demonstrated the compatibility of PP-GLAM with
industry settings and highlighted the benefits of using ensemble
methods as an interpretable strategy to aggregate semantic and
behavioral signals and efficiently select the most impactful models.
Additionally, we have detailed a deployment strategy for integrat-
ing our framework in practical settings with dynamic data sources.
Overall, our approach presents a promising step towards improved
e-commerce product search.
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A ALGORITHMS
Algorithms 1 and 3 provide the algorithm for our model’s selection
pipeline, and our model’s inference pipeline, respectively. Algo-
rithm 2 presents the model’s training flow.
Algorithm 1:Model Selection.
Input: Current model set𝑀 , candidate models 𝐿𝑀 , 𝐺𝑁𝑁 ,

inference metric Λ, constraint 𝐾 ;
Output: New model set𝑀 ;

1 if 𝑀 = ∅ then
2 # Sort candidate models based on SHAP values
3 𝑅 = 𝑠𝑜𝑟𝑡Ω𝑓

({𝐿𝑀 ∪𝐺𝑁𝑁 })
4 Initialize 𝑖 = 1, Λ = 0;
5 else
6 # Sort candidate and |𝐿𝑀 ∪𝐺𝑁𝑁 | least performing

models in𝑀
7 𝑙𝑠𝑡 (𝑀) = argminΩ, |𝐿𝑀 ∪ 𝐺𝑁𝑁 | (𝑀)
8 𝑅 = 𝑠𝑜𝑟𝑡Ω𝑓

({𝐿𝑀 ∪𝐺𝑁𝑁 ∪ 𝑙𝑠𝑡 (𝑀)})
9 Initialize 𝑖 = 1, Λ =

∑
𝑚∈𝑀\𝑙𝑠𝑡 (𝑀 ) Λ𝑚 ;

10 end
11 while Λ ≤ 𝐾 & 𝑖 ≤ |𝑅 | do
12 Λ = Λ + Λ𝑚 ;
13 𝑀 = 𝑀 ∪ 𝑅 [𝑖];
14 end
15 return𝑀

Algorithm 2: PP-GLAM training flow.
Input: Query-product pairs (𝑄, 𝑃) = {(𝑞, 𝑝)},

Pre-computed neighborhoods G𝜓 = {G𝜓 (𝑞, 𝑝)},
Ground truth 𝑦;

Output: Predictor 𝑃𝜃 , 𝜃 ;
1 Initialize model parameters 𝜃 ;
2 for number of epochs; until convergence do
3 Initialize loss 𝑙 = 0;
4 for (𝑞, 𝑝) ∈ (𝑄, 𝑃),G𝜓 (𝑞, 𝑝) ∈ G𝜓 do
5 Tokenize input 𝑡 = 𝑞∥ [𝑆𝐸𝑃] ∥𝑝′;
6 # Process through language models
7 for 𝐿𝑀𝑖 ∈ 𝐿𝑀 do
8 𝑦𝐿𝑀

𝑖
(𝑡) = 𝜙𝑙

𝑑
(𝐿𝑀𝑖 (𝑡)); via Eq. (3)

9 end
10 𝑌𝐿𝑀 (𝑡) =

{
𝑦𝐿𝑀
𝑖

(𝑡)
��𝑖 ∈ [1, |𝐿𝑀 |]

}
; via Eq. (4)

11 # Aggregate node neighborhoods
12 for 𝐺𝑁𝑁𝑖 ∈ 𝐺𝑁𝑁 do
13 ℎ𝑘+1 = 𝜎

(
𝐷𝜁−1G𝜓 (𝑞, 𝑝)𝐷𝜁ℎ𝑘𝑊𝑘

)
14 𝑦𝐺𝑁𝑁

𝑖
(ℎ0) = 𝜙𝑙𝑑 (ℎ𝑘+1 [𝑖𝑞] ∥ℎ𝑘+1 [𝑖𝑝 ]); via Eq. (6)

15 end
16 𝑌𝐺𝑁𝑁 (ℎ0) =

{
𝑦𝐺𝑁𝑁
𝑖

(ℎ0)
��𝑖 ∈ [1, |𝐺𝑁𝑁 |]

}
; via Eq.

(7)
17 # GBDT Ensemble
18 𝑌 = 𝑌𝐿𝑀 (𝑡)∥𝑌𝐺𝑁𝑁 (ℎ0)∥ 𝑓
19 𝑦 = 1

𝑇

∑𝑇
𝑡=1 𝑜𝑡 (𝑌 ); via Eq. (8)

20 # Loss Calculation
21 𝐿(𝑦,𝑦) = −∑

𝑦∈𝑌 (𝑦𝑙𝑜𝑔(𝑦) + (1 − 𝑦)𝑙𝑜𝑔(1 − 𝑦)); via
Eq. (9)

22 𝑙 = 𝑙 + 𝐿(𝑦,𝑦);
23 end
24 # Update parameters
25 𝜃 = 𝜃 − 𝛼∇𝜃𝐿(𝑦,𝑦); via Eq. (10)
26 end
27 return 𝑃𝜃 , 𝜃

Algorithm 3: PP-GLAM inference flow.

Input: {(𝑞, 𝑝)}, {G𝜓 (𝑞, 𝑝)}, Model set𝑀 ;
Output: Label 𝑦;

1 𝑡 = 𝑞∥ [𝑆𝐸𝑃] ∥𝑝′;
2 for 𝐿𝑀𝑖 ∈ 𝐿𝑀𝑀 do
3 𝑦𝐿𝑀

𝑖
(𝑡) = 𝜙𝑙

𝑑
(𝐿𝑀𝑖 (𝑡)); via Eq. (3)

4 end
5 𝑌𝐿𝑀 (𝑡) =

{
𝑦𝐿𝑀
𝑖

(𝑡)
��𝑖 ∈ [1, |𝐿𝑀 |]

}
; via Eq. (4)

6 for 𝐺𝑁𝑁𝑖 ∈ 𝐺𝑁𝑁𝑀 do
7 ℎ𝑘+1 = 𝜎

(
𝐷𝜁−1G𝜓 (𝑞, 𝑝)𝐷𝜁ℎ𝑘𝑊𝑘

)
8 𝑦𝐺𝑁𝑁

𝑖
(ℎ0) = 𝜙𝑙𝑑 (ℎ𝑘+1 [𝑖𝑞] ∥ℎ𝑘+1 [𝑖𝑝 ]); via Eq. (6)

9 end
10 𝑌𝐺𝑁𝑁 (ℎ0) =

{
𝑦𝐺𝑁𝑁
𝑖

(ℎ0)
��𝑖 ∈ [1, |𝐺𝑁𝑁 |]

}
; via Eq. (7)

11 𝑌 = 𝑌𝐿𝑀 (𝑡)∥𝑌𝐺𝑁𝑁 (ℎ0)∥ 𝑓
12 𝑦 = 1

𝑇

∑𝑇
𝑡=1 𝑜𝑡 (𝑌 ); via Eq. (8)

13 return 𝑦
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