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ABSTRACT

We seek an information-revealing representation for high-
dimensional data distributions that may contain local trends in cer-
tain subspaces. Examples are data that have continuous support in
simple shapes with identifiable branches. Such data can be repre-
sented by a graph that consists of segments of locally fit principal
curves or surfaces summarizing each identifiable branch. We de-
scribe a new algorithm to find the optimal paths through such a
principal graph. The paths are optimal in the sense that they repre-
sent the longest smooth trends through the data set, and jointly they
cover the data set entirely with minimum overlap. The algorithm is
suitable for hypothesizing trends in high-dimensional data, and can
assist exploratory data analysis and visualization.

Index Terms: G.4.1 [Mathematics of Computing]: Mathemat-
ical Software—Algorithm design and analysis; 1.5.3 [Computing
Methodologies]: Pattern Recognition—Clustering

1 INTRODUCTION

A fundamental concern in data analysis is to find correlations hid-
den in large, high-dimensional data sets. To analyze correlations
the data must be ordered in a certain way in each notion of variabil-
ity. With such ordering one can proceed to study how variability
in one aspect is associated with those in others. The ordering itself
would then describe the general course or direction the distributions
extended along i.e a certain trend in the data set.

Ordering data points in a high-dimensional space is a highly non-
trivial problem. Simply arranging the points along each coordinate
does not serve the purpose, because the intrinsic variability in the
data may not necessarily align with a specific observation dimen-
sion. An example is that in image analysis the samples may be
represented as intensity per pixel, and the pixels are raster-scanned
as a feature vector, which is then considered as a point in a multi-
dimensional space. Yet, the trends of variability in the image, such
as the movement of an object, are not necessarily revealed if one
follows the intensity changes in a particular pixel. They are observ-
able only as certain associated changes in multiple feature compo-
nents (data dimensions). Furthermore, the changes may not neces-
sarily involve all of the components. For example, the images may
contain background pixels that do not have intensity changes as the
object moves. The trends do not necessarily span the entire im-
age collection either, because the changes may occur only in those
samples collected in the time window containing the duration of the
object’s movement.

In this work, we seek a way to uncover trends in datasets that
may be local (i.e., not necessarily global), or may be visible in only
certain subspaces. We start with an unsupervised learning proce-
dure to obtain a graph structure that describes the local proximity
relationship between data points. We then propose an algorithm to
navigate the proximity graph, where each navigation path gives a
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hypothesis of a possible trend in the dataset. An example is given
in Fig. 1 for data in a two-dimensional space. The focus of our work
is a novel graph-transformation-based framework for identifying a
critical set of independent patterns (or trends) with the least amount
of overlap. A set of continuous models for the trends is then built by
fitting a principal curve using the subset of data points that belong
to each of these trends.

It may appear that our procedure would discover a trend on any
arbitrary data set even if there is none. In fact, what we are look-
ing for is simply a dominant (or weakly dominant) ordering of the
points that may be present in certain subspaces. We conjecture that
such an ordering exists in most of the data sets of practical concern.
Ideally, this conjecture should be validated by a statistical testing
procedure, which is beyond the scope of our current work. In this
work, we treat this as an exploratory analysis tool, and caution that
one must validate the discovered trend by trying to make sense of
the ordering of the associated raw data, or by developing a correla-
tion model with other relevant parameters.

The trends resulting from this procedure can then be analyzed
with standard curve properties such as length, curvature, overlap,
etc. Their explicit, continuous models can be used to estimate func-
tional relationships between the trends. Analyzing such trends in
data can yield more insights for comparing different variability in
the data, such as the effects of observational parameters on the out-
come, or correlations between different groups of features. We
describe the use of this trend finding algorithm in a visualization
task [8], which can be a useful starting point for data analysis.

The main contributions in the proposed method are:

e Dealing with intersecting principal curves by smoothing the
data and increasing the curve detection ability of Principal
Curves.

e Identifying trends in the data using a continuous representa-
tion.

e Obtaining the minimum number of most independent paths
that cover the entire dataset.

e Untangling intersecting paths in high-dimensional spaces.

e Visualizing trends that summarize the data in continuous
form.

e Hypothesizing correlations amongst various feature trends in
the dataset.

The rest of this paper is organized as follows: Section 2 gives in-
formation about the relevant background on the various concepts
used in the paper. Section 3 describes the problem formulation
and explains the key concepts needed to comprehend our algorithm.
Section 4 provides the implementation details. Section 5 gives the
experimental results of the proposed algorithm on various synthetic
and real-world datasets. Finally, Section 6 concludes our discussion
and gives the future research directions.



(a) Original data with principal curves

(b) Possible Paths in the principal curves

Figure 1: Sample data and the possible trends in the data (a) The original data is being fitted using principal curves which go through the
“medial-axis” of the data (b) With four different end nodes (a,b,c and d) and two intersection nodes (x,y). There are six possible end-to-end paths
(A,B,C,D,E and F). A = (a,x,y,b), B = (c,x,y,d), C=(a,x,c), D=(a,x,y,d), E=(c,x,y,b), F=(d,y,b).

2 INFERENCE OF PROXIMITY STRUCTURES AND HYPOTHE-
SIZING TRENDS IN DATA

Fitting continuous models to data is a much explored area in statis-
tics. A popular choice is a spline [7], which is a special function
defined by piecewise polynomial (parametric) curves [3], and is of-
ten used in applications requiring data interpolation and smooth-
ing of multi-dimensional data. Spline functions for interpolation
are normally determined as the minimizers of suitable measures
of roughness subject to the interpolation constraints. Smoothing
splines may be viewed as generalizations of interpolation splines
where the functions are determined to minimize a weighted com-
bination of the average squared approximation error over observed
data and the roughness measure. For a number of meaningful def-
initions of the roughness measure, the spline functions are found
to be finite dimensional in nature, which is the primary reason for
their utility in computation and representation.

Principal curve [6] fitting is another popular technique that has
been successfully used for various applications in pattern recogni-
tion and machine learning [4, 9]. They give a representation for
low-dimensional manifolds in the data that can be exploited further
to form the trends. However, there is a difficulty in applying these
models to a new dataset without prior knowledge about the embed-
ded data geometry. Because not all the data points may participate
in each possible trend, forcing a fit using all the points may degrade
the overall goodness of the fit and damage the models’ validity. An
example case is that if there are two separate trends that are inter-
secting, a single application of the principal curve algorithm may
not be able to directly ascribe the precise number of trends and then
find them. One way to avoid this problem is to build the models in
small neighborhoods, and then seek to connect and extend the local
models.

To assign points to local groups in close proximity, one may
employ various clustering algorithms. Popular choices include the
k-means procedure and Gaussian mixture estimation [10]. How-
ever, studies on clustering often stop at assigning the data points to
clusters. We argue that an important next step is to understand the
relationship at the next level, i.e., the relative positioning and po-
tential relationships between the clusters. Therefore, we introduce
the cluster relationship graph, as a representation of the proximity
structure in the data. A useful choice for this is a minimum span-
ning tree that connects the cluster centroids. We then seek mean-
ingful ways to traverse this graph that can best reveal underlying
trends. Data in the clusters that are considered to be in a trend are
then taken to fit a continuous model.

Additional procedures that can be of use in this context include
data shrinking [12] methods. These are analogous to thinning and
skeletonization in a 2D context that are popular in the computer

vision community and have been applied to problems like character
recognition [9]. These techniques can reduce the noise and remove
any outliers that usually do not contribute to the main trend, and
hence avoid the interference of these points to model fitting.

A note of caution related to dimensionality reduction. Dimen-
sionality reduction is an active area of research in exploratory anal-
ysis with high-dimensional data [1]. Proper methods can preserve
essential proximity structure in the data. But simplistic schemes
do not always yield desirable results. For example, many attempts
for visualization of high-dimensional data involve systematically
presenting different low-dimensional projections of the data onto a
restricted number of coordinates. We caution that such operations
may not allow a good view into the true variability in the data. An
example is given in Fig. 2 shows a spiral in 3-D space along with
the data generating curve. Two projections of the data (onto x-y
plane and onto x-z plane) are also shown. It is almost impossible to
obtain the original structure of the data and the parametric form of
the data generating curve from these two projections. This demon-
strates the significance of fitting the trend models in the original
dataset and not in the projected space, unless it can be assured that
the proximity structure is preserved in the projection.

In the discussion that follows, we assume that the k-means pro-
cedure is used for clustering. The k-means procedure is known to
have problems, such as dependence on initialization and employing
a strong assumption on the cluster shapes. For only some of these
problems there are remedies. However, we find the simplicity of
k-means attractive as a starting procedure in exploratory analysis.
Furthermore, in our context it serves mainly as a data compression
step. As long as a large enough k is used, the shape assumption
has only a local effect. The global shape of the manifold is pre-
served in the resulting data skeleton, i.e., the Principal Tree that
we will describe below. Nevertheless, we expect that our method
can work with another more robust clustering procedure, or with
the assistance of procedures that give an estimation of the intrinsic
dimensionality of the data.

3 OPTIMAL TRAVERSAL OF PRINCIPAL GRAPH FOR GEN-
ERATING TREND HYPOTHESES

In this section, we will mathematically formulate the task of gener-
ating trend hypotheses as a graph traversal problem. We first give
definitions for the notion of trends and a number of graph-theoretic
entities needed in the description of the algorithm. We then give
the problem statement. Table 1 gives the notations followed in this

paper.



(a) Original data in 3-D

(b) Projection of the data onto x-y plane

(c) Projection of the data onto x-z plane

Figure 2: The original spiral data (a) the generating curve is represented by a solid line. (b) projection of the data onto a 2D x-y plane. (c)

Projection of the data onto a 2D x-z plane.

Table 1: Notations used in this paper.

Notation | Description
z Input dataset
9 Noise-free dataset
k Number of clusters
C; Cluster centroids
o Set OfCi...Cj
en; End Nodes of the MST
P Set of en;
in; Internal Nodes of the MST
u Set of in;
is; Intersection Nodes of the MST
v Set of in;
Lij Set of edges connecting the Centroids C; and C;
Gy Principal Tree = ({C;},{L;;}) ; MST connecting C;s
P End-To-End Paths of G,
= (enj,..., Ny, ...,en;)
A Adjacency matrix for MST
Il Length of Py
(0J7] Overlap between P; and Py = length(P; N Py)
G Curvature factor of paths
Wo Weight for overlap
We Weight for curvature
wy Weight for length
G; Traversal Graph =({P;},{O1s})
b, Weight at the Vertex P; =;
N Edge Weight for Oy
T Set of Independent P;s
Iy Input weight to Find_Ind_Path algorithm
Y Trends

3.1 The Notion of Trends

Trends (Y) are the minimal set of most independent sequence of
patterns over the feature space containing the dataset. A pattern is
a continuous region in a feature space that is filled with data points
to a pre-designated density. The degree of independence of the pat-
terns is inversely proportional to the length of overlap between the
pair of patterns. The key terms used in the paper are now defined
here -

Definition 1 Principal Tree - is a graph G, = ({C;}, {Li;}) (i,j =
1,....k) where the vertex set {C;} is the set of k Cluster Centroids
obtained using a k-means procedure, and the set of edges {L;;}
connecting centroids C; and Cj is the set of links that jointly form a
Minimum Spanning Tree (MST) over the vertex set {C;}.

Definition 2 End Nodes (en;) - are those C; with degree 1 in Gp.

Definition 3 Internal Nodes (in;) - are those C; with degree > 2 in
Gp.

Definition 4 End-To-End Paths (P;}) - are those paths in G, that
contain exactly two End Nodes en; and enj and the Internal Nodes
between them. They are ordered sequences of vertices that are of
the form (en;,iny,iny,...,iny, en;) (if there are m Internal Nodes).
There are (%) paths if there are t End Nodes and all nodes appear
Jjust once in each P;j.

Definition 5 Intersection Nodes (is;) - are those Internal Nodes in;
that are on two or more End-To-End Paths.

Definition 6 Overlap(O;; ;) - For two End-to-End Paths P;; and
Py ji, the overlap is the set P;j N\ Py jr.

Definition 7 Traversal Graph - is a graph G: =({F;}.,{Ou})
(I,J =1,...,|Bj|), where {P} is a set of End-To-End Paths P;js
and {Oy;} is a set of edges representing the overlap between Py
and Pj. The Vertex weight ®j associated with each Py is a measure
of the length of P; and the Edge weight My associated with each
Ojy is a measure of the amount of overlap between Py and P;.

We illustrate these with an example in Fig. 3(a) that contains
a two-dimensional dataset. Fig. 3(b) presents the (centroid) C;s
in the dataset, one for each cluster identified. C;s are the single
point representations of clusters identified by the k-means proce-
dure. Fig. 3(c) shows the Principal Tree with the C;s and their cor-
responding L;;s. In Fig. 4(a) the end nodes are a,b,c,d as they are in-
cident to only one (link) Z;; in the G, the internal nodes are w,X,y,z,
the intersection nodes are x and y, the path D is a path connecting
a,w,x,y,d. The overlap between paths D and E is (x,y). Fig. 4(b) in-
dicates the length weights for each segment of the paths. Every path
in Fig. 4(b) is represented as a node in the Traversal Graph given by
Fig. 4(c). The overlap between each path is the edge weight in the
graph, as shown.

One can see that each possible End-To-End path in the original
feature space will be represented as a node in the Traversal Graph.
There are a total of (}) nodes in G; for # End Nodes in the Principal
tree. In this paper, we propose an algorithm to extract the most
informative End-To-End paths that cover the entire data set. To this
end, we will now formalize the notion of the most informative End-
To-End paths, and define the optimal graph traversal problem that
finds the minimal set of such informative paths contained in the data
set.

3.2 The Optimal Traversal Problem

Given a Traversal Graph G; =(P;, Oyy), a set of weights {®;},
{1}, find the minimal set of F;s such that:

1) the Pss in the set have the smallest amount of overlap with each
other;

2) the Pys cover all the C;s in the Principal Graph G,,.

To evaluate the pairs of P;s and obtain the minimal set, a mea-
sure I" given by Eq.(2) is introduced. Kruskal’s algorithm [13] is



(a) Sample Data

(b) Various Clusters and their Centroids

(c) Minimum Spanning Tree on data

Figure 3: The original data , the cluster identification and the Minimum Spanning Tree of the Cluster Centroids.

(a) Possible End-To-End Paths from the MST skeleton.

(b) Weights for each segments of the End-To-End Paths

(c) Traversal Graph of the End-
To-End Paths

Figure 4: Graph Transformation: Vertices are End-To-End Paths with weights as the lengths of the End-To-End Paths. Edges are the overlaps

between the End-To-End Paths.

modified and used here. On the identification of the set of opti-
mal End-To-End Paths, a principal curve is fitted to the data points
belonging to each Py to obtain the Y in the dataset.

3.3 Principal Curves

Definition 8 (Principal Curves) are defined as “self-consistent”
smooth curves which pass through the “middle” of a d-dimensional
probability distribution or data cloud [6].

Principal curves are non linear summarizations of multidimensional
data points represented by a smooth, one dimensional curve. The
curve passes through the densest regions of the dataset, or the ‘mid-
dle’ of the dataset, taking the shape according to the distributions
of the dataset.

Let X be a random vector in R¢ and assume that n samples of
X are available. A principal curve f C R¢ is a smooth (C*) unit-
speed curve explicitly ordered by A € A € R, that passes through
the middle of the d-dimensional data described by the probability
distribution of X.

)= [finy D) @] = EXIA 0 =2 ()

where, the projection index Ay (x) of x is the value of A for which
fix) is closest to x. If a number of such points are present, the point
with the largest value of A is chosen.

3.4 Algorithm

We will now propose the following algorithm to generate trend hy-
potheses in a dataset:

1. Noise Elimination - implementing a density based noise re-
moval algorithm to reduce the noise and outliers from the
dataset.

2. Clustering and Computing Centroids - implementing the -
means algorithm for clustering.

3. Principal Tree Generation - implementing Kruskal’s Algo-
rithm to generate an MST connecting the cluster centroids.

4. Identifying Independent Paths - implementing Find _Ind_Path
algorithm

5. Modeling and Visualizing Trends - fitting principal curves to
each identified paths; isolating and ordering data points along
each trend for inspection.

4 IMPLEMENTATION DETAILS

The top level algorithm is given as Algorithm 1. In this section,
we will elaborate on each of the five main steps in the proposed
algorithm.

Algorithm 1 Finding_Trends

: Input: Dataset Z~

: Output: Trends Y

: Algorithm:

9 « Noise_Removal (X ,Eps,M)

0 «— k-means(2)

: A — Kruskal(o)

P, W, Y, Pends; j «— Get _Nodes (A)

: Pp.lp .01, ¢ < Path_-Values (Pends,A)
: T« Find_Ind_Path(PV,w,,we,wy)

: Y« P-Curve(7t)

—_

SOV XTI ALY

Noise Elimination - Most real world datasets contain noise and
outliers. Standard clustering algorithms like k-means, Hierarchical,
etc., are sensitive to these factors. The density-based algorithm
(Noise_Removal) is used as a data preprocessing step to eliminate



the noise and outliers. Outliers are points in the dataset which are
characteristically low in density and can hence be identified using
density based approaches. Two parameters are used to determine
whether a point is in a sparse region: a neighborhood radius Eps
and a count M of neighboring data points. Every data point which
is not within the neighborhood radius Eps of at least M other data
points is classified as a noise point. All such points are eliminated
to obtain the output &. Algorithm 2 gives the pseudocode.

Algorithm 2 Noise_Removal
1: Input: Dataset 2, Threshold value Eps, Min count M

2: Output: Noise-free dataset 9
3. Pseudocode:

4: 9 — X

5: fori— 1: size(Z") do

6: Ind=0

7 forr — 1: size(Z), r#i do
8: Dist« dist[ 2 (1), Z"(r)]
9: Ind = [Ind ; (Dist < Eps ? Z°(r) : 0)
10:  end for

11:  if size(Ind) <M then
12: D — D -Z31)

13:  endif

14: end for

Computing Centroids - The k-means partitional clustering
methodology is chosen here for its better run time efficiency. For
a given input of dataset & and a pre-designated number k, the
algorithm partitions the dataset into k clusters as the output. We
represent the clusters by their centroid C;. Membership for each
cluster is determined by maximizing the inter-cluster distances and
minimizing the intra-cluster distances between feature vectors (the
sum of squared error (SSE)).

Principal Tree (MST) Generation - The main purpose of this
step is to compute a compact representation of the relationship
between the clusters. Here we chose the representation to be the
minimum spanning tree connecting the cluster centroids. The
connection weights to be minimized are the Euclidean distance
between the centroids. To compute the MST, we use Kruskal’s
algorithm which is an efficient greedy algorithm that runs in
O(nlogn) time. The output is the Adjacency matrix(A) for the MST
or the Principal Tree. All the permutations of pairs of en;y, are
computed in the matrix Pends by the function Get_Nodes, Pends =

[eniq1.eniga;eniqy.eniqs;...1.

Identifying Independent Paths - This is the core component
of our algorithm. The Principal Tree is the skeleton from which
the End-To-End Paths P;s are identified. To obtain the mappings
of the Pys, their /s, the pairwise Oj; and the curvature ¢, the
algorithm Path_Value (incorporating Dijkstra’s Algorithm [13])
is implemented on the input Pends and A . Some of the Ps
are completely independent of each other while some intersect
with others. Some others overlap. The End-To-End Paths are
transformed to a G; with these considerations.

The curvature factor of a given path is a measure of the cumula-
tive cosine function values at the neighborhood of the intersection
points. See Fig. 5 where path P1 is a curved path compared to path
P2 which is straight. The curvature value for a path is a measure
of the summation of the cosine values of the angles made by the
line segments at the intersection points. In order to compensate for
any uncharacteristic deviations in the location of the centroids, we
take the cosine measure of angles between two segments on either
side of the intersection point. Here, P1 and P2 intersect at point d.

ox

Figure 5: Curvature of paths

Thus, curvature(P1) = cos(bcd)+ cos(cde)+ cos(def) = 0.75. Simi-
larly, curvature(P2) = cos(ihd)+ cos(hdj)+ cos(djk) = 0. Path P1 has
a higher curvature value as it has more curvature compared to the
straightness of path P2. To obtain the set of P;s for the Y, the search
is performed for the set of pair-wise combination of P;s which has
in them all the C;s covered and are most independent. The main
algorithm here is Find_Ind_Path which selects the P;s using a pair-
wise weight I'. All the P;, Py pairs and the corresponding I';; be-
tween them are identified as the Path matrix PV =[P;,P;,I';;]. This
is the input to this algorithm along with the normalized weight pa-
rameters w,, w. and w; which sum to unity (w, + we + w; = 1).
The weight parameters control the relative importance of overlap,
curvature, and length in the selection of the final paths. These are
user input parameters whose value depends on the nature of trends
desired and the type of dataset. Ind is the set of Indicator variables
for Cys. For every Py selected, the Cys € Pys are eliminated from Ind
until Ind = ¢.

Algorithm 3 Find_Ind_Path

: Input: Path Matrix PV, Weights w,, w, and w;
: Output: Set of Independent Paths t©

: Pseudocode:

. sort (PV, )

Ind = o // Set of Indicator variables for Cjg

: for i=1:size(PV) AND Ind # ¢ do

7,Ind < Find_Path (P;, T, Ind)

7,Ind < Find_Path (Py, T, Ind)

: end for

: return (7)

—_

The main goal of computing the Traversal Graph (Gy) is to obtain
the most independent set of paths (7;) that will cover all the data
points. Our goal is to identify the minimal set of paths that cover all
the cluster centroids and have the minimum edge weight (ensuring
minimum overlap) between them. The algorithm Find_Ind_Path
generates this minimal set 7. This problem of finding the optimal
set of paths is formulated as a min-max optimization problem where
the aim is to maximize the vertex weights (hence the inclusion of
maximum number of Cluster Centroids) and minimizing the edge
weights (thus minimizing the overlap). For a given set of vertices
(Py) and (Py), the input weight (I'7y)to the Find_Ind_Path algorithm
is formulated by the following objective function:

Ly =wox Ny +wex (gr+67) — (W + (P +9y)) ®)

The overlap parameter is (w, * 1);7) is minimized here by sub-
tracting the parameter for length ((w; * (®; + ®;))). Parameters for



Algorithm 4 Find_Path

1: Input:Vertex Pj, set of independent paths t, indicator matrix
for C;s Ind

2: Output: 7, Ind

3: Pseudocode:

4: P, — Get_Centroids(P)
5: for j=l1:size(F;) do
6.
7
8

for k=1:size(Ind) do
if P(j) =Ind(k) then

: Ind(k)«<0
9: s — size(T)
10: T(s+1) <P
11: end if
12: end for
13: end for

14: return (7,Ind)

curvature (we * (67 + gy)) is added as well and the weights w,,w;
and w, determine the importance of each parameter in the ‘trend’
selection process. These weights are user input values and can be
varied depending upon the type of trends desired and the nature of
the dataset. For example, w; can be dominant in value amongst the
weights if lengthy trends are desired. The End-to-End Paths corre-
sponding to this minimal set of nodes are the trends in the data. As
mentioned earlier, all the Py, Py pairs and the corresponding I';; be-
tween them are described by the Path matrix PV=[P;,P;,I';7]. This
and the weights w,,w,,w;, are the input to the algorithm whose out-
putis 7.

Algorithm 3 gives the implementation of Find_Ind_Path. All
pairs (Py,Pr) are ranked in ascending order as per their I'. The
function Get _Centroids obtains the corresponding set of nodes for
each P;. The ranked pairs of paths are checked for the C;s that they
include. Those C;s are eliminated from the I/nd set which is a set
of Indicator variables for C;s. The pairs of paths are sequentially
checked for any new C; that they may add and the process termi-
nates once all C;s are eliminated, that is, (C; € 7)o = ¢. This
task is performed by the function Find_Path (See Algorithm 4).

Visualizing Trends - Each P; includes a sequence of C;s that
represent the clusters of the data. Hence each FP; is associated with
a set of data points included in those clusters. These data points are
identified and a principal curve can be fitted on this subset of the
dataset [9]. This is the representation of a trend in that data set.

A Note about the Parameters - The procedure as described con-
tains several parameters that require user input. Thus it is not a
fully automated procedure yet. Until a systematic way to determine
the values of the parameters can be obtained, the procedure is best
considered as a tool for exploratory analysis. For example, it can
be embedded into a data visualization tool (such as Mirage[8]), so
that a user can iterate on trials of different parameter values.

5 EXPERIMENTAL RESULTS

All programs were written in MATLAB Version 6.5 and run on pen-
tium Dual Core 2.8 GHz machines. Experiments were performed
using both synthetic and high-dimensional real-world datasets.

5.1 Synthetic Data sets

Our algorithm was tested successfully on various synthetic data sets
that inherently contain trends. Several data sets were created with
intersecting and overlapping paths in them. Our algorithm identi-
fied the data points along these paths and was able to separate out
different trends in these data sets. Fig. 6(a)-(d) shows one such
synthetic data set where a sine wave intersects with a cos wave in

a four-dimensional space. The data set was created by pseudo-
randomly generating data points using these intersecting curves.
The k-means clustering algorithm identified 18 Cluster centroids
which were then used to build the Principal Tree using the Kruskal’s
algorithm. The weight parameters used in our objective function
(see Eq. 2) were: w; = 0.4, w, = 0.4 and w, = 0.2. There were six
nodes in the Traversal Graph (G;) using all the six possible paths
constructed from the four end nodes of the MST. For this dataset,
our algorithm was able to identify two independent trends, as shown
in Fig. 6(f). Finally, principal curves were fitted to the data points
belonging to each trend individually to obtain a continuous model
for the trend.

5.2 Real-world Data sets

Real-world data sets were obtained from image sequences in the
CMU Vision and Autonomous Systems Center’s Image Database!.
The motion images were of particular importance because they have
numerous motion sequences represented by frames numbered in or-
der of the motion’s progression. The movement in the images gen-
erated by either the change in the camera placement or its angle,
or the actual physical movement of the subject provided a high-
dimensional data set with a definite ordered change in the data val-
ues as the motion sequence progressed. The entirety of the dataset
contains all the images came from the same subject. The feature
vectors obtained from the original images were of very high dimen-
sions. A lower number of dimensions were obtained by rescaling
the images. Table 2 provides details about various data sets used in
our experiments. Most of these motion data sets inherently contain
some form of a ‘trend’ in a very high-dimensional feature space
representing the intensities at the pixels.

In order to obtain data sets that are more suitable for testing
our algorithm, we increased the complexity of these sequences by
adding more image sequences which were obtained by shifting im-
ages at a particular location. In other words, we generated more
trends in the data by obtaining sequences using simulated cam-
era panning that provided a new image sequence. The image at
a certain location in the original sequence was used as the basis
for subsequently generating more sequences by shifting the axis,
thus generating either overlapping or intersecting image sequences
of transfigured or shifted images. Fig. 7 shows the image data sets
containing intersecting and overlapping image sequences overlaid
on the original image sequence.

Artichoke data set contains 100 images of a scene which has a
toy dog, a cup and a road sign. By shifting the image 50 of the
original sequence, an additional set of 121 images were obtained
corresponding to a new intersecting trend in the data. Hence, there
are a total of 221 images, each of size 60x64, containing trends that
intersect at image number 50. This is shown in Fig 7(a) using the
images in each sequence/trend.

Hand data set contains 481 images of a hand holding a rice bowl.
We included only the first 200 images in our original sequence. We
obtained overlapping sequences by shifting images at two differ-
ent locations (100 and 150) in the sequence. A total of 120 (60
+ 60) images were added to the original sequence and hence a set
of overlapping trends was obtained. The image size is 60x64 and
the sequences overlap between images 100 and 150, as shown in
Fig 7(b).

House data set contains a total of 111 images of a toy house. We
obtained a set of overlapping sequences by shifting images 25 and
75. At each location, 50 images were generated. The image size is
72x48 and the sequences overlap between images 25 and 75.

SRI data set contains 125 images of a lab scene. A sequence of
49 images were obtained from Image 60 using a similar transfor-
mation used in the Artichoke dataset. The image size is 60x64 and
the data set contains two trends intersecting at image 60.

Uhttp://vasc.ri.cmu.edu/idb/html/motion/



(a) Dimension 1 Vs 2 (b) Dimension 1 Vs 3 (c) Dimension 2 Vs 3 (d) Dimension 2 Vs 4

(e) Cluster Centroids (f) Principal Tree (g) Two Trends

Figure 6: Example of synthetic data set used to test our algorithm. The first row shows various views of the data across different dimensions.
The second row shows the results of various steps in our algorithm. (e) Original data and the cluster centroids obtained using the k-means
procedure. (f) Principal Tree which is the MST of the cluster centroids. (g) Two most independent End-to-End Paths identified by our algorithm.

(a) Intersecting Trends (b) Overlapping Trends

Figure 7: Examples of Intersecting and Overlapping trends in Image datasets. Additional image sequences are obtained by simulating the
camera panning which is done by shifting the coordinates. (a) Intersecting trends in the Artichoke data set. (b) Overlapping trends containing two
intersecting nodes in the Hands image sequence data set.



Table 2: Description of various real-world image sequence data sets used in our experiments.

Dataset Original Size Image Width | Image Height | No. of Dimensions Nature of trends
(No. of Images) (Pixels) (Pixels)
Artichoke 100 60 64 3840 Intersecting
Hand 200 60 64 3840 Significant overlapping
House 111 72 48 3456 Significant overlapping
SRI 125 60 64 3840 Intersecting
Table 3: Results of our algorithm on real-world data sets.
Augmented Data Size No. of Size of | Size of Runtime
Dataset (with trends) No. of Images | Clusters | Trend 1 | Trend 2 | Total Size | w, | we | w; | CPU (sec)
Artichoke 221 50 105 125 230 0410204 100
Hand 320 60 166 202 368 0410204 235
House 211 55 139 128 267 031]02]05 89
SRI 174 40 87 94 181 04 1] 02|04 65

The original image sequence and the transfigured image se-
quence represent two different trends in the data set. It is important
to note that the trends were extracted in the original space and are
visualized in the reduced 2D space in Fig. 7. The original high-
dimensional feature vectors can be visualized in either 2D or 3D
space using traditional manifold learning algorithms [2, 5]. How-
ever, one cannot visualize more complicated datasets using such
algorithms. Our algorithm, on the other hand, can extract the trends
(and data corresponding to such trends) individually and then lay
out the data ordered by each trend in a low-dimensional space. This
gives users a way to inspect the trend-specific variability in the data
that could be difficult to un-entangle by full manifold projections.

In all these data sets, we were able to identify the trends in the
data using our algorithm. Table 3 gives the results after applying
the algorithm to the datasets. Depending on the form of the data
and number of data points, we initialized the k-means algorithm
with a certain number of centroids between 40 and 60. The only
other input parameters to our algorithm are the set of weights which
will have to be chosen so that the output trends will have minimum
overlap, maximum length and maximum smoothness. The standard
parameter values used in our testing were w; = 0.4, w, = 0.4 and w,
=0.2. In some cases (such as the House data set) a minor tweaking
of the parameters was needed in order to obtain the original trends.
Table 3 also gives the number of data points belonging to each of
the trends. Since the MST and the data assignment are done based
on the centroid, a data point (especially in the neighborhood of the
intersecting centroids) may belong to more than one trend.

6 CONCLUSION AND FUTURE RESEARCH

In spite of the vast literature in clustering and curve fitting, some
real-world problems pose interesting challenges that require devel-
opment of novel algorithms that can advance one step further from
the basic clustering or curve fitting solutions. Our algorithm pro-
poses to find interesting, continuous frends in the datasets. Ana-
lyzing these trends can provide useful insight into the nature of the
data distributions and existing correlations.

Future work in this direction is to use the uncovered trends for
real world datasets and find interesting associations between trends
from different descriptions of the data, such as different subsets of
features. Clustering procedures other than k-means can be explored
for potential improvements, like cluster sculptor which allows the
user to tune the clustering parameters so that the domain knowl-
edge of the user can assist in creating better clusters [11]. For very
high-dimensional datasets, simple Euclidean distances may not be
the best metric for clustering. Additional possibilities include an
analysis of local intrinsic dimensionality of the data, and using it
to guide a weighting on the metric to minimize the effect of noise.

Another possible extension is to cut the principal tree (MST) at the
longest edges to break the data down to more natural clusters, in
case there exists such an edge (known as the inconsistent edge in
graph-theoretic methods for clustering). This can help avoid forc-
ing a global trend on data that contain natural clusters that are far
apart.
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