
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Deep Reinforcement Learning for
Sequence-to-Sequence Models

Yaser Keneshloo , Tian Shi , Naren Ramakrishnan , and Chandan K. Reddy , Senior Member, IEEE

Abstract— In recent times, sequence-to-sequence (seq2seq)
models have gained a lot of popularity and provide state-
of-the-art performance in a wide variety of tasks, such as
machine translation, headline generation, text summarization,
speech-to-text conversion, and image caption generation. The
underlying framework for all these models is usually a deep
neural network comprising an encoder and a decoder. Although
simple encoder–decoder models produce competitive results,
many researchers have proposed additional improvements over
these seq2seq models, e.g., using an attention-based model over
the input, pointer-generation models, and self-attention models.
However, such seq2seq models suffer from two common prob-
lems: 1) exposure bias and 2) inconsistency between train/test
measurement. Recently, a completely novel point of view has
emerged in addressing these two problems in seq2seq models,
leveraging methods from reinforcement learning (RL). In this
survey, we consider seq2seq problems from the RL point of
view and provide a formulation combining the power of RL
methods in decision-making with seq2seq models that enable
remembering long-term memories. We present some of the most
recent frameworks that combine the concepts from RL and deep
neural networks. Our work aims to provide insights into some
of the problems that inherently arise with current approaches
and how we can address them with better RL models. We also
provide the source code for implementing most of the RL models
discussed in this paper to support the complex task of abstractive
text summarization and provide some targeted experiments for
these RL models, both in terms of performance and training time.

Index Terms— Actor–critic (AC) methods, deep learning, pol-
icy gradients (PGs), Q-learning, reinforcement learning (RL),
sequence-to-sequence (seq2seq) learning.

I. INTRODUCTION

SEQUENCE-TO-SEQUENCE (seq2seq) models constitute
a common framework for solving sequential problems [1].

In seq2seq models, the input is a sequence of certain data units,
and the output is also a sequence of data units. Traditionally,
these models are trained using a ground-truth sequence via a
mechanism known as teacher forcing [2], where the teacher is
the ground-truth sequence. However, due to some of the draw-
backs of this training approach, there has been a significant
line of research connecting inference of these models with
reinforcement learning (RL) techniques. In this paper, we aim

Manuscript received July 28, 2018; revised December 27, 2018 and April 19,
2019; accepted July 2, 2019. This work was supported in part by the
U.S. National Science Foundation under Grant IIS-1619028, Grant IIS-
1707498, Grant IIS-1838730, Grant DGE-1545362, and Grant IIS-1633363.
(Corresponding author: Yaser Keneshloo.)

The authors are with the Discovery Analytics Center, Department of
Computer Science, Virginia Tech, Arlington, VA 22203 USA (e-mail:
yaserkl@vt.edu; tshi@vt.edu; naren@cs.vt.edu; reddy@cs.vt.edu).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2019.2929141

Fig. 1. Simple seq2seq model. The blue boxes correspond to the encoder
part that has Te units. The green boxes correspond to the decoder part that
has T units.

to summarize such research in seq2seq training utilizing the
RL methods to enhance the performance of these models and
discuss various challenges that arise when applying the RL
methods to train a seq2seq model. We intend for this paper
to provide a broad overview of the strength and complexity
of combining seq2seq training with RL training and to guide
researchers in choosing the right RL algorithm for solving
their problem. In this section, we will briefly introduce the
working of a simple seq2seq model and outline some of the
problems that are inherent to seq2seq models. We will then
provide an introduction to RL models and explain how these
models could solve the problems of seq2seq models.

A. seq2seq Framework

The seq2seq models are common in various applica-
tions ranging from machine translation [3]–[8], news headline
generation [9], [10], text summarization [11]–[14], speech-to-
text applications [15]–[18], and image captioning [19]–[21].

In recent years, the general framework for solving these
problems uses deep neural networks that comprise two main
components: an encoder that reads the sequence of input
data and a decoder that uses the output generated by the
encoder to produce the sequence of final outputs. Fig. 1
gives a schematic of this simple yet effective framework. The
encoder and decoder are usually implemented by recurrent
neural networks (RNNs), such as long short-term memory
(LSTM) [22]. The encoder takes a sequence of length Te

inputs,1 X = {x1, x2, · · · , xTe}, where xt ∈ A = {1, . . . , |A|}
is a single input coming from a range of possible inputs (A),
and generates the output state ht . In addition, each encoder
receives the previous encoder’s hidden state, ht−1, and if the
encoder is a bidirectional RNN, it will also receive the state
from the next encoder’s hidden state, ht+1, to generate its
current hidden state ht . The decoder, on the other hand, takes
the last state from the encoder, i.e., hTe and starts generating
an output of size T ≤ Te, Ŷ = {ŷ1, ŷ2, . . . , ŷT }, based

1In this article, we use input/output and action interchangeably since
choosing the next input is akin to choosing the next action and generating the
next output is akin to generating the next action.

2162-237X © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 31,2020 at 12:56:01 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1962-2542
https://orcid.org/0000-0002-7604-5665
https://orcid.org/0000-0002-1821-9743
https://orcid.org/0000-0003-2839-3662

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

on the current state of the decoder st and the ground-truth
output yt . The decoder could also take as input an additional
context vector ct that encodes the context to be used while
generating the output [9]. The RNN learns a recursive function
to compute st and outputs the distribution over the next output

ht+1 = �θ(xt+1, ht)

st+1 = �θ(yt , st/hTe , ct)

ŷt+1 ∼ πθ(y|ŷt , st+1) (1)

where θ denotes the parameters of the model, and the function
for πθ and �θ depends on the type of RNN. A simple Elman
RNN [23] would use a sigmoid function for � and a softmax
function for π [1]

st+1 = σ(W1 yt +W2st +W3ct)

ot+1 = softmax(W4st+1 +W5ct) (2)

where ot is the output distribution of size |A| and the output
ŷt is selected from this distribution. W1–W5 are the matrices
of learnable parameters of sizes W1,2,3 ∈ Rd×d and W4,5 ∈
Rd×|A|, where d is the size of the input representation (e.g.,
size of the word embedding in text summarization). The input
to the first decoder is a special input indicating the beginning
of a sequence, denoted by y0 = ∅, and the first forward hidden
state h0 and the last backward hidden state hTe+1 for the
encoder are set to a zero vector. Moreover, the first hidden
state for decoder s0 is set to the output that is received from
the last encoding state, i.e., hTe .

The most widely used method to train the decoder
for sequence generation is called the teacher forcing
algorithm [2], which minimizes the maximum-likelihood loss
at each decoding step. Let us define y = {y1, y2, . . . , yT } as
the ground-truth output sequence for a given input sequence
X . The maximum-likelihood training objective is the mini-
mization of the following cross-entropy (CE) loss:

LCE = −
T∑

t=1

log πθ(yt |yt−1, st , ct−1, X). (3)

Once the model is trained with the above-mentioned objective,
the model generates an entire sequence as follows: Let ŷt

denote the action (output) taken by the model at time t . Then,
the next action is generated by

ŷt+1 = arg max
y

πθ(y|ŷt , st+1). (4)

This process could be improved by using beam search to
find a reasonable good output sequence [7]. Now, given the
ground-truth output Y and the model generated output Ŷ ,
the performance of the model is evaluated with a specific
measure. In seq2seq problems, discrete measures, such as
ROUGE [24], BLEU [25], METEOR [26], and CIDEr [27],
are used to evaluate the model. For instance, ROUGEl ,
an evaluation measure for textual seq2seq tasks, uses the
largest common substring (LCS) between Y and Ŷ to evaluate
the goodness of the generated output. Algorithm 1 shows
these steps.

B. Problems With seq2seq Models

One of the main issues with the current seq2seq models is
that minimizing LCE does not always produce the best results

Algorithm 1 Training a Simple seq2seq Model
Input: Input sequences (X) and ground-truth output

sequences (Y).
Output: Trained seq2seq model.
Training Steps:
for batch of input and output sequences X and Y do

Run encoding on X and get the last encoder state hTe .
Run decoding by feeding hTe to the first decoder and

obtain the sampled output sequence Ŷ .
Calculate the loss according to Eq. (3) and update the

parameters of the model.
end for
Testing Steps:
for batch of input and output sequences X and Y do

Use the trained model and Eq. (4) to sample the output
Ŷ

Evaluate the model using a performance measure, e.g.,
ROUGE

end for

for the above-mentioned discrete evaluation measures. There-
fore, using CE loss for training a seq2seq model creates a mis-
match in generating the next action during training and testing.
As shown in Fig. 1 and also according to (3), during training,
the decoder uses the two inputs, the previous output state st−1
and the ground-truth input yt , to calculate its current output
state st and uses it to generate the next action, i.e., ŷt . However,
at the test time, as given in (4), the decoder completely relies
on the previously generated action from the model distribution
to predict the next action since the ground-truth data are not
available anymore. Therefore, in summary, the input to the
decoder is from the ground truth during training, but the input
comes from the model distribution during model testing. This
exposure bias [28] results in error accumulation during the
output generation at test time since the model has never been
exclusively exposed to its own predictions during training.
To avoid the exposure bias problem, we need to remove the
ground-truth dependency during training and use only the
model distribution to minimize (3). One way to handle this
situation is through the scheduled sampling method [2] or the
Gibbs sampling [29]. In scheduled sampling, the model is first
pre-trained using the CE loss and will subsequently and slowly
replace the ground truth with a sampled action from the model.
Therefore, a decision is randomly taken to whether to use the
ground-truth action with probability � or an action coming
from the model itself with probability (1 − �). When � = 1,
the model is trained using (3), and when � = 0, the model is
trained based on the following loss:

LInference = −
T∑

t=1

log πθ(ŷt |ŷ1, · · · , ŷt−1, st , ct−1, X). (5)

Note the difference between LInference and the CE loss given
in (3); in CE, the ground-truth output yt is used to calculate
the loss, while in (5), the output of the model ŷt is used to
calculate the loss.

Although scheduled sampling is a simple way to avoid the
exposure bias, due to its random selection between choosing

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 31,2020 at 12:56:01 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KENESHLOO et al.: DEEP RL FOR seq2seq MODELS 3

the ground-truth output or the model output, it does not
provide a clear solution for the backpropagation of error, and
therefore, it is statistically inconsistent [30]. Recently, Goyal
et al. [31] proposed a solution for this problem by creating a
continuous relaxation over the argmax operation to create a
differentiable approximation of the greedy search during the
decoding steps.

As yet another line of research on avoiding the expo-
sure bias problem, adversarial generative models are also
proposed for various seq2seq models [32]–[35]. In general,
adversarial models are comprised of a discriminator and a
generator [36]. The generator tries to generate the data similar
to the ground-truth data, while the discriminator’s job is to
discern whether the generated data are close to the real data
or it is a fake. Finally, the generator takes the feedback from
the discriminator and optimizes its actions toward generating
higher quality data. Since generator will only rely on its
own output in generating the data, similar to the scheduled
sampling, it is avoiding on reliance to the ground-truth data
and, hence, avoids the exposure bias problem. However,
adversarial generative models, in general, suffer from the
reward sparsity [33], [35] and mode collapse [37] problems.
Although there are ways to avoid these two problems [38],
studying these solutions is outside the scope of this paper.

The second problem with seq2seq models is that while the
model training is done using LCE, the model is typically eval-
uated during the test time using discrete and non-differentiable
measures, such as BLEU and ROUGE. This will create a mis-
match between the training objective and the test objective and,
therefore, could yield inconsistent results. Thus, a solution that
could use these measures during the training of the model will
inherently solve this mismatch problem. Recently, it has been
shown that both the exposure bias and non-differentiability
of evaluation measures can be addressed by incorporating
techniques from RL [13], [39]–[41].

C. Reinforcement Learning

In RL, a sequential Markov decision process (MDP) is con-
sidered, in which an agent interacts with an environment ε over
discrete time steps t [42]. Let M = (S,A,P, R, s0, γ , T)
represent this discrete finite-horizon discounted MDP, where S
is the set of states, A is the set of actions, P : S×A×S → R+
is the transition probability distribution, R : S ×A→ R is a
reward function, s0 : S → R+ is the initial state distribution,
γ ∈ [0, 1] a discount factor, and T is the horizon.

The goal of the agent is to excel at a specific task, e.g.,
moving an object [43], [44], playing an Atari game [45],
or generating news summary [13], [46]. The idea is that given
the environment state at time t as st , the agent picks an action
ŷt ∈ A, according to a (typically stochastic) policy π(ŷt |st) :
S × A → R+ and observes a reward rt for that action. The
cumulative discounted sum of rewards is the objective function
optimized by policy π . For instance, we can consider our
seq2seq conditioned RNN as a stochastic policy that generates
actions (selecting the next output) and receives the task reward
based on the discrete measures, such as ROUGE, as the return.
The agent’s goal is to maximize the expected discounted
reward, Rt = Eπ [∑T

τ=0 γ τrτ], where the discounting factor

γ controls the tradeoffs between the importance of immediate
and future rewards. Under the policy π , we can define the
values of the state–action pair Q(st , yt) and the state V (st)
as follows:

Qπ (st , yt) = E[rt |s = st , y = yt]
Vπ(st) = Ey∼π(s)[Qπ(st , y = yt)]. (6)

Note that the value function Vπ is defined over only the
states, whereas Qπ is defined over (state–action) pairs. The
Qπ formulation is advantageous in model-free contexts since
it can be applied to the current states without having access to
a model of the environment. In contrast, the Vπ formulation
must, by necessity, be applied to the future states and, thus,
requires a model of the environment (i.e., which states and
actions lead to which other future states). The preceding
state–action function (Q-function for short) can be computed
recursively with dynamic programming

Qπ(st , yt)=Est+1 [rt +γ Eyt+1∼π(st+1)[Qπ (st+1, yt+1)]︸ ︷︷ ︸
Vπ (st+1)

]. (7)

Given the above-mentioned definitions, we can define a
function called advantage, denoted by Aπ relating the value
function V and Q-function as follows:

Aπ(st , yt) = Qπ (st , yt)− Vπ(st)

= rt + γ Est+1∼π(st+1|st)[Vπ(st+1)] − Vπ(st) (8)

where Ey∼π(s)[Aπ(s, y)] = 0 and, for a deterministic policy,
y∗ = arg maxy Q(s, y); it follows that Q(s, y∗) = V (s),
and hence, A(s, y∗) = 0. Intuitively, the value function V
measures how good the model could be when it is in a
specific state s. The Q-function, however, measures the value
of choosing a specific action when we are in such state. Given
these two functions, we can obtain the advantage function
that captures the importance of each action by subtracting the
value of the state V from the Q-function. In practice, seq2seq
model is used as the policy, which generates actions. The
definition of action, however, will be task-specific; e.g., for a
text summarization task, and the action denotes choosing the
next token for the summary, whereas for a question answering
task, the action might be defined as the start and end index of
the answer in the document. Also, the definition of the reward
function could vary from one application to another. For
instance, in text summarization, measures, such as ROUGE
and BLEU, are commonly used, while in image captioning,
CIDEr and METEOR are common. Finally, the state of the
model is usually defined as the decoder output state at each
time step. Therefore, the decoder output state at each time is
used as the current state of the model and used to calculate
our Q, V , and advantage functions. Table I summarizes the
notations used in this paper.

D. Paper Organization

In general, we define the following problem statement that
we are trying to solve by combining these two different models
of learning.

Problem Statement: Given a series of input data and a series
of ground-truth outputs, train a model that holds the following:

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 31,2020 at 12:56:01 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE I

NOTATIONS USED IN THIS PAPER

1) only relies on its own output, rather than the ground
truth, to generate the results (avoiding exposure bias);

2) directly optimizes the model using the evaluation mea-
sure (avoiding a mismatch between training and test
measures).

Although, recently, there had been a couple of survey
articles on the topic of deep RL [47], [48], these works heavily
focused on the RL methods and their applications in robotics
and vision while giving less emphasis to how these models
could be used in a variety of other tasks. In this paper, we will
summarize some of the most recent frameworks that attempted
to find a solution for the above-mentioned problem statement
in a broad range of applications and explain how RL and
seq2seq learning could benefit from each other in solving
complex tasks. To this end, we will provide insights on some
of the challenges and issues with the current models and how
one can improve them with better RL models. The goal of this
paper is to provide information about how we can broaden the
power of seq2seq models with RL methods and understand
the challenges that exist in applying these methods to deep
learning contexts. In addition, currently, there does not exist
a good open-source framework for implementing these ideas.
Along with this paper, we provide a library that combines the
state-of-the-art methods for the complex task of abstractive
text summarization with recent techniques used in deep RL.
The library provides a variety of different options and hyper-
parameters for training the seq2seq model using different RL
models. Moreover, we provide experimental results on some
of the most common techniques that are explained in this
paper and we encourage researchers to experiment with other
hyperparameters and explore how they can use this framework
to gain better performance on different seq2seq tasks. The
contributions of this paper are summarized as follows.

1) Provide a comprehensive summary of RL methods that
are used in deep learning and specifically in the context
of training seq2seq models.

2) Summarize the challenges, advantages, and disadvan-
tages of using different RL methods for seq2seq training.

3) Provide guidelines on how one could improve a specific
RL method to obtain a better and smoother training for
seq2seq models.

4) Provide an open-source library for implementing a
complex seq2seq model using different RL techniques2

along with experiments that aim for identifying an
accurate estimate on the amount of improvement that
the RL algorithm provides for current seq2seq models.

This paper is organized as follows. Section II will cover
some of the main applications of seq2seq models. Section III
provides the details of some of the common RL techniques
used in training seq2seq models. We provide a brief intro-
duction to different seq2seq models in Section IV and later
explain various RL models that can be used along with the
seq2seq model training process. We provide a summary of
recent real-world applications that combine RL training with
seq2seq training, and in Section V, we present the framework
that we implemented and discuss the details about how this
framework can be applied to different seq2seq problems and
provide experimental results for some of the well-known RL
algorithm. Finally, in Section VI, we discuss the conclusions
of our work.

II. SEQ2SEQ MODELS AND THEIR APPLICATIONS

seq2seq models have been an integral part of many
real-world problems. From Google Machine Translation [4]

2www.github.com/yaserkl/RLSeq2Seq/

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 31,2020 at 12:56:01 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KENESHLOO et al.: DEEP RL FOR seq2seq MODELS 5

TABLE II

SUMMARY OF DIFFERENT APPLICATIONS OF SEQ2SEQ MODELS.

to Apple’s Siri speech to text [49], seq2seq models provide
a clear framework to process information that is in the form
of sequences. In a seq2seq model, the input and output are
in the form of sequences of single units, such as a sequence
of words, images, or speech units. Table II provides a brief
summary of various seq2seq models and their corresponding
inputs and outputs. We also cite some of the important research
papers for each application domain.

In recent years, different models and frameworks were
proposed by researchers to achieve better and robust results
on these tasks. For instance, attention-based models have been
successfully applied to problems, such as machine transla-
tion [3], text summarization [9], [10], question answering
[64], image captioning [19], speech recognition [16], and
object detection [90]. In an attention-based model, at each
decoding step, the previous decoder output is combined with
the information from the encoder’s output at a specific position
to select the best decoder output.

Although attention-based models can significantly improve
the performance of seq2seq models in various tasks, in appli-
cations with large output space, it is challenging for the model
to reach a desirable outcome.

On the other hand, there are more advanced models
in seq2seq training, such as the pointer-generator

model [12], [91] and the transformers model, which uses
self-attention layers [92], but discussing these models is
outside the scope of this paper.

Aside from these well-defined seq2seq problems, there are
other related problems that partially work on the sequence
of inputs, but the output is not in the form of a sequence.
Here are a few prominent applications that fall into this
category.

1) Sentiment Analysis [93]–[95]: The input is a sequence
of words, and the output is a single sentiment (positive,
negative, or neutral).

2) Natural Language Inference [96]–[98]: Given two sen-
tences, one as a premise and the other as a hypothesis,
the goal is to classify the relationship between these
two sentences into one of the entailment, neutrality, and
contradiction classes.

3) Sentiment Role Labeling [99]–[102]: Given a sentence
and a predicate, the goal is to answer questions, such as
“who did what to whom and when and where.”

4) Relation Extraction [103]–[105]: Given a sentence,
the goal is to identify whether a specific relationship
exists in that sentence or not. For instance, based on
the sentence “Barack Obama is married to Michelle
Obama,” we can extract the “spouse” relationship.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 31,2020 at 12:56:01 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

5) Pronoun Resolution [106]–[109]: Given a sentence and
a question about a pronoun in the sentence, the goal is to
identify who that pronoun is referring to. For instance,
in the sentence “Susan cleaned Alice’s bedroom for the
help she had given,” the goal is to find who the word
“she” is referring to.

Note that although in these applications, only the input data
are represented in terms of sequences, we still consider them
to be seq2seq problems.

A. Evaluation Measures

The seq2seq models are usually trained with the CE loss,
i.e., (3). However, the performance of these models is eval-
uated using discrete measures. There are various discrete
measures that are used for evaluating these models, and each
application requires its own evaluation measure. We briefly
provide a summary of these measures according to their
application context.

1) ROUGE3 [24], BLEU4 [25], and METEOR5 [26]:
These are three of the most commonly used measures
in applications, such as machine translation, headline
generation, text summarization, question answering,
dialog generation, and other applications, that require
evaluation of text data. ROUGE measure finds the
common unigram (ROUGE-1), bigram (ROUGE-2),
and LCS (ROUGE-L) between the ground-truth text
and the output generated by the model and calculates
respective precision, recall, and F-score for each
measure. BLEU works similar to ROUGE but through
a modified precision calculation; it inclines to provide
higher scores to outputs that are closer to human
judgment. In a similar manner, METEOR uses the
harmonic mean of unigram precision and recall, and
it gives higher importance to recall than the precision.
Although these methods are designed to work for all
text-based applications, METEOR is more often used in
machine translation tasks, while ROUGE and BLEU are
mostly used in text summarization, question answering,
and dialog generation.

2) CIDEr6 [27] and SPICE7 [110]: CIDEr is frequently
used in image and video captioning tasks, in which
having captions that have higher human judgment scores
is more important. Using sentence similarity, the notions
of grammaticality, saliency, importance, accuracy, preci-
sion, and recall are inherently captured by these metrics.
SPICE is a recent evaluation metric proposed for image
captioning that tries to solve some of the problems of
CIDEr and METEOR by mapping the dependency parse
trees of the caption to the semantic scene graph (contains
objects, attributes of objects, and relations) extracted
from the image. Finally, it uses the F-score that is calcu-
lated using the tuples of the generated and ground-truth
scene graphs to provide the caption quality score.

3https://github.com/andersjo/pyrouge/
4https://www.nltk.org/_modules/nltk/translate/bleu_score.html
5http://www.cs.cmu.edu/ alavie/METEOR/
6https://github.com/vrama91/cider
7http://www.panderson.me/spice/

3) Word Error Rate (WER): This measure, which is
mostly used in speech recognition, finds the number
of substitutions, deletions, insertions, and corrections
required to change the generated output to the ground
truth and combines them to calculate the WER.

B. Data Sets

In this section, we briefly describe some of the data sets that
are commonly used in various seq2seq models. We provide a
shortlist of some of the most common data sets that are used
in various seq2seq applications as follows.

1) Machine Translation: The most common data set used
for Machine Translation task is the WMT’148 data set
that contains 850M words from English–French parallel
corpora of UN (421M words), Europarl (61M words),
news commentary (5.5M words), and two crawled cor-
pora of 90M and 272.5M words. The data pre-processing
for this data set is usually done following the code9

provided by Axelrod et al. [111].
2) Text Summarization: One of the main data sets used

in text summarization is the CNN-Daily Mail data
set [112] that is a part of the DeepMind Q&A data
set10 and contains around 287k news articles along
with two to four highlights (summary) for each news
article.11 Recently, another data set, called Newsroom,
was released by Connected Experiences Lab12 [113]
that contains 1.3M news articles and various metadata
information, such as the title and the summary of
the news. The document summarization challenge13

also provides some data sets for text summarization.
More specifically, in this data set, DUC-2003 and
DUC-2004 contain 500 news articles (each paired with
four different human-generated reference summaries)
from the New York Times and Associated Press Wire
services, respectively. Due to the small size of this
data set, researchers usually use this data set only for
evaluation purposes.

3) Headline Generation: It is similar to the task of text
summarization, and typically, all the data sets that are
used in text summarization will be useful in headline
generation too. There is a big data set, which is called
Gigaword [114] and contains more than 8M news
articles from multiple news agencies, such as The
New York Times and Associated Press. However, this
data set is not freely available, and researchers are
required to buy the license to be able to use it though
one can still find pre-trained models on different tasks
using this data set.14

4) Question Answering and Question Generation: The
CNN-Daily Mail data set was originally designed

8http://www.statmt.org/wmt14/translation-task.html
9http://www-lium.univ-lemans.fr/ schwenk/cslm_joint_paper/
10https://cs.nyu.edu/ kcho/DMQA/
11For downloading and pre-processing, please refer to https://github.com/

abisee/cnn-dailymail
12https://summari.es/
13https://duc.nist.gov/data.html
14http://opennmt.net/Models/

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 31,2020 at 12:56:01 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KENESHLOO et al.: DEEP RL FOR seq2seq MODELS 7

for question answering and is one of the earliest
data sets that are available for tackling this problem.
However, recently, two large-scale data sets that
are solely designed for this problem were released.
Stanford Question Answering data set (SQuAD)15

(1.0 and 2.0) [115], [116] is a data set for reading
comprehension and contains more than 100k pairs of
questions and answers collected by crowdsourcing over
a set of Wikipedia articles. The answer to each question
is a segment that identifies the start and end indices
of the answer within the article. The second data set
is called TriviaQA16 [117], and similar to SQuAD,
it is designed for reading comprehension and question
answering task. This data set contains 650k triples of
questions, answers, and evidences (which helps to find
the answer).

5) Dialogue Generation: The data set for this problem
usually comprises of dialogues between different
people. The OpenSubtitles data set17 [118], Movie
Dialog data set18 [119], and Cornell Movie Dialogues
Corpus19 [120] are three examples of these types
of data sets. OpenSubtitles contains conversations
between movie characters for more than 20k movies
in 20 languages. The Cornell Movie Dialogues corpus
contains more than 220k dialogues between more than
10k movie characters.

6) Semantic Parsing: Recently, Zhong et al. [71] released a
data set called WikiSQL20 for this problem that contains
80 654 hand-annotated questions and SQL queries dis-
tributed across 24 241 tables from Wikipedia. Although
this is not the only data set for this problem, it offers
a larger set of examples from other data sets, such as
WikiTableQuestion21 [121] and Overnight [122].

7) Sentiment Analysis: For this application, Amazon
product review22 [123] data set is one of the largest
data set that contains more than 82 million product
reviews from May 1996 to July 2014 in its de-duplicated
version. Another big data set for this task is the Stanford
Sentiment Treebank (SSTb) 23 [95], which includes
fine-grained sentiment labels for 215 154 phrases in the
parse trees of 11 855 sentences.

8) Natural Language Inference: Stanford natural language
inference (SNLI)24 [124] is the standard data set for
this task that contains 570k human-written English
sentence pairs manually labeled for the three classes
entailment, contradiction, and neutral. The multi-genre
natural language inference (MultiNLI)25 [125] corpus
is another new data set that is collected through

15https://rajpurkar.github.io/SQuAD-explorer/
16http://nlp.cs.washington.edu/triviaqa/
17http://opus.nlpl.eu/OpenSubtitles.php
18http://fb.ai/babi
19http://www.cs.cornell.edu/ cristian/Cornell_Movie-Dialogs_Corpus.html
20https://github.com/salesforce/WikiSQL
21https://nlp.stanford.edu/software/sempre/wikitable/
22http://jmcauley.ucsd.edu/data/amazon/
23https://nlp.stanford.edu/sentiment/
24https://nlp.stanford.edu/projects/snli/
25https://www.nyu.edu/projects/bowman/multinli/

crowdsourcing and contains 433k sentence pairs
annotated with textual entailment information.

9) Semantic Role Labeling: Proposition Bank
(PropBank)26 [126] is the standard data set for
this task that contains a corpus of text annotation with
information about basic semantic propositions in seven
different languages.

10) Relation Extraction: Freebase27 [127] is a huge data
set containing billions of triples: the entity pair and
the specific relationship between them that are selected
from the New York Times corpus (NYT).

11) Pronoun Resolution: The OntoNotes 5.0 data set28 is the
standard data set for this task. Specifically, researchers
use the Chinese portion of this data set to do the
pronoun resolution in Chinese [106], [107], [109].

12) Image Captioning: There are two data sets that are
mainly used in image captioning. The first one is the
COCO data set29 [128] that is designed for object
detection, segmentation, and image captioning. This
data set contains around 330k images, among which
82k images are used for training and 40k used for
validation in image captioning. Each image has five
ground-truth captions. SBU [129] is another data set
that consists of 1M images from Flickr and contains
descriptions provided by image owners when they
uploaded the images to Flickr.

13) Video Captioning: For this problem, MSR-VTT30 [130]
and YouTube2Text/MSVD31 [131] are two of the
widely used data sets. MSR-VTT consists 10k videos
from a commercial video search engine each containing
20 human annotated captions and YouTube2Text/MSVD
that has 1970 videos each containing on an average
40 human annotated captions.

14) Image Classification: The most popular data set in com-
puter vision is the MNIST data set32 [132]. This data set
consists of handwritten digits and contains a training set
of 60k examples and a test set of 10k examples. Aside
from this data set, there is a huge list of data sets that are
used for various computer vision problems and explain-
ing each of them is beyond the scope of this paper.33

15) Speech Recognition: LibriSpeech ASR Corpus34 [133]
is one of the main data sets used for the speech
recognition task. This data set is free and composed
of 1000 h of segmented and aligned 16-kHz English
speech that is derived from audiobooks. The Wall
Street Journal (WSJ) also has two Continuous Speech
Recognition corpora containing 70 h of speech and
text from a corpus of the WSJ news text. However,
unlike the LibriSpeech data set, this data set is not

26http://propbank.github.io/
27https://old.datahub.io/dataset/freebase
28https://catalog.ldc.upenn.edu/LDC2013T19
29http://cocodataset.org/
30http://ms-multimedia-challenge.com/2017/challenge
31http://www.cs.utexas.edu/users/ml/clamp/videoDescription/
32http://yann.lecun.com/exdb/mnist/
33Please refer to this link for a comprehensive list of data sets that are used

in computer vision: http://riemenschneider.hayko.at/vision/dataset/
34http://www.openslr.org/12/

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 31,2020 at 12:56:01 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

freely available, and researchers have to buy a license
to use it. Similar to the WSJ data set, TIMIT35 is
another data set containing the read speech data.
It contains time-aligned orthographic, phonetic, and
word transcriptions of recordings for 630 speakers of
eight major dialects of American English, in which
each of them are reading ten phonetically sentences.

III. REINFORCEMENT LEARNING METHODS

In RL, the goal of an agent interacting with an environment
is to maximize the expectation of the reward that it receives
from the actions. Therefore, the focus is on maximizing one
of the following objectives:

max Eŷ1,...,ŷT∼πθ (ŷ1,...,ŷT)[r(ŷ1, . . . , ŷT)] (9)

max
y

Aπ(st , yt) (10)

max
y

Aπ(st , yt)→ Maxy Qπ (st , yt). (11)

There are various ways, in which one can solve this prob-
lem. In this section, we explain the solutions in detail and
provide their strengths and weaknesses. Different methods
aim for solving this problem by trying one of the following
approaches: 1) solve this problem through (9); 2) solve the
expected discounted reward E[Rt = ∑T

τ=t γ τ−trτ]; 3) solve
it by maximizing the advantage function [see (10)]; and
4) solve it by maximizing Q-function using (11). Most of these
methods are suitable choices for improving the performance of
seq2seq models, but depending on the approach that is chosen
for training the reinforced model, the training procedure for
seq2seq model also changes. The first and one of the simplest
algorithms that will be discussed in this section is the policy
gradient (PG) method that aims to solve (9). Section III-B
discusses the actor–critic (AC) methods that improve the per-
formance of PG models by solving (10) through (7) expansion
on Q-function. Section III-C discusses Q-learning models that
aim at maximizing the Q-function [see (11)] to improve the
PG and AC models. Finally, Section III-D will provide more
details about some of the recent models that improve the
performance of Q-learning models.

A. Policy Gradient

In all reinforcement algorithms, an agent takes some action
according to a specific policy π . The definition of a policy
varies according to the specific application that is being
considered. For instance, in text summarization, the policy
is a language model p(y|X) that, given input X , tries to
generate the output y. Now, let us assume that our agent
is represented by an RNN and takes actions from a policy
πθ .36 In a deterministic environment, where the agent takes
discrete actions, the output layer of the RNN is usually a
softmax function, and it generates the output from this layer.
In Teacher Forcing, a set of ground-truth sequences are given,
the actions are chosen according to the current policy during
training, and the reward is observed only at the end of the

35https://catalog.ldc.upenn.edu/ldc93s1
36In seq2seq model, this represents πθ (yt |ŷt−1, st , ct−1) in (1)

sequence or when an end-of-sequence (EOS) signal is seen.
Once the agent reaches the end of sequence, it compares the
sequence of actions from the current policy (ŷt) against the
ground-truth action sequence (yt) and calculate a reward based
on any specific evaluation metric. The goal of the training is
to find the parameters of the agent in order to maximize the
expected reward. This loss is defined as the negative expected
reward of the full sequence

Lθ = −Eŷ1,...,ŷT∼πθ (ŷ1,...,ŷT)[r(ŷ1, . . . , ŷT)] (12)

where ŷt is the action chosen by the model at time t
and r(ŷ1, . . . , ŷT) is the reward associated with the actions
ŷ1, . . . , ŷT . Usually, in practice, one will approximate this
expectation with a single sample from the distribution of
actions acquired by the RNN model. Hence, the derivative
for the above-mentioned loss function is given as follows:

∇θLθ = − E
ŷ1···T∼πθ

[∇θ log πθ(ŷ1···T)r(ŷ1···T)]. (13)

Using the chain rule, (13) can be re-written as follows [134]:
∇θLθ = ∂Lθ

∂θ
=

∑
t

∂Lθ

∂ot

∂ot

∂θ
(14)

where ot is the input to the softmax function. The gradient of
the loss Lθ with respect to ot is given by [41], [134]

∂Lθ

∂ot
= (πθ (yt |ŷt−1, st , ct−1)− 1(ŷt))(r(ŷ1, . . . , ŷT)− rb)

(15)

where 1(ŷt) is the one-of-|A| representation of the
ground-truth output and rb is a baseline reward and could be
any value as long, as it is not dependent on the parameters of
the RNN network. Equation (15) is very similar to the gradient
of a multi-class logistic regression. In logistic regression,
the CE gradient is the difference between the prediction and
the actual one-of-|A| representation of the ground-truth output

∂LC E
θ

∂ot
= πθ(yt |yt−1, st , ct−1)− 1(yt). (16)

Note that in (15), the generated output from the model is used
as a surrogate ground truth for the output distribution, while
in (16), the ground truth is used to calculate the gradient.

The goal of the baseline reward is to force the model to
select actions that yield a reward r > rb and discourage those
that have reward r < rb. Since only one sample is being
used to calculate the gradient of the loss function, it is shown
that having this baseline would reduce the variance of the
gradient estimator [41]. If the baseline is not dependent on
the parameters of the model θ , (15) is an unbiased estimator.
To prove this, we simply need to show that adding the baseline
reward rb does not have any effect on the expectation of loss

E
ŷ1···T∼πθ

[∇θ log πθ(ŷ1···T)rb] = rb

∑
ŷ1···T

∇θπθ (ŷ1···T)

= rb∇θ

∑
ŷ1···T

πθ(ŷ1···T) = rb∇θ 1 = 0. (17)

This algorithm is called REINFORCE [41] and is a simple
yet elegant PG algorithm for seq2seq problems. One of the

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 31,2020 at 12:56:01 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KENESHLOO et al.: DEEP RL FOR seq2seq MODELS 9

Algorithm 2 REINFORCE Algorithm
Input: Input sequences (X), ground-truth output sequences

(Y),
and (preferably) a pre-trained policy (πθ).
Output: Trained policy with REINFORCE.
Training Steps:
while not converged do

Select a batch of size N from X and Y .
Sample N full sequence of actions:
{ŷ1, . . . , ŷT ∼ πθ(ŷ1, . . . , ŷT)}N1 .
Observe the sequence reward and calculate the baseline

rb.
Calculate the loss according to Eq. (18).
Update the parameters of network θ ← θ + α∇θLθ .

end while
Testing Steps:
for batch of input and output sequences X and Y do

Use the trained model and Eq. (4) to sample the output
Ŷ .

Evaluate the model using a performance metric, e.g.,
ROU G El .

end for

challenges with this method is that the model suffers from
high variance since only one sample is used for training at each
time step. To alleviate this problem, at each training step, one
can sample N sequences of actions and update the gradient
by averaging over all these N sequences as follows:

Lθ = 1

N

N∑
i=1

∑
t

log πθ(ŷi,t |ŷi,t−1, si,t , ci,t−1)

× (r(ŷi,1, . . . , ŷi,T)− rb). (18)

Having this, the baseline reward could be set to the mean
of the N rewards that are sampled, i.e., rb = 1/N

∑N
i=1

r(ŷi,1, . . . , ŷi,T). Algorithm 2 shows how this method works.
As another solution to reduce the variance of the model,

self-critic (SC) models are proposed [40]. In these SC models,
rather than estimating the baseline using current samples,
the output of the model obtained by a greedy search (the
output at the time of inference) is used as the baseline. Hence,
the sampled output of the model is used as ŷt , and the greedy
selection of the final output distribution is used for ŷg

t , where
the superscript g indicates greedy selection. Following this
mechanism, the new objective for the REINFORCE model
would become as follows:

Lθ = 1

N

N∑
i=1

∑
t

log πθ(ŷi,t |ŷi,t−1, si,t , ci,t−1)

× (
r(ŷi,1, . . . , ŷi,T)− r

(
ŷg

i,1, . . . , ŷg
i,T

))
. (19)

Fig. 2 shows how an attention-based pointer-generator seq2seq
model can be used to extract the reward and its baseline in
the SC model.

The second problem with this method is that the reward is
only observed after the full sequence of actions is sampled.
This might not be a pleasing feature for most of the seq2seq
models. If we see the partial reward of a given action at

Fig. 2. Simple attention-based pointer-generation seq2seq model with
SC reward. At each decoding step, the context vector for that decoder is
calculated and combined with the decoder output to get the action distribution.
In pointer-generation model, the attention distribution is further combined
with the action distribution through switches called pointers to get the final
distribution over the actions. From each output distribution, a specific action
ŷ2 is sampled, and the greedy action ŷg

2 is extracted. The difference of
the rewards from sampling and greedy sequence is used to update the loss
function.

time t , and the reward is bad, the model needs to select a
better action for the future to maximize the reward. However,
in the REINFORCE algorithm, the model is forced to wait
untill the end of the sequence to observe its performance.
Therefore, the model often generates poor results or takes
longer to converge. This problem magnifies especially in the
beginning of the training phase, where the model is initialized
randomly and, thus, selects arbitrary actions. To alleviate this
problem to a certain extent, Ranzato et al. [28] suggested to
pre-train the model for a few epochs using the CE loss and then
slowly switch to the REINFORCE loss. Finally, as another
way to solve the high variance problem of the REINFORCE
algorithm, importance sampling [135], [136] can also be used.
The basic underlying idea of using the importance sampling
with the REINFORCE algorithm is that rather than sampling
sequences from the current model, one can sample them from
an old model and use them to calculate the loss.

B. Actor–Critic Model

As mentioned in Section III-A, adding a baseline reward
is a necessary component of the PG algorithm in order to
reduce the variance of the model. In PG, the average reward
from multiple samples in the batch was used as the baseline
reward for the model. In the AC model, the goal is to train an
estimator for calculating the baseline reward. For computing
this quantity, AC models try to maximize the advantage
function through (7) extension. Therefore, these methods are
also called advantage AC (A2C) models.

In these models, the goal is to solve this problem using the
following objective:

Aπ(st , yt) = Qπ (st , yt)− Vπ(st)

= rt + γ Est
∼π(st
 |st)[Vπ(st
)] − Vπ(st). (20)

Similar to the PG algorithm, to avoid the expensive inner
expectation calculation, we can only sample once and approx-
imate advantage function as follows:

Aπ(st , yt) ≈ rt + γ Vπ(st
)− Vπ(st). (21)

Now, in order to estimate Vπ(s), a function approximator can
be used to approximate the value function. In AC, neural

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 31,2020 at 12:56:01 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

networks are typically used as the function approximator for
the value function. Therefore, we fit a neural network Vπ(s;�)
with parameter � to approximate the value function. Now,
if we consider rt + γ Vπ(st
) as the expectation of reward-
to-go at time t , Vπ(st) could play as a surrogate for the
baseline reward. Similar to the PG, the variance of the model
would be high since only one sample is used to train the
model. Therefore, the variance can be reduced using multiple
samples. In the AC model, the actor (our policy, θ) provides
samples (policy states at time t and t+1) for the critic [neural
network estimating value function, Vπ(s;�)], and the critic
returns the estimation to the actor, and finally, the actor uses
these estimations to calculate the advantage approximation and
update the loss according to the following equation:

Lθ = 1

N

N∑
i=1

∑
t

log πθ(ŷi,|ŷi,t−1, si,t , ci,t−1)A�(si,t , yi,t).

(22)

Therefore, in the AC models, the inference at each time t
would be as follows:

arg max
y

πθ(ŷt |ŷt−1, st , ct−1)A�(st , yt). (23)

Fig. 3 provides an illustration of how this model works at one
of the decoding steps.

1) Training Critic Model: As mentioned in Section III-B,
the critic is a function estimator that tries to estimate the
expected reward-to-go for the model at time t . Therefore,
training the critic is basically a regression problem. Usually,
in AC models, a neural network is used as the function
approximator, and the value function is trained using the mean
squared error (mse)

L(�) = 1

2

∑
i

||V�(si)− vi ||2 (24)

where vi = ∑T
t
=t r(si,t
 , yi,t
) is the true reward-to-go at

time t . During training the actor model, we collect (si , vi)
pairs and pass them to the critic model to train the estimator.
This model is called on-policy AC , which refers to the
fact that the samples are collected at the current time to
train the critic model. However, the samples that are passed
to the critic will be correlated to each other, which causes
poor generalization for the estimator. These methods could
be turned to off-policy by collecting training samples into
a memory buffer and select mini-batches from this memory
buffer and train the critic network. Off-policy AC provides
better training due to avoiding the correlation of samples that
exist in the on-policy methods. Therefore, most of the models
that we discuss in this paper are primarily off-policy and use
a memory buffer for training the critic model.

Algorithm 3 shows the batch AC algorithm since, for
training the critic network, we use a batch of the state–rewards
pair. In the online AC algorithm, the critic network is simply
updated using just one sample, and, as expected, the online
AC algorithm has a higher variance due to reliance on one
sample for training the network. To alleviate this problem for
online AC, we can use synchronous advantage AC learning

Fig. 3. Simple AC model with an attention-based pointer-generation seq2seq
model as the actor. The critic model is shown on the right-hand side of the
picture with a purple box. The purple box A� , which represents the critic
model, takes as input the decoder output at time t = 2, i.e., s2, and estimate
the advantage values through either (value function estimation, DQN, DDQN,
or dueling net) for each action.

or asynchronous advantage AC (A3C) learning [137]. In the
synchronous approach, N different threads are used to train the
model and each thread performs online AC for one sample,
and at the end of the algorithm, the gradient of these N threads
is used to update the gradient of the actor model. In the more
widely used A3C algorithm, as soon as a thread calculates θ ,
it will send the update to other threads, and other threads
use the updated θ to train the model. A3C is an on-policy
method with multistep returns, while there are other methods,
such as Retrace [138], UNREAL [139], and Reactor [140],
that provide the off-policy variations of this model by using
the memory buffer. Also, ACER [141] mixes on-policy (from
the current run) and off-policy (from memory) to train the
critic network.

In general, AC models usually have low variance due to the
batch training and the use of critic as the baseline reward, but
they are not unbiased if the critic is erroneous and makes a lot
of mistakes. As mentioned in Section III-A, the PG algorithm
has high variance, but it provides an unbiased estimator. Now,
if the PG and AC models are combined, we will likely be
ending up with a model that has no bias and low variance.
This idea comes from the fact that for deterministic policies
(such as seq2seq models), a partially observable loss could be
driven by using the Q-function as follows [39], [142]:

Lθ = 1

N

N∑
i=1

∑
t

log πθ(ŷi,t |ŷi,t−1, si,t , ci,t−1)

× (Q�(si,t)− V�
 (si,t)) .(25)

However, this model requires training two different networks
for Q� function and V�
 function as the baseline. Note that the
same model cannot be used to estimate both Q-function and
value function since the estimator will not be an unbiased esti-
mator anymore [143]. As yet another solution to create a trade-
off between the bias and variance in AC, Schulman et al. [144]
proposed the generalized advantage estimation (GAE) model

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 31,2020 at 12:56:01 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KENESHLOO et al.: DEEP RL FOR seq2seq MODELS 11

Algorithm 3 Batch AC Algorithm
Input: Input sequences (X), ground-truth output sequences

(Y),
and (preferably) a pre-trained Actor model (πθ).
Output: Trained Actor and Critic models.
Training Steps:
Initialize the Actor (Seq2seq) model, πθ .
Initialize the Critic (ValueNet) model, V� .
while not converged do

Training Actor:
Select a batch of size N from X and Y .
Sample N full sequences of actions based on the Actor.
model, πθ .
for n = 1, . . . , N do

for t = 1, . . . , T do
Calculate the true (discounted) reward-to-go:
vt =∑T

t
=t γ t
−t r(si,t
 , yi,t
).
Store training pairs for Critic: (st , vt).

end for
end for

Training Critic:
Select a batch of size Nc from the pool of state-rewards

pairs.
collected from Actor.
for n = 1, . . . , Nc do

Collect the value estimates v̂n from V� for each
state-rewards pair.

end for
Minimize the Critic loss using Eq. (24).

Updating Actor:
Use the estimated value for V�(st) and V�(st
)
to calculate the loss using Eq. (22).
Update parameters of the model using θ ← θ+α∇θL(θ).

end while

as follows:

AGAE
� (st , yt)=

T∑
i=t

(γ λ)i−t (r(si , yi)+ γ V�(si+1)− V�(si))

(26)

where λ controls the tradeoff between the bias and variance,
such that large values of λ yield to larger variance and lower
bias, while small values of λ do the opposite.

C. Actor–Critic With Q-Learning

As mentioned in Section III-B, the value function is used to
maximize the advantage function. As an alternative to solve
the maximization of advantage estimates, we can try to solve
the following objective function:

Maxy Aπ(st , yt)→ Maxy Qπ(st , yt)− Vπ(st)︸ ︷︷ ︸
0

. (27)

This is true since we are trying to find the actions that
maximize the advantage estimate, and since value function

does not rely on the actions, we can simply remove them
from the maximization objective. Therefore, the advantage
maximization problem is simplified to Q-function estimation
problem. This method is called Q-learning, and it is one
of the most commonly used algorithms for RL problems.
The Q-learning is called to be a family of the off-policy
algorithm used to learn a Q-function. Similar to this method,
the SARSA algorithm [145] is an on-policy algorithm for
calculating the Q-function. The major difference between
SARSA and Q-Learning is that the maximum reward for the
next state is not necessarily used for updating the Q-values.
In Q-learning, the critic tries to provide an estimation for the
Q-function. Therefore, given that the policy πθ is being used,
our goal is to maximize the following loss at each training
step:

Lθ = 1

N

N∑
i=1

∑
t

log πθ(ŷi,t |ŷi,t−1, si,t , ci,t−1)Q�(si,t , yi,t).

(28)

Similar to the value network training, the Q-function estima-
tion is a regression problem, and the mse is used for training
it. However, one of the differences between the Q-function
training and the value function training is the way in which
the true estimates are chosen. In value function estimation,
the ground-truth data are used to calculate the true reward-
to-go as vi = ∑T

t
=t r(si,t
 , yi,t
); however, in Q-learning,
the estimation from the network approximator itself is used
to train the regression model

L(�) = 1

2

∑
i

||Q�(si , yi)− qi ||2

qi = rt + γ max
y

Q�

(
s
i , y
i

)
(29)

where s
i and y
i are the state and action at the next time,
respectively. Although the Q-value estimation has no direct
relation to the true Q-values calculated using ground-truth
data, in practice, it is known to provide good estimation and
faster training due to not collecting ground-truth reward at
each step of the training. However, there are no rigorous
studies that analyze how far these estimates are from the
true Q-values. As shown in (29), the true Q estimations are
calculated using the estimation from network approximator
at time t + 1, i.e., max
y Q�(s
i , y
i). Although not relying
on the true ground-truth estimation and explicitly using the
reward function might seem to be a bad idea, however,
in practice, it is shown that these models provide better and
more robust estimators. Therefore, the training process in
Q-learning consists of first collecting a data set of experiences
et = (st , yt , st
, rt) during training our actor model and then
use them to train the network approximator. This is the
standard way of training the Q-network and was frequently
used in earlier temporal-difference learning models. However,
there is a problem with this method. Generally, the AC models
with a neural network as function estimator are tricky to train,
and unless there are guarantees that the estimator is good,
the model does not converge. Although the original Q-learning
method is proven to converge [146], [147], when a neural

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 31,2020 at 12:56:01 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

network is used to approximate the estimator, the convergence
guarantee no longer holds. Usually, since samples are coming
from specific sets of sequences, there is a correlation between
the samples that are chosen to train the model. Thus, this
may cause any small updates to Q-network to significantly
change the data distribution and ultimately affects the cor-
relations between Q and the target values. Recently, Mnih
et al. [45] proposed using an experience buffer [148]37 to store
the experiences from different sequences and then randomly
select a batch from this data set and train the Q-network.
Similar to the off-policy AC model, one benefit of using this
buffer is the potential to increase the efficiency of the model
by re-using the experiences in multiple updates and reducing
the variance of the model since by sampling uniformly from
the buffer, the correlation of samples used in the updates is
reduced. As another improvement to the experience buffer,
a prioritized version of this buffer is used, in which to
select the mini-batches during training, only samples that have
low temporal difference error are selected [149]. Algorithm 4
provides the pseudocode for a Q-learning algorithm called
deep Q-network (DQN).

D. Advanced Q-Learning

1) Double Q-Learning: One of the problems with the DQN
is the overestimation of Q-values, as discussed in [150]
and [151]. Specifically, the problem lies in the fact that the
ground-truth reward is not used to train these models, and
the same network is used to calculate both the estimation of
network Q�(si , yi) and true values for regression training,
qi . To alleviate this problem, one could use two different
networks, in which the first one chooses the best action
when calculating maxy
Q�(s
n, y
n) and the other calculates the
estimation of Q value, i.e., Q�(si , yi). In practice, a modified
version of the current DQN network is used as the second
network, in which the current network freezes its parameters
for a certain period of time and updates the second network
periodically. Let us call the second network as the target
network with parameter �
. We know that maxy
Q�(s
n, y
n)
is the same as choosing the best action according to the
network Q� . Therefore, this equation can be re-written as
Q�(s
t , arg maxy
t Q�(s
t , y
t)). As shown in this equation, Q�

is used for both calculating the Q-value and finding the best
action. Given a target network, the best action is chosen using
our target network, and the Q-value is estimated using the
current network. Hence, using the target network, Q�
 , the
Q-estimation will be given as follows:

qt=
{

rt s
n == EOS

rt + γ Q�(s
t , arg maxy
t Q�
 (s
t , y
t)) otherwise
(30)

where EOS stands for the end-of-sequence action. This method
is called double DQN (DDQN) [150], [152] and is shown
to resolve the problem of overestimation in DQN and pro-
vides more realistic estimations. However, even this model
suffers from the fact that there is no relation between the
true Q-values and the estimation provided by the network.
Algorithm 5 shows the pseudocode for this model.

37In some studies, it is called a replay buffer.

Algorithm 4 Deep Q-Learning
Input: Input sequences (X), ground-truth output sequences

(Y),
and preferably a pre-trained Actor model (πθ).
Output: Trained Actor and Critic models.
Training Steps:
Initialize the Actor (Seq2seq) model, πθ .
Initialize the Critic (Q-Net) model, Q� .
while not converged do

Training Seq2seq Model:
Select a batch of size N from X and Y .
Sample N full sequences of actions based on the Actor
model, πθ .
for n = 1, . . . , N do

for t = 1, . . . , T do
Collect experience et = (st , yt , st
 , rt) and
add them to the experience buffer.

end for
end for

Training Q-Net:
Select a batch of size Nq from the experience buffer.
based on the reward.
for n = 1, . . . , Nq do

Estimate q̂n = Q�(sn, yn).
Calculate the true estimation:

qn =
{

rn s
n==EOS
rn + γ maxy
Q�(s
n, y
n) otherwise.

Store (q̂n, qn).
end for
Updating Q-Net:
Minimize the loss using Eq. (29).
Update the parameters of network, � .

Updating Seq2seq Model:
Use the estimated Q values for q̂n = Q�(sn, yn).
to calculate the loss using Eq. (28).
Update parameters of the model using θ ← θ+α∇θL(θ).

end while

2) Dueling Networks: DDQN tried to solve one of the prob-
lems with DQN model by using two networks, in which the
target network selects the next best action, while the current
network estimates the Q-values, given the action selected by
the target. However, in most applications, it is unnecessary to
estimate the value of each action choice. This is especially
important in discrete problems with a large set of possible
actions, where only a small portion of actions are suitable. For
instance, in text summarization, the output of the model is a
vector of the distribution over the vocabulary, and therefore,
the output has the same dimension as the vocabulary size that
is usually selected to be between 50k and 150k. In most of
the applications that use DDQN, the action space is limited
to less than a few hundred. For instance, in an Atari game,
the possible actions could be to move left, right, up, down,
and shoot. Therefore, using DDQN would be easy for these
types of applications. Recently, Wang et al. [153] proposed
the idea of using a dueling net to overcome this problem.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 31,2020 at 12:56:01 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KENESHLOO et al.: DEEP RL FOR seq2seq MODELS 13

Algorithm 5 Double Deep Q-Learning
Input: Input sequences (X), ground-truth output sequences

(Y),
and preferably a pre-trained Actor model (πθ).
Output: Trained Actor and Critic models.
Training Steps:
Initialize the Actor (Seq2seq) model, πθ .
Initialize the two Critic models:
current Q-Net, Q� , and target Q-net, Q�
 : Q�
 ← Q� .
while not converged do

Training Seq2seq Model:
Select a batch of size N from X and Y .
Sample N full sequences of actions based on the Actor
model, πθ .
for n = 1, . . . , N do

for t = 1, . . . , T do
Collect experience et = (st , yt , st
, rt) and
add them to the experience buffer.

end for
end for

Training Q-Net:
Select a batch of size Nq from the experience buffer
based on the reward.
for n = 1, . . . , Nq do

Estimate q̂n = Q�(sn, yn)
Calculate the true estimation:

qn =

⎧⎪⎨
⎪⎩

rn s
n == E OS

rn + γ Q�(s
n,

arg maxy
t Q�
 (s
t , y
t)) otherwi se.
Store (q̂n, qn).

end for
Updating current Q-Net:
Minimize the loss using Eq. (29).
Update the parameters of network, � .

Updating target Q-Net every Nu iterations:
�
 ← � or using Polyak averaging:
�
 ← τ�
 + (1− τ)� , τ = 1000−(Current Step%1000)

1000 .

Updating Seq2seq Model:
Use the estimated Q-values for q̂n = Q�(sn, yn)
to calculate the loss using Eq. (28).
Update parameters of the model using θ ← θ+α∇θL(θ).

end while

In their proposed method, rather than estimating the Q-values
directly from the Q-net, two different values are estimated for
the value function and advantage function as follows:

Q�(st , yt) = V�(st)+ A�(st , yt). (31)

In order to be able to calculate V�(st), the value estimates
are replicated |A| times. However, as discussed in [153],
using (33) to calculate Q is bad and can potentially yield
poor performance since (33) is unidentifiable in the sense that
a constant can be added to V�(st) and subtracted the same
constant from A�(st , yt). To solve this problem, the authors

suggested forcing the advantage estimator to have a zero at
the selected action

Q�(st , yt) = V�(st)+ (A�(st , yt)−max
y

A�(st , y)). (32)

This way, for the action y∗ = arg maxy Q�(st , y) =
arg maxy A�(st , y), Q�(st , y∗) = V�(st) is obtained. As
an alternative to (32) and to make the model more stable,
the author suggested to replace the max operator with average

Q�(st , yt) = V�(st)+
(

A�(st , yt)− 1

|A|
∑

y

A�(st , y)

)
.

(33)

Note that the dueling net will not decrease the number of
actions but will provide a better normalization over the target
distribution. Similar to DQN and DDQN, this model also
suffers from the fact that there is no relation between the
true values of Q-function and the estimation provided by the
network. In Section V, we propose a simple and effective
solution to overcome this problem by doing scheduled sam-
pling between the Q-value estimations and true Q-values to
pre-train our function approximator. Fig. 4 summarizes some
of the strengths and weaknesses of these different RL methods.

IV. COMBINING RL WITH SEQ2SEQ MODELS

In this section, we will provide some of the recent models
that combined the seq2seq training with RL techniques. For
most of these models, the main goal is to solve the train/test
evaluation mismatch problem that exists in all previously
described seq2seq models. This is usually done by adding a
reward function to the training objective. There are a growing
number of research works that used the REINFORCE algo-
rithm to improve the current state-of-the-art seq2seq models.
However, more advanced techniques, such as AC models,
DQN, and DDQN, have not been used often for these tasks.
As mentioned earlier, one of the main difficulties of using
Q-Learning and its derivatives is the large action space
for seq2seq models. For instance, in text summarization,
the model should provide estimates for each word in the vocab-
ulary, and therefore, the estimation could be inferior even with
a well-trained model. Due to these reasons, researchers mostly
focused on the easier yet problematic approaches, such as
REINFORCE algorithm to train the seq2seq model. Therefore,
combining the power of Q-Learning training with seq2seq
model is still considered to be an open area of research.
Table III shows the policy, action, and reward function for
each seq2seq task, and Table IV summarizes these models
along with the respective seq2seq application and specific RL
algorithm they used to improve that application.

A. Policy Gradient and REINFORCE Algorithm
As mentioned in Section III-A, in PG, the reward of the

sampled sequence is observed at the end of the sequence gen-
eration and backpropagate that error equally to all the decoding
steps according to (15). Also, we talked about the exposure
bias problem that exists in seq2seq models during training the
decoder because of using the CE error. The idea of improving
generation by letting the model use its own predictions at

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 31,2020 at 12:56:01 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 4. List of advantages and drawbacks of different RL models. The advantages are listed, such that each method covers all the strengths of its previous
methods, and the drawbacks are listed, such that each method has all the weaknesses of the previous ones. For instance, AC w. Dueling Net has all the pros
of the previous models listed above it, and AC w. Value Function Estimation suffers from all the cons of the methods listed below it. The features that are
also model-dependent are shown with “∗” and those features do not exist in any other model. Each “�” shows how hard it is to implement these models in a
real-world application.

TABLE III

POLICY, ACTION, AND REWARD FUNCTION FOR DIFFERENT SEQ2SEQ TASKS

training time was first proposed by Daumé et al. [154]. Based
on their proposed method, SEARN, the structured prediction
problems can be cast as a particular instance of RL. The
basic idea is to let the model use its own predictions at
training time to produce a sequence of actions (e.g., the choice
of the next word). Then, a greedy search algorithm is run
to determine the optimal action at each time step, and the
policy is trained to predict that action. An imitation learning
framework was proposed by Ross et al. [155] in a method
called DAGGER, where an oracle of the target word, given the
current predicted word, is required. However, for tasks such as
text summarization, computing the oracle is infeasible due to
the large action space. This problem was later addressed by the
“Data As Demonstrator” (DAD) model [156], where the target
action at step k is the kth action taken by the optimal policy.
One drawback of DAD is that at every time step, the target
label is always selected from the ground-truth data, and if
the generated summaries are shorter than the ground-truth
summaries, the model still forces to generate outputs that could
already exist in the model. One way to avoid this problem

in DAD is to use a method called End2EndBackProp [28],
in which, at each step t , the top-k actions are retrieved from the
model, the normalized probabilities of these actions are used
as weights (of importance), and the normalized combination
of their representation is fed to the next decoding step.

Finally, the REINFORCE algorithm [41] tries to overcome
all these problems by using the PG rewarding function and
avoiding the CE loss by using the sampled sequence as
the ground truth to train the seq2seq model [see (18)]. In
real-world applications, the training is usually started with
the CE loss, and a pre-trained model is acquired. Then,
the REINFORCE algorithm is used to train the model. Some
of the earliest adoptions of REINFORCE algorithm for train-
ing seq2seq models are in computer vision [90], [157], image
captioning [19], and speech recognition [86]. Recently, other
researchers showed that using a combination of CE loss
and REINFORCE loss could yield a better result than just
simply performing the pre-training. In these models, training
is started by using the CE loss and is slowly switched from
CE loss to REINFORCE loss to train the model. There are

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 31,2020 at 12:56:01 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KENESHLOO et al.: DEEP RL FOR seq2seq MODELS 15

TABLE IV

SUMMARY OF SEQ2SEQ APPLICATIONS THAT USED VARIOUS RL METHODS

various ways in which one can do the transition from CE
loss to REINFORCE loss. Ranzato et al. [28] used an incre-
mental scheduling algorithm called “MIXER” that combines
DAGGER [155] with DAD [156] methods. In this method,
the RNN is trained with the CE loss for NCE epochs using
the ground-truth sequences. This ensures that the model starts
off with a much better policy than a random one because, now,
the model can focus on promising regions of the search space.
Then, they use an annealing schedule in order to gradually
teach the model to produce stable sequences. Therefore, after
the initial NCE epochs, they continue training the model for
NCE+NR epochs, such that for every sequence, they use LCE
for the first (T − δ) steps and the REINFORCE algorithm for
the remaining δ steps. The MIXER model was successfully
used in a variety of tasks, such as text summarization, image
captioning, and machine translation.

Another way to handle the transition from using CE loss to
REINFORCE loss is to use the following combined loss:

Lmixed = ηLREINFORCE + (1− η)LCE (34)

where η ∈ (0, 1) is the parameter that controls the transition
from CE to REINFORCE loss. In the beginning of the training,

η = 0 and the model completely relies on CE loss, while
as the training progresses, the η value is increased in order
to slowly reduce the effect of CE loss. By the end of the
training process (where η = 1), the model completely uses
the REINFORCE loss for training. This mixed training loss
was used in many of the recent works on text summarization
[13], [46], [158], [159], paraphrase generation [160], image
captioning [40], video captioning [161], speech recognition
[162], dialogue generation [163], question answering [164],
and question generation [62].

B. Actor–Critic Models

One of the problems with the PG model is that we need
to sample the full sequences of actions and observe the
reward at the end of the generation. This, in general, will be
problematic since the error of generation accumulates over
time, and usually, for long sequences of actions, the final
sequence is so far away from the ground-truth sequence. Thus,
the reward of the final sequence would be small, and the
model would take a lot of time to converge. To avoid this
problem, AC models observe the reward at each decoding
step using the critic model and fix the sequence of future

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 31,2020 at 12:56:01 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

16 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

actions that the actor is going to take. The critic model
usually tries to maximize the advantage function through the
estimation of value function or Q-function. As one of the
early attempts of using AC models, Bahdanau et al. [39] and
He et al. [165] used this model for the problem of machine
translation. Bahdanau et al. [39] used temporal-difference
learning for advantage function estimation by considering the
Q-value for the next action, i.e., Q(st , yt+1), as a surrogate
for its true value at time t , i.e., V�(st). We mentioned that for
a deterministic policy, y∗ = arg maxy Q(s, y), it follows that
Q(s, y∗) = V (s). Therefore, the Q-value for the next action
could be used as the true estimates of the value function at
the current time. To accommodate for the large action space,
they also use the shrinking estimation trick that was used in
dueling net to push the estimate to be closer to their means.
In addition, the critic training is done through the following
mixed objective function:

L(�) = 1

2

∑
i

||Q�(si , yi)− qi ||2 + ηQ̄i

Q̄i =
∑

y

⎛
⎝Q�(y, si)− 1

|A|
∑

y

Q�(y
, si)

⎞
⎠ (35)

where qi is the true estimation of Q from a delayed actor.
The idea of using delayed actor is similar to the idea used in
double Q-learning, where a delayed target network is used to
get the estimation of the best action. Later, Zhang et al. [166]
used a similar model on the image captioning task.

He et al. [165] proposed a value network that uses a
semantic matching and a context-coverage module and passed
them through a dense layer to estimate the value function.
However, their model requires a fully trained seq2seq model to
train the value network. Once the value network is trained, they
use the trained seq2seq model and trained value estimation
model to do the beam search during translation. Therefore,
the value network is not used during the training of the seq2seq
model. During inference, however, similar to the AlphaGo
model [167], rather than multiplying the advantage estimates
(value or Q estimates) to the policy probabilities [such as
in (23)], they combine the output of the seq2seq model and
the value network as follows:

η × 1

T
log π(ŷ1···T |X)+ (1− η)× log V�(ŷ1···T) (36)

where V�(ŷ1···T) is the output of the value network and η
controls the effect of each score.

In a different model, Li et al. [168] proposed a model that
controls the length of seq2seq model using RL-based ideas.
They train a Q-value function approximator that estimates
the future outcome of taking an action yt in the present and
then incorporate it into a score S(yt) at each decoding step
as follows:

S(yt) = log π(yt |yt−1, st)+ ηQ(X, y1···t). (37)

Specifically, the Q-function, in this paper, takes only the
hidden state at time t and estimates the length of the remaining
sequence. While decoding, they suggest an inference method

that controls the length of the generated sequence as follows:
ŷt = arg max

y
log π(y|ŷ1···t−1, X)− η||(T − t)− Q�(st)||2.

(38)

Recently, Li et al. [46] proposed an AC model that uses a
binary classifier as the critic. In this specific model, the critic
tries to distinguish between the generated summary and the
human-written summary via a neural network binary classifier.
Once they pre-trained the actor using CE loss, they start
training the AC model alternatively using PG and the classifier
score is considered as a surrogate for the value function.
AC and PG were used also in the work of Liu et al. [136],
where they combined AC and PG learning along with impor-
tance sampling to train a seq2seq model for image captioning.
In this method, they used two different neural networks
for Q-function estimation, i.e., Q� , and value estimation,
i.e., V�
 . They also used a mixed reward function that com-
bines a weighted sum of ROUGE, BLEU, METEOR, and
CIDEr measures to achieve higher performance on this task.

C. Current RL-Based Model Issues

Throughout this paper, we discussed various situations,
where using RL provides a better solution than the traditional
methods. However, utilizing RL methods creates its own
training challenges, and in most of the cases, the improvement
received from these models is not significant. In this section,
we will discuss some of the issues that exist in current
RL techniques used for seq2seq problems. As discussed in
Section III, sample efficiency and high variance in RL models
are among the main issues in applying them to seq2seq prob-
lems. Therefore, models such as RAML [175] and SPG [176]
are proposed to provide a middle ground between the MLE
and RL training. In RAML [175], a reward-aware perturbation
is added to MLE, while in SPG [176], the reward distribu-
tion is utilized for the effective sampling of PG. Recently,
Tan et al. [177] provided a general formulation that connects
the MLE and RL training through entropy regularized policy
optimization (ERPO). However, even these solutions suffer
from their own problems. RAML arguably suffers from the
exposure bias, while SPG requires a lot of engineering to
work on a specific problem, and, as shown in Table III, that
is why REINFORCE-based models, such as MIXER [28], are
preferred in most of the current seq2seq problems.

Although REINFORCE-based models are simple to
implement and provide better results, training these models
is time-consuming, and the improvement over baselines is
usually marginal. This is why in most of the current works,
these models are only used for fine-tuning purposes.

Aside from these issues, there are problems inherent to
specific applications that make it hard for researchers to
combine RL techniques with current seq2seq models. For
instance, in most of the NLP problems, the output or action
space is massive compared to the size of actions in the
robotic or game-playing problems. This is mostly due to the
fact that in applications, such as machine translation, text
summarization, and image captioning, the size of the output

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 31,2020 at 12:56:01 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KENESHLOO et al.: DEEP RL FOR seq2seq MODELS 17

is equal to the size of the vocabulary used during training.
This is extremely high compared to the agents used in other
applications, e.g., an agent that plays an Atari game requires
deciding on usually less than 20 actions [178]. This will show
the severity of this problem and the reward sparsity issue that
exists in these applications.

Moreover, most of the current seq2seq models that use
RL training rely on well-defined reward functions, such as
BLEU or ROUGE, for providing feedback to the model.
Although these are the standard metrics for evaluating various
seq2seq models, relying on them creates a different set of
problems. For instance, in abstractive text summarization,
ROUGE and BLEU scores are being used as the standard
metrics for evaluating the summarization models. However,
a good abstractive summary will definitely have a low ROUGE
and BLEU score. This problem could be further investigated
and possibly improved by inverse RL (IRL) [179] by forcing
the model to learn its own rewarding function. However, to the
best of our knowledge, no work has been done in this area.

Recently, new methods are introduced for game playing
using the RL algorithm, which combines the best performing
models in this area and applies some of the best prac-
tices used in previous models to achieve the state-of-the-art
results. Rainbow [180] and Quantile Nets [181] are among
such frameworks. In Rainbow [180], the authors combine
DDQN, prioritized experience buffer, dueling net, multi-step
learning (using step-based reward rather than general reward),
and distributional RL to achieve state of the art in 57 games
in the Atari 2600 framework. A similar ensembling method
could also be useful to be applied for seq2seq tasks, but this
is also left for future work.

V. RLSEQ2SEQ: AN OPEN-SOURCE LIBRARY FOR

TRAINING SEQ2SEQ MODELS WITH RL METHODS

As a part of this comprehensive study, we developed an
open-source library that implements various RL techniques for
the problem of abstractive text summarization. This library is
made available at www.github.com/yaserkl/RLSeq2Seq/. Since
experimenting each specific configuration of these models
even requires few days of training on GPUs, we encourage
researchers, who use this library to build and enhance their
own models, to also share their trained model at this website.
In this section, we explain some of the important features of
our library. As mentioned earlier, this library provides modules
for abstractive text summarization. The core of our library is
based on a model called pointer-generator38 [12] that itself is
based on Google TextSum model.39 We also provide a similar
imitation learning used in training REINFORCE algorithm to
train the function approximator. This way, we propose training
our DQN (DDQN, Dueling Net) using a scheduled sampling,
in which we start training the model in the beginning based on
the ground-truth Q-values while we move on with the training
process, and we completely rely on the function estimator
to train the network. This could be seen as a pre-training
step for the function approximator. Therefore, the model is

38https://github.com/abisee/pointer-generator
39https://github.com/tensorflow/models/tree/master/research/textsum

guaranteed to start by using better ground-truth data since it
is exposed to the true ground-truth values versus the random
estimation it receives from the model itself. In summary, our
library implements the following features:

1) adding temporal attention and intra-decoder attention
that was proposed in [13];

2) adding scheduled sampling along with its differentiable
relaxation proposed in [31] and E2EBackProb [28] for
solving exposure bias problem;

3) adding adaptive training of REINFORCE algorithm by
minimizing the mixed objective loss in (34);

4) providing SC training by adding the greedy reward as
the baseline;

5) providing AC training options for training the model
using asynchronous training of Value Network, DQN,
DDQN, and Dueling Net;

6) providing options for scheduled sampling for the training
of the Q-Function in DQN, DDQN, and Dueling Net.

A. Experiments

To test the power of some of the studied models in this
paper, we performed a range of various experiments using our
open-source library. As mentioned in Section IV, most of the
RL-based models play as a fine-tuning technique in seq2seq
applications. Thus, we first pre-train our model for 15 epochs
using only CE loss and then add the RL training for another
ten epochs. Our experiments follow the same setup like the
one described in the pointer-generator paper [12], and we only
show the results after activating the coverage mechanism. We
activate the coverage mechanism only for the last epoch and
select the best model using the evaluation data. We use a linear
scheduling probability as � = step/total steps, and we also
use � = 1 after activating the coverage so that the model
completely relies on its own output for the rest of training, and
for E2EBackPropagation model, K is set to 4. All experiments
are done using two NVIDIA P100 GPUs: one used for training
the model and the other for selecting the best-trained model
based on the evaluation data.

1) Analysis of the Results: Table V shows the results of
our experiments based on the ROUGE score on this data
set. All our ROUGE scores have a 95% confidence interval
of at most ±0.25 as reported by the official ROUGE script.
In Table V, PG stands for pointer generation and SS stands
for scheduled sampling. As shown in Table V, both the
scheduled sampling model and the E2E model are superior
to the pointer generator. We have also used our framework
to train the self-critic PG (SCPG)-based model proposed by
Paulus et al. [13]. However, as shown in Table V, although
the SCPG improves the performance of the pointer-generator
model, this improvement is very marginal. This result is totally
in contrast with the result in the original paper [13] and shows
that SCPG, as claimed by the authors, will not greatly improve
the performance of the pointer-generator model. One of the
main reasons for this difference in the result of our experiment
with the one in Paulus et al. [13] is that they use a completely
different set of hyperparameters for training their model. For
instance, the input for their encoder is 800 words, while in

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 31,2020 at 12:56:01 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

18 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE V

ANALYSIS OF ROUGE F1-SCORE AFTER ACTIVATING COVERAGE ON
TEXT SUMMARIZATION PROBLEM ON THE CNN/DM TEST DATA SET

our default setting, for all our experiments, it is set to 400.
Also, the vocabulary size is set to 150k and 50k for input and
output, while our default is set to 50k for both input and output.
Moreover, the size of hidden layers for encoder and decoder
in their work is larger than our default values, and they also
use a pre-trained GloVe word-embedding [182] for training
their model. Finally, we are comparing all these PG-based
models with an AC model proposed by Chen and Bansal [55],
which holds the state-of-the-art result in text summarization
in the CNN/DM data set. As shown in Table V, this model
is superior to any of the PG-based models according to the
ROUGE scores.

2) Analysis of the Training Time: In general, the pointer-
generator framework requires more than three days of training
for effective results, while this time will also be extended
after adding the SCPG. On an average, each batch of training
during MLE training will take 2–3 s, while once we add the
SCPG loss, this time will be increased to 5–6 s, which means
that the entire training time will be double after activation of
the RL loss. On the other hand, the entire training time for
the AC model before and after RL activation is only a few
hours, which shows that not only it is superior in terms of the
ROUGE score results but also the training process converges
much faster than the other models.

VI. CONCLUSION

In this paper, we provided a general overview of a specific
type of deep learning models called sequence-to-sequence
(seq2seq) models and discussed some of the recent advances in
combining training of these models with RL techniques. The
seq2seq models are common in a wide range of applications
from machine translation to speech recognition. However, tra-
ditional models in this field usually suffer from various prob-
lems during model training, such as inconsistency between
the training objective and testing objective and exposure bias.
Recently, with advances in deep RL, researchers offered
various types of solutions to combine the RL training with
seq2seq training for alleviating the problems and challenges
of training seq2seq models. In this paper, we summarized
some of the most important works that tried to combine these
two different techniques and provided an open-source library
for the problem of abstractive text summarization that shows
how one could train a seq2seq model using different RL
techniques.

REFERENCES

[1] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Proc. NIPS, 2014, pp. 3104–3112.

[2] S. Bengio et al., “Scheduled sampling for sequence prediction with
recurrent neural networks,” in Proc. NIPS, 2015, pp. 1171–1179.

[3] T. Luong, H. Pham, and C. D. Manning, “Effective approaches to
attention-based neural machine translation,” in Proc. EMNLP, 2015,
pp. 1412–1421.

[4] Y. Wu et al., “Google’s neural machine translation system: Bridging the
gap between human and machine translation,” 2016, arXiv:1609.08144.
[Online]. Available: https://arxiv.org/abs/1609.08144

[5] A. Vaswani et al., “Tensor2tensor for neural machine translation,” in
Proc. 13th Conf. Assoc. Mach. Transl. Amer., 2018, pp. 193–199.

[6] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation
by jointly learning to align and translate,” 2014, arXiv:1409.0473.
[Online]. Available: https://arxiv.org/abs/1409.0473

[7] K. Cho et al., “Learning phrase representations using rnn encoder-
decoder for statistical machine translation,” in Proc. EMNLP, 2014,
pp. 1–10.

[8] S. Shen et al., “Minimum risk training for neural machine translation,”
in Proc. ACL, vol. 1, Aug. 2016, pp. 1683–1692.

[9] A. M. Rush, S. Chopra, and J. Weston, “A neural attention model
for abstractive sentence summarization,” in Proc. EMNLP, 2015,
pp. 379–389.

[10] S. Chopra et al., “Abstractive sentence summarization with atten-
tive recurrent neural networks,” in Proc. NAACL-HLT, Jun. 2016,
pp. 93–98.

[11] R. Nallapati et al., “Abstractive text summarization using sequence-to-
sequence RNNS and beyond,” in Proc. SIGNLL, 2016, pp. 280–290.

[12] A. See, P. J. Liu, and C. D. Manning, “Get to the Point: Summarization
with pointer-generator networks,” in Proc. 55th Annu. Meeting Assoc.
Comput. Linguistics, vol. 1, 2017, pp. 1073–1083.

[13] R. Paulus, C. Xiong, and R. Socher, “A deep reinforced model for
abstractive summarization,” in Proc. ICLR, 2018, pp. 1–9.

[14] R. Nallapati, F. Zhai, and B. Zhou, “Summarunner: A recurrent
neural network based sequence model for extractive summarization of
documents,” in Proc. AAAI, Feb. 2017, pp. 3075–3081.

[15] A. Graves, A.-R. Mohamed, and G. Hinton, “Speech recognition
with deep recurrent neural networks,” in Proc. ICASSP, May 2013,
pp. 6645–6649.

[16] D. Bahdanau et al., “End-to-end attention-based large vocabulary
speech recognition,” in Proc. ICASSP, Mar. 2016, pp. 4945–4949.

[17] D. Amodei et al., “Deep speech 2: End-to-end speech recognition in
english and mandarin,” in Proc. ICML, Jun. 2016, pp. 173–182.

[18] S. Ö. Arik et al., “Deep voice: Real-time neural text-to-speech,” in
Proc. ICML, Aug. 2017, pp. 195–204.

[19] K. Xu et al., “Show, attend and tell: Neural image caption genera-
tion with visual attention,” Comput. Sci., vol. 2015, pp. 2048–2057,
Feb. 2015.

[20] O. Vinyals et al., “Show and tell: A neural image caption generator,”
in Proc. CVPR, Jun. 2015, pp. 3156–3164.

[21] A. Karpathy and L. Fei-Fei, “Deep visual-semantic alignments for gen-
erating image descriptions,” in Proc. CVPR, Apr. 2015, pp. 3128–3137.

[22] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[23] J. L. Elman, “Finding structure in time,” Cognit. Sci., vol. 14, no. 2,
pp. 179–211, Mar. 1990.

[24] C.-Y. Lin, “Rouge: A package for automatic evaluation of summaries,”
in Proc. Workshop Text Summarization Branchys Out, 2004, pp. 74–81.

[25] K. Papineni et al., “BLEU: A method for automatic evaluation of
machine translation,” in Proc. ACL, Jul. 2002, pp. 311–318.

[26] S. Banerjee and A. Lavie, “METEOR: An automatic metric for
MT evaluation with improved correlation with human judgments,” in
Proc. ACL Workshop Intrinsic Extrinsic Eval. Measures Mach. Transl.
Summarization, Jun. 2005, pp. 65–72.

[27] R. Vedantam, C. L. Zitnick, and D. Parikh, “CIDEr: Consensus-
based image description evaluation,” in Proc. CVPR, Jun. 2015,
pp. 4566–4575.

[28] M. Ranzato et al., “Sequence level training with recurrent
neural networks,” 2015, arXiv:1511.06732. [Online]. Available:
https://arxiv.org/abs/1511.06732

[29] J. Su et al., “Incorporating discriminator in sentence generation: A
gibbs sampling method,” in Proc. AAAI, Apr. 2018, pp. 1–27.

[30] F. Huszár, “How (not) to train your generative model: Scheduled
sampling, likelihood, adversary?” 2015, arXiv:1511.05101. [Online].
Available: https://arxiv.org/abs/1511.05101

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 31,2020 at 12:56:01 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KENESHLOO et al.: DEEP RL FOR seq2seq MODELS 19

[31] K. Goyal, C. Dyer, and T. Berg-Kirkpatrick, “Differentiable scheduled
sampling for credit assignment,” in Proc. ACL, vol. 2, Jul. 2017,
pp. 366–371.

[32] L. Yu et al., “SeqGan: Sequence generative adversarial nets with policy
gradient,” in Proc. AAAI, vol. 31, Feb. 2017, pp. 2852–2858.

[33] K. Lin et al., “Adversarial ranking for language generation,” in Proc.
NIPS, 2017, pp. 3155–3165.

[34] J. Guo et al., “Long text generation via adversarial training with leaked
information,” in Proc. AAAI, 2018, pp. 1—27.

[35] T. Che et al., “Maximum-likelihood augmented discrete generative
adversarial networks,” 2017, arXiv:1702.07983. [Online]. Available:
https://arxiv.org/abs/1702.07983

[36] I. Goodfellow et al., “Generative adversarial nets,” in Proc. NIPS, 2014,
pp. 2672–2680.

[37] Y. Zhang et al., “Adversarial feature matching for text generation,” in
Proc. ICML, Aug. 2017, pp. 4006–4015.

[38] Z. Shi et al., “Toward diverse text generation with inverse reinforcement
learning,” in Proc. IJCAI, Jul. 2018, pp. 4361–4367.

[39] D. Bahdanau et al., “An actor-critic algorithm for sequence prediction,”
in Proc. ICLR, 2017.

[40] S. J. Rennie et al., “Self-critical sequence training for image caption-
ing,” in Proc. CVPR, Jul. 2017, pp. 7008–7024.

[41] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Mach. Learn., vol. 8, nos. 3–4,
pp. 229–2256, May 1992.

[42] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
vol. 1. Cambridge, MA, USA: MIT Press, 1998.

[43] S. Levine et al., “End-to-end training of deep visuomotor policies,” J.
Mach. Learn. Res., vol. 17, no. 1, pp. 1334–1373, 2015.

[44] I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic
grasps,” Int. J. Robot. Res., vol. 34, nos. 4–5, pp. 705–724, 2015.

[45] V. Mnih et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, p. 529, 2015.

[46] P. Li, L. Bing, and W. Lam, “Actor-critic based training framework for
abstractive summarization,” 2018, arXiv:1803.11070. [Online]. Avail-
able: https://arxiv.org/abs/1803.11070

[47] K. Arulkumaran et al., “A brief survey of deep reinforce-
ment learning,” 2017, arXiv:1708.05866. [Online]. Available: https://
arxiv.org/abs/1708.05866

[48] Y. Li, “Deep reinforcement learning: An overview,” 2017,
arXiv:1701.07274. [Online]. Available: https://arxiv.org/abs/1701.
07274

[49] S. Team, “Deep learning for siri’s voice: On-device deep mixture
density networks for hybrid unit selection synthesis,” Apple Mach.
Learn. J., vol. 1, p. 4, Apr. 2017.

[50] G. Klein et al., “Opennmt: Open-source toolkit for neural machine
translation,” in Proc. ACL, 2017, pp. 67–72.

[51] M. X. Chen et al., “The best of both worlds: Combining recent
advances in neural machine translation,” in Proc. ACL, 2018,
pp. 76–86.

[52] T. Shi et al., “Neural abstractive text summarization with sequence-
to-sequence models,” 2018, arXiv:1812.02303. [Online]. Available:
https://arxiv.org/abs/1812.02303

[53] Q. Zhou et al., “Selective encoding for abstractive sentence summa-
rization,” in Proc. ACL, Jan. 2017, pp. 1095–1104.

[54] J. Tan, X. Wan, and J. Xiao, “Abstractive document summarization
with a graph-based attentional neural model,” in Proc. ACL, Jan. 2017,
pp. 1171–1181.

[55] Y.-C. Chen and M. Bansal, “Fast abstractive summarization with
reinforce-selected sentence rewriting,” in Proc. ACL, Jul. 2018,
pp. 675–686.

[56] J. Lin et al., “Global encoding for abstractive summarization,” in Proc.
ACL, Jul. 2018, pp. 163–169.

[57] W.-T. Hsu et al., “A unified model for extractive and abstractive
summarization using inconsistency loss,” in Proc. ACL, Jul. 2018,
pp. 132–141.

[58] Y. Xia et al., “Deliberation networks: Sequence generation beyond one-
pass decoding,” in Proc. NIPS, 2017, pp. 1782–1792.

[59] I. V. Serban et al., “Generating factoid questions with recurrent neural
networks: The 30M factoid question-answer corpus,” in Proc. ACL,
Jul. 2016, pp. 588–598.

[60] N. Mostafazadeh et al. “Generating natural questions about an image,”
in Proc. ACL, Aug. 2016, pp. 1802–1813.

[61] Z. Yang et al., “Semi-supervised QA with generative domain-adaptive
nets,” in Proc. ACL, Sep. 2017, pp. 1040–1050.

[62] X. Yuan et al., “Machine comprehension by text-to-text neural question
generation,” in Proc. 2nd Workshop Represent. Learn. NLP, Aug. 2017,
pp. 15–25.

[63] S. Antol et al., “VQA: Visual question answering,” in Proc. ICCV,
Dec. 2015, pp. 2425–2433.

[64] C. Xiong, V. Zhong, and R. Socher, “Dynamic coattention networks
for question answering,” in Proc. ICLR, 2016, pp. 116–120.

[65] Z. Yang et al., “Stacked attention networks for image question answer-
ing,” in Proc. CVPR, Jun. 2016, pp. 21–29.

[66] M. Zhu et al., “A hierarchical attention retrieval model for healthcare
question answering,” in Proc. World Wide Web Conf., May 2019,
pp. 2472–2482

[67] O. Vinyals and Q. Le, “A neural conversational model,”
2015, arXiv:1506.05869. [Online]. Available: https://arxiv.org/
abs/1506.05869

[68] J. Li et al., “A diversity-promoting objective function for neural
conversation models,” in Proc. NAACL-HLT, Jun. 2016, pp. 110–119.

[69] I. V. Serban et al., “Building end-to-end dialogue systems using
generative hierarchical neural network models,” in Proc. AAAI, vol. 16,
2016, pp. 3776–3784.

[70] A. Bordes, Y.-L. Boureau, and J. Weston, “Learning end-to-end goal-
oriented dialog,” in Proc. ICLR, 2016, pp. 12–34.

[71] V. Zhong, C. Xiong, and R. Socher. (2018). Seq2SQL:
Generating Structured Queries from Natural Language Using
Reinforcement Learning. [Online]. Available: https://openreview.net/
forum?id=Syx6bz-Ab

[72] X. Xu, C. Liu, and D. Song, “Sqlnet: Generating structured
queries from natural language without reinforcement learning,” 2017,
arXiv:1711.04436. [Online] Available: https://arxiv.org/abs/1711.04436

[73] R. Kiros, R. Salakhutdinov, and R. Zemel, “Multimodal neural lan-
guage models,” in Proc. ICML, Jan. 2014, pp. 595–603.

[74] R. Kiros, R. Salakhutdinov, and R. S. Zemel, “Unifying visual-
semantic embeddings with multimodal neural language models,” 2014,
arXiv:1411.2539. [Online]. Available: https://arxiv.org/abs/1411.2539

[75] X. Chen and C. L. Zitnick, “Mind’s eye: A recurrent visual repre-
sentation for image caption generation,” in Proc. CVPR, Jun. 2015,
pp. 2422–2431.

[76] J. Mao et al., “Deep captioning with multimodal recurrent neural
networks (m-RNN),” 2014, arXiv:1412.6632. [Online]. Available:
https://arxiv.org/abs/1412.6632

[77] H. Fang et al., “From captions to visual concepts and back,” in Proc.
CVPR, Jun. 2015, pp. 1473–1482.

[78] J. Donahue et al., “Long-term recurrent convolutional networks for
visual recognition and description,” in Proc. CVPR, Apr. 2015,
pp. 2625–2634.

[79] S. Venugopalan et al., “Translating videos to natural language
using deep recurrent neural networks,” in Proc. NAACL-HLT, 2015,
pp. 1494–1504.

[80] S. Venugopalan et al., “Sequence to sequence—Video to text,” in Proc.
ICCV, Dec. 2015, pp. 4534–4542.

[81] S. Venugopalan et al., “Improving LSTM-based video description with
linguistic knowledge mined from text,” in Proc. EMNLP, Nov. 2016,
pp. 1961–1966.

[82] P. Sermanet et al., “Overfeat: Integrated recognition, localization
and detection using convolutional networks,” in Proc. ICLR, 2014,
pp. 31–40.

[83] D. Erhan et al., “Scalable object detection using deep neural networks,”
in Proc. CVPR, Sep. 2014, pp. 2147–2154.

[84] R. Girshick, “Fast R-CNN,” in Proc. ICCV, Dec. 2015, pp. 1440–1448.
[85] S. Ren et al., “Faster R-CNN: Towards real-time object detection with

region proposal networks,” in Proc. Adv. Neural Inf. Process. Syst.,
vol. 2015, pp. 91–99.

[86] A. Graves and N. Jaitly, “Towards end-to-end speech recognition with
recurrent neural networks,” in Proc. ICML, Jan. 2014, pp. 1764–1772.

[87] Y. Miao, M. Gowayyed, and F. Metze, “EESEN: End-to-end speech
recognition using deep RNN models and WFST-based decoding,” in
Proc. IEEE Workshop Autom. Speech Recognit. Understand. (ASRU),
Dec. 2015, pp. 167–174.

[88] H. Ze, A. Senior, and M. Schuster, “Statistical parametric speech
synthesis using deep neural networks,” in Proc. ICASSP, May 2013,
pp. 7962–7966.

[89] Y. Fan et al., “TTS synthesis with bidirectional LSTM based recurrent
neural networks,” in Proc. ISCA, 2014, pp. 54–69.

[90] J. Ba, V. Mnih, and K. Kavukcuoglu, “Multiple object recognition
with visual attention,” 2014, arXiv:1412.7755. [Online]. Available:
https://arxiv.org/abs/1412.7755

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 31,2020 at 12:56:01 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

20 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[91] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” in Proc.
NIPS, 2015, pp. 2692–2700.

[92] A. Vaswani et al., “Attention is all you need,” in Proc. NIPS, 2017,
pp. 6000–6010.

[93] A. Radford, R. Jozefowicz, and I. Sutskever, “Learning to generate
reviews and discovering sentiment,” 2017, arXiv:1704.01444. [Online].
Available: https://arxiv.org/abs/1704.01444

[94] C. dos Santos and M. Gatti, “Deep convolutional neural networks for
sentiment analysis of short texts,” in Proc. COLING, 2014, pp. 69–78.

[95] R. Socher et al., “Recursive deep models for semantic composi-
tionality over a sentiment treebank,” in Proc. EMNLP, Aug. 2013,
pp. 1631–1642.

[96] A. Conneau et al., “Supervised learning of universal sentence repre-
sentations from natural language inference data,” in Proc. EMNLP,
Sep. 2017, pp. 670–680.

[97] S. Kim et al., “Semantic sentence matching with densely-connected
recurrent and co-attentive information,” 2018, arXiv:1805.11360.
[Online]. Available: https://arxiv.org/abs/1805.11360

[98] B. Pan et al., “Discourse marker augmented network with reinforce-
ment learning for natural language inference,” in Proc. ACL, Jul. 2018,
pp. 989–999.

[99] N. FitzGerald et al., “Semantic role labeling with neural network
factors,” in Proc. EMNLP, Sep. 2015, pp. 960–970.

[100] L. He, M. Lewis, and L. Zettlemoyer, “Question-answer driven seman-
tic role labeling: Using natural language to annotate natural language,”
in Proc. EMNLP, Jul. 2015, pp. 643–653.

[101] D. Marcheggiani, A. Frolov, and I. Titov, “A simple and accurate
syntax-agnostic neural model for dependency-based semantic role
labeling,” in Proc. CONLL, Aug. 2017, pp. 411–420.

[102] D. Marcheggiani and I. Titov, “Encoding sentences with graph con-
volutional networks for semantic role labeling,” in Proc. EMNLP,
Sep. 2017, pp. 1506–1515.

[103] M. Mintz et al., “Distant supervision for relation extraction without
labeled data,” in Proc. ACL, Aug. 2009, pp. 1003–1011.

[104] X. Huang et al., “Attention-based convolutional neural network
for semantic relation extraction,” in Proc. ICLR, Sep. 2016,
pp. 2526–2536.

[105] P. Qin, W. Xu, and W. Y. Wang, “Robust distant supervision relation
extraction via deep reinforcement learning,” in Proc. ACL, Jul. 2018,
pp. 2137–2147.

[106] C. Chen and V. Ng, “Chinese zero pronoun resolution with deep neural
networks,” in Proc. ACL, vol. 1, Aug. 2016, pp. 778–788.

[107] Q. Yin et al., “Chinese zero pronoun resolution with deep memory
network,” in Proc. EMNLP, Sep. 2017, pp. 1309–1318.

[108] T. H. Trinh and Q. V. Le, “A simple method for common-
sense reasoning,” 2018, arXiv:1806.02847. [Online]. Available:
https://arxiv.org/abs/1806.02847

[109] Q. Yin et al., “Deep reinforcement learning for Chinese zero pronoun
resolution,” in Proc. ACL, Nov. 2018, pp. 569–578.

[110] P. Anderson et al., “SPICE: Semantic propositional image caption
evaluation,” in Proc. ECCV, 2016, pp. 382–398.

[111] A. Axelrod, X. He, and J. Gao, “Domain adaptation via pseudo in-
domain data selection,” in Proc. EMNLP, Jul. 2011, pp. 355–362.

[112] K. M. Hermann et al., “Teaching machines to read and comprehend,”
in Proc. NIPS, 2015, pp. 1693–1701.

[113] M. Grusky, M. Naaman, and Y. Artzi, “Newsroom: A dataset
of 1.3 million summaries with diverse extractive strategies,” in
Proc. NAACL-HLT, Jun. 2018, pp. 708–719. [Online]. Available:
https://summari.es/newsroom.pdf

[114] D. Graff et al., English Gigaword. Philadelphia, PA, USA: Linguistic
Data Consortium, 2003, p. 1.

[115] P. Rajpurkar et al., “Squad: 100,000+ questions for machine compre-
hension of text,” in Proc. EMNLP, Nov. 2016, pp. 2383–2392.

[116] P. Rajpurkar, R. Jia, and P. Liang, “Know what you don’t know: Unan-
swerable questions for squad,” in Proc. ACL, Aug. 2018, pp. 784–789.

[117] M. Joshi et al., “TriviaQA: A large scale distantly supervised challenge
dataset for reading comprehension,” in Proc. ACL, vol. 1, Jul. 2017,
pp. 1601–1611.

[118] J. Tiedemann. (2018). News from OpusžA Collection of Multilingual
Parallel Corpora With Tools and Interfaces 1 Index of Subjects and
Terms 13. [Online]. Available: http://opus.nlpl.eu/

[119] J. Dodge et al., “Evaluating prerequisite qualities for learning end-
to-end dialog systems,” 2015, arXiv:1511.06931. [Online]. Available:
https://arxiv.org/abs/1511.06931

[120] C. Danescu-Niculescu-Mizil and L. Lee, “Chameleons in imagined
conversations: A new approach to understanding coordination of
linguistic style in dialogs,” in Proc. 2nd Workshop Cognit. Model.
Comput. Linguistics, Jun. 2011, pp. 76–87.

[121] P. Pasupat and P. Liang, “Compositional semantic parsing on semi-
structured tables,” in Proc. ACL, Jul. 2015, pp. 1470–1480.

[122] Y. Wang, J. Berant, and P. Liang, “Building a semantic parser
overnight,” in Proc. ACL, vol. 1, Jul. 2015, pp. 1332–1342.

[123] J. McAuley, R. Pandey, and J. Leskovec, “Inferring networks of
substitutable and complementary products,” in Proc. KDD, Aug. 2015,
pp. 785–794.

[124] S. R. Bowman et al., “A large annotated corpus for learning natural
language inference,” in Proc. EMNLP, Jul. 2015, pp. 148–158.

[125] A. Williams, N. Nangia, and S. Bowman, “A broad-coverage challenge
corpus for sentence understanding through inference,” in Proc. Conf.
North Amer. Chapter Assoc. Comput. Linguistics, Hum. Lang. Technol.,
vol. 1, 2018, pp. 1112–1122.

[126] M. Palmer, D. Gildea, and P. Kingsbury, “The proposition bank: An
annotated corpus of semantic roles,” Comput. linguistics, vol. 31, no. 1,
pp. 71–106, Mar. 2005.

[127] J. R. Finkel, T. Grenager, and C. Manning, “Incorporating non-local
information into information extraction systems by Gibbs sampling,”
in Proc. ACL, Jul. 2005, pp. 363–370.

[128] T.-Y. Lin et al., “Microsoft COCO: Common objects in context,” in
Proc. Eur. Conf. Comput. Vis., 2014, pp. 740–755.

[129] V. Ordonez, G. Kulkarni, and T. L. Berg, “Im2text: Describing
images using 1 million captioned photographs,” in Proc. NIPS, 2011,
pp. 1143–1151.

[130] J. Xu et al., “MSR-VTT: A large video description dataset for bridging
video and language,” in Proc. CVPR, Jun. 2016, pp. 5288–5296.

[131] D. L. Chen and W. B. Dolan, “Collecting highly parallel data for
paraphrase evaluation,” in Proc. ACL, Jun. 2011, pp. 190–200.

[132] Y. LeCun et al., “Gradient-based learning applied to document recog-
nition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–2324, Nov. 1998.

[133] V. Panayotov et al., “Librispeech: An ASR corpus based on public
domain audio books,” in Proc. ICASSP, Apr. 2015, pp. 5206–5210.

[134] W. Zaremba and I. Sutskever, “Reinforcement learning neural Tur-
ing machines–revised,” 2015, arXiv:1505.00521. [Online]. Available:
https://arxiv.org/abs/1505.00521

[135] T. Jie and P. Abbeel, “On a connection between importance sam-
pling and the likelihood ratio policy gradient,” in Proc. NIPS, 2010,
pp. 1000–1008.

[136] S. Liu et al., “Improved image captioning via policy gradient optimiza-
tion of spider,” in Proc. ICCV, vol. 3, Mar. 2017, pp. 873–881.

[137] V. Mnih et al., “Asynchronous methods for deep reinforcement learn-
ing,” in Proc. ICML, Jun. 2016, pp. 1928–1937.

[138] R. Munos et al., “Safe and efficient off-policy reinforcement learning,”
in Proc. NIPS, 2016, pp. 1054–1062.

[139] M. Jaderberg et al., “Reinforcement learning with unsupervised auxil-
iary tasks,” in Proc. ICLR, 2017, pp. 10–20.

[140] A. Gruslys et al., “The reactor: A sample-efficient actor-critic archi-
tecture,” in Proc. ICLR, Aug. 2018, pp. 1–17.

[141] Z. Wang et al., “Sample efficient actor-critic with experience replay,”
in Proc. ICLR, 2017, pp. 11–25.

[142] R. S. Sutton et al., “Policy gradient methods for reinforcement learning
with function approximation,” in P NIPS, 2000, pp. 1057–1063.

[143] G. Tucker et al., “The mirage of action-dependent baselines in rein-
forcement learning,” in Proc. ICLR Workshop, 2018.

[144] J. Schulman et al., “High-dimensional continuous control using gener-
alized advantage estimation,” in Proc. ICLR, Jul. 2016, pp. 125–146.

[145] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[146] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8,
nos. 3–4, pp. 279–292, 1992.

[147] J. N. Tsitsiklis, “Asynchronous stochastic approximation and Q-
learning,” Mach. Learn., vol. 16, no. 16, pp. 185–202, Sep. 1994.

[148] L.-J. Lin, “Self-improving reactive agents based on reinforcement
learning, planning and teaching,” Mach. learn., vol. 8, nos. 3–4,
pp. 293–321, 1992.

[149] T. Schaul et al., “Prioritized experience replay,” 2015, arXiv:1511.
05952. [Online]. Available: https://arxiv.org/abs/1511.05952

[150] H. V. Hasselt, “Double q-learning,” in Proc. NIPS, 2010,
pp. 2613–2621.

[151] S. Thrun and A. Schwartz, “Issues in using function approximation
for reinforcement learning,” in Connectionist Models Summer School
Hillsdale. New York, NY, USA: Lawrence Erlbaum, 1993.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 31,2020 at 12:56:01 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KENESHLOO et al.: DEEP RL FOR seq2seq MODELS 21

[152] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning,” in Proc. AAAI, Feb. 2016, pp. 15–30.

[153] Z. Wang et al., “Dueling network architectures for deep reinforcement
learning,” in Proc. Int. Conf. Mach. Learn., vol. 2016, pp. 1995–2003.

[154] H. Daumé, J. Langford, and D. Marcu, “Search-based structured
prediction,” Mach. Learn., vol. 75, no. 3, pp. 297–325, Jun. 2009.

[155] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in Proc. 14th
Int. Conf. Artif. Intell. Statist., Jun. 2011, pp. 627–635.

[156] A. Venkatraman, M. Hebert, and J. A. Bagnell, “Improving multi-step
prediction of learned time series models,” in Proc. AAAI, Jan. 2015,
pp. 3024–3030.

[157] V. Mnih et al., “Recurrent models of visual attention,” in Proc. NIPS,
2014, pp. 2204–2212.

[158] L. Wang et al., “A reinforced topic-aware convolutional sequence-to-
sequence model for abstractive text summarization,” in Proc. IJCAI,
2018, pp. 258–268.

[159] S. Narayan, S. B. Cohen, and M. Lapata, “Ranking sentences for extrac-
tive summarization with reinforcement learning,” in Proc. NAACL-HLT,
vol. 1, Jun. 2018, pp. 1747–1759.

[160] Z. Li et al., “Paraphrase generation with deep reinforcement learning,”
in Proc. EMNLP, 2018, pp. 3865–3878.

[161] R. Pasunuru and M. Bansal, “Reinforced video captioning with entail-
ment rewards,” in Proc. EMNLP, Jul. 2017, pp. 979–985.

[162] Y. Zhou, C. Xiong, and R. Socher, “Improving end-to-end speech
recognition with policy learning,” in Proc. ICASSP, Apr. 2018,
pp. 5819–5823.

[163] J. Li et al., “Deep reinforcement learning for dialogue generation,” in
Proc. EMNLP, 2016, pp. 1192–1202.

[164] M. Hu, Y. Peng, and X. Qiu, “Reinforced mnemonic reader for
machine comprehension,” 2017, arXiv:1705.02798. [Online]. Avail-
able: https://arxiv.org/abs/1705.02798

[165] D. He et al., “Decoding with value networks for neural machine
translation,” in Proc. NIPS, 2017, pp. 177–186.

[166] L. Zhang et al., “Actor-critic sequence training for image
captioning,” 2017, arXiv:1706.09601. [Online]. Available:
https://arxiv.org/abs/1706.09601

[167] D. Silver et al., “Mastering the game of Go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[168] J. Li, W. Monroe, and D. Jurafsky, “Learning to decode
for future success,” 2017, arXiv:1701.06549. [Online]. Available:
https://arxiv.org/abs/1701.06549

[169] Y. Wu and B. Hu, “Learning to extract coherent summary via deep
reinforcement learning,” in Proc. AAAI, 2018, pp. 11–20.

[170] J. Kreutzer, J. Uyheng, and S. Riezler, “Reliability and learnability
of human bandit feedback for sequence-to-sequence reinforcement
learning,” in Proc. ACL, vol. 1, Jul. 2018, pp. 1777–1788.

[171] C. Liang et al., “Neural symbolic machines: Learning semantic
parsers on freebase with weak supervision,” in Proc. ACL, Jul. 2017,
pp. 23–33.

[172] S. Yeung et al., “End-to-end learning of action detection from frame
glimpses in videos,” in Proc. CVPR, Jun. 2016, pp. 2678–2687.

[173] Y. Keneshloo, N. Ramakrishnan, and C. K. Reddy, Deep Transfer
Reinforcement Learning for Text Summarization. Philadelphia, PA,
USA: SIAM, 2019, pp. 675–683.

[174] I. Higgins et al., “Darla: Improving zero-shot transfer in reinforcement
learning,” in Int. Conf. Mach. Learn., Jul. 2017, pp. 1480–1490.

[175] M. Norouzi et al., “Reward augmented maximum likelihood for neural
structured prediction,” in Proc. NIPS, 2016, pp. 1723–1731.

[176] N. Ding and R. Soricut, “Cold-start reinforcement learning with
softmax policy gradient,” in Proc. NIPS, 2017, pp. 2817–2826.

[177] B. Tan et al., “Connecting the dots between MLE and RL for
sequence generation,” 2018, arXiv:1811.09740. [Online]. Available:
https://arxiv.org/abs/1811.09740

[178] V. Mnih et al., “Playing atari with deep reinforcement learning,” 2013,
arXiv:1312.5602. [Online]. Available: https://arxiv.org/abs/1312.5602

[179] B. D. Ziebart et al., “Maximum entropy inverse reinforcement learn-
ing,” in Proc. AAAI, 2008, pp. 1433–1438.

[180] M. Hessel et al., “Rainbow: Combining improvements in deep rein-
forcement learning,” in Proc. AAAI, Aug. 2018, pp. 1458–1469.

[181] W. Dabney et al., “Implicit quantile networks for distributional rein-
forcement learning,” 2018, arXiv:1806.06923. [Online]. Available:
https://arxiv.org/abs/1806.06923

[182] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for
word representation,” in Proc. EMNLP, Jul. 2014, pp. 1532–1543.

[183] A. Celikyilmaz et al., “Deep communicating agents for abstractive
summarization,” in Proc. ACM, Sep. 2018, pp. 1662–1675.

Yaser Keneshloo received the Ph.D. degree from
the Department of Computer Science, Virginia Tech,
Arlington, VA, USA, in 2019.

He is currently a Senior Manager of the
Advance Data Science Team, Marriott International,
Bethesda, MD, USA. His current research interests
include deep reinforcement learning, text summa-
rization, and predictive modeling.

Tian Shi received the Ph.D. degree in physical
chemistry from Wayne State University, Detroit, MI,
USA, in 2016. He is currently pursuing the Ph.D.
degree with the Department of Computer Science,
Virginia Tech, Arlington, VA, USA.

His current research interests include data min-
ing, deep learning, topic modeling, and text
summarization.

Naren Ramakrishnan received the Ph.D. degree
in computer sciences from Purdue University, West
Lafayette, IN, USA.

He is currently the Thomas L. Phillips Professor
of Engineering with Virginia Tech, Arlington, VA,
USA. He directs the Discovery Analytics Cen-
ter, a university-wide effort that brings together
researchers from computer science, statistics, math-
ematics, and electrical and computer engineering to
tackle knowledge discovery problems in important
areas of national interest. His work has been featured

in The Wall Street Journal, Newsweek, Smithsonian Magazine, PBS/NoVA
Next, The Chronicle of Higher Education, and Popular Science, among other
venues.

Dr. Ramakrishnan serves on the editorial boards of the IEEE COMPUTER,
ACM Transactions on Knowledge Discovery from Data, Data Mining and
Knowledge Discovery, IEEE TRANSACTIONS ON KNOWLEDGE AND DATA

ENGINEERING, and other journals.

Chandan K. Reddy (S’02–M’07–SM’14) received
the M.S. degree from Michigan State University,
East Lansing, MI, USA, and the Ph.D. degree from
Cornell University, Ithaca, NY, USA.

He is currently an Associate Professor with
the Department of Computer Science, Virginia
Tech, Arlington, VA, USA. He has published over
110 peer-reviewed articles in leading conferences
and journals. His current research interests include
data mining and machine learning with applications
to healthcare analytics and social network analysis.

His research is funded by the National Science Foundation, the National
Institutes of Health, the Department of Transportation, and the Susan G.
Komen for the Cure Foundation.

Dr. Reddy is a Life Member of the Association for Computing Machinery
(ACM). He received several awards for his research work, including the Best
Application Paper Award at the ACM Special Interest Group on Knowledge
Discovery and Data Mining Conference in 2010, the Best Poster Award at
the IEEE Conference on Visual Analytics Science and Technology in 2014,
the Best Student Paper Award at the IEEE International Conference on Data
Mining in 2016, and was a finalist of the INFORMS Franz Edelman Award
Competition in 2011. He was the PC Co-Chair of the IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining in 2018.
He is also an Associate Editor of the ACM Transactions on Knowledge
Discovery and Data Mining.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 31,2020 at 12:56:01 UTC from IEEE Xplore. Restrictions apply.

