1728

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 4, APRIL 2024

Multi-Label Clinical Time-Series Generation via
Conditional GAN

Chang Lu"”, Member, IEEE, Chandan K. Reddy

Dong Nie

Abstract—In recent years, deep learning has been successfully
adopted in a wide range of applications related to electronic health
records (EHRs) such as representation learning and clinical event
prediction. However, due to privacy constraints, limited access to
EHR becomes a bottleneck for deep learning research. To mitigate
these concerns, generative adversarial networks (GANs) have been
successfully used for generating EHR data. However, there are
still challenges in high-quality EHR generation, including gener-
ating time-series EHR data and imbalanced uncommon diseases.
In this work, we propose a Multi-label Time-series GAN (MT-
GAN) to generate EHR and simultaneously improve the quality
of uncommon disease generation. The generator of MTGAN uses
a gated recurrent unit (GRU) with a smooth conditional matrix
to generate sequences and uncommon diseases. The critic gives
scores using Wasserstein distance to recognize real samples from
synthetic samples by considering both data and temporal features.
We also propose a training strategy to calculate temporal features
for real data and stabilize GAN training. Furthermore, we design
multiple statistical metrics and prediction tasks to evaluate the
generated data. Experimental results demonstrate the quality of
the synthetic data and the effectiveness of MTGAN in generating
realistic sequential EHR data, especially for uncommon diseases.

Index Terms—Electronic health records, generative adversarial
network (GAN), time-series generation, imbalanced data.

I. INTRODUCTION

HE application of electronic health records (EHR) in

healthcare facilities not only automates access to key
clinical information of patients, but also provides valuable data
resources for researchers. To analyze EHR data, deep learning
has achieved tremendous success on various tasks such as repre-
sentation learning for patients and medical concepts [1], [2], [3],
predicting health events such as diagnoses and mortality [4], [5],
[6], [7], [8], clinical note analysis [9], privacy protection [10],
[11], and phenotyping [12], [13], [14]. Although EHR data

Manuscript received 10 April 2022; revised 6 June 2023; accepted 26 August
2023. Date of publication 31 August 2023; date of current version 8 March 2024.
This work was supported by the US National Science Foundation under Grants
1838730, 1948432, 2047843, and 2245907. Recommended for acceptance by
W. Ku. (Corresponding author: Chang Lu.)

Chang Lu, Ping Wang, and Yue Ning are with the Department of Computer
Science, Stevens Institute of Technology, Hoboken, NJ 07310 USA (e-mail:
luchang.cs @gmail.com; ping.wang @stevens.edu; yue.ning@stevens.edu).

Chandan K. Reddy is with the Department of Computer Science, Virginia
Tech, Arlington, VA 22203 USA (e-mail: reddy @cs.vt.edu).

Dong Nie is with the Department of Computer Science, University of
North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA (e-mail: dong-
nie@cs.unc.edu).

Digital Object Identifier 10.1109/TKDE.2023.3310909

, Senior Member, IEEE, Ping Wang
, and Yue Ning

, Member, IEEE,
, Member, IEEE

uL =) Visit J\ =~ seq\L/J:asrl;Eces
] I I

Noise (¥ "7 ! Noise /"~ ""°7 2 N \

i[1]o]..[1]o]o]: i[o[1]..[1]oTo]: i[+]o].[1]o]1]:

Heart failure ! Hypertension | i+ Heart failure

« Diabetes + Diabetes i+ Diabetes

i+ Appendicitis !

(a) Visit-level (b) Patient-level

Fig. 1. Visit-level generation v.s. patient-level generation. 1 or 0 in the multi-
label diagnosis vector denotes the occurrence of the corresponding disease in
this visit. Here, Appendicitis is an uncommon disease.

are widely used in various healthcare applications, it is typi-
cally arduous for researchers to access them. On the one hand,
most EHR data are not publicly available because they contain
sensitive clinical information of patients, such as demographic
features and diagnoses. On the other hand, some public EHR
datasets including MIMIC-III [15] and eICU [16] only have
limited samples and may not be suitable for applying large-scale
deep learning-based approaches. Therefore, the limited EHR
data has become on of the major bottlenecks for data-driven
healthcare studies.

Recently, generative adversarial networks (GANs) [17] have
been successful in high-quality image generation. Compared
with conventional generative models such as autoencoder and
variational autoencoder [18], [19], [20], GANs are able to
generate more realistic data [21]. Therefore, GANs have also
been applied to generate EHR [22], [23], [24]. However, when
generating EHR using existing GANs, there are still several
challenges:

1) Generating time-series EHR data: In EHR data, a pa-
tient can have multiple visits. However, most existing
GANS for generating EHR, such as medGAN [22], EMR-
WGAN [24], Smooth-GAN [29], and RDP-CGAN [26],
can only generate independent visits instead of time-series
data. It is because traditional GANs designed for image
generation only generate one image given a noise in-
put. Although it is possible to combine generated visits
randomly as a sequence, this method cannot preserve
temporal information to disclose patient-level features.
Fig. 1 shows an example of visit-level and patient-level
data generation. In Fig. 1(a), it generates diagnoses for
only one visit. An ideal sequence generation is described
in Fig. 1(b). The diagnoses in two close visits are sim-
ilar and related, such as hypertension and heart failure.

1041-4347 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 07,2025 at 03:17:55 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3756-7396
https://orcid.org/0000-0003-2839-3662
https://orcid.org/0000-0002-0379-9183
https://orcid.org/0000-0003-0385-8988
https://orcid.org/0000-0002-1227-440X
mailto:luchang.cs@gmail.com
mailto:ping.wang@stevens.edu
mailto:yue.ning@stevens.edu
mailto:reddy@cs.vt.edu
mailto:dongnie@cs.unc.edu
mailto:dongnie@cs.unc.edu

LU et al.: MULTI-LABEL CLINICAL TIME-SERIES GENERATION VIA CONDITIONAL GAN

Recently, SeqGAN [30] and TimeGAN [27] are proposed
to generate sequences as a simulation of sentences. How-
ever, unlike words in a sentence, each time step (visit) of
EHR contains multi-label variates (i.e., diagnoses shown
in Fig. 1). Therefore, generating multi-label time-series
EHR with temporal correlations still remains a challenge.

2) Generating uncommon diseases: Based on the statistics
of a well-known public EHR dataset, MIMIC-III, some
diseases are frequently diagnosed, such as hypertension
and diabetes, while some other diseases such as tuber-
culosis are less common. Although these diseases do not
frequently occur, itis still valuable to study them to provide
better care plans for patients, e.g., analyzing occurrence
patterns to improve diagnosis prediction accuracy. Despite
the ability of existing GANSs to generate time-series EHR
data, it is still challenging for them to learn a good distri-
bution for uncommon diseases. Instead of only generating
frequent diseases shown in Fig. 1(b), we need to find
effective ways to generate uncommon diseases, such as
Appendicitis in Fig. 1(b) given highly imbalanced EHR
datasets.

3) Evaluating synthetic EHR data: Since EHR datasets have
an imbalanced disease distribution, traditional evaluation
metrics for synthetic images such as Kullback-Leibler
divergence and Jensen-Shannon divergence do not provide
sufficient attention to uncommon diseases. As a result, we
may still get low divergence between the distribution of
real and synthetic EHR data when they are close in terms
of diseases with higher frequency. Therefore, it is still
necessary to explore appropriate metrics to evaluate the
quality of synthetic EHR data, especially for uncommon
diseases.

To address these challenges, we propose MTGAN, a multi-
label time-series generation model using a conditional GAN to
simultaneously generate time-series diagnoses and uncommon
diseases. In the generator, we first propose to recursively gen-
erate patient-level diagnosis probabilities with a gated recurrent
unit (GRU). Then, to generate uncommon diseases, we adopt the
idea of the conditional vector in CTGAN [25] and broadcast this
vector into a smooth conditional matrix throughout all visits in
sequences. In the critic of MTGAN, we propose to discriminate
real and synthetic samples by giving scores to both the data and
their temporal features. Finally, we design a training strategy to
optimize MTGAN by sampling discrete diseases from visit-level
probabilities and forming the patient-level visit sequences to
stabilize the training process. The model computes temporal
features of real data by pre-training a GRU with the task of next
visit prediction. The contributions of this work are summarized
as follows:

® We propose a time-series generative adversarial network

MTGAN to generate multi-label patient-level EHR data.
The generator, critic, and training strategy of MTGAN are
able to simultaneously generate realistic visits and preserve
temporal correlations across different visits.

® We propose a smooth conditional matrix to cope with the

imbalanced disease distribution in EHR data and improve
the generation quality of uncommon diseases.

1729

® We use multiple statistical metrics for synthetic EHR eval-
uation and design a normalized distance especially for
uncommon diseases. Meanwhile, we verify that the syn-
thetic EHR generated by MTGAN can boost deep learning
models on temporal health event prediction tasks.

The remaining parts of this paper are listed below: We first
discuss related work about EHR generation in Section II. Then,
we formulate the EHR generation problem in Section III and
introduce the details of MTGAN in Section IV. Next, the exper-
imental setups and results are demonstrated in Sections V and
VI, respectively. Finally, we summarize this paper and discuss
the future work in Section VII.

II. RELATED WORK
A. Generative Adversarial Networks

The generative adversarial networks are first proposed by
Goodfellow et al. [17] to generate realistic images. A typical
GAN contains a generator to generate synthetic samples and a
discriminator to distinguish real samples from generated sam-
ples. Arjovsky etal. [31] propose WGAN by replacing the binary
classification in the discriminator with the Wasserstein distance
to alleviate mode collapse and vanishing gradient in GAN. Gul-
rajani et al. [32] introduce a gradient penalty in WGAN-GP to
improve the training of WGAN. Xu et al. [25] propose CTGAN
to generate imbalanced tabular data with a conditional vector.
Wang et al. [33] propose a graph softmax method in GraphGAN
to sample discrete graph data. Unfortunately, typical GANs are
not able to generate time-series data, and therefore cannot be
directly applied to generate EHR data.

B. GANSs for Sequence Generation

To generate sequences with discrete variates, SeqGAN [30]
is proposed by Yu et al. with the REINFORCE algorithm and
policy gradient. Yoon et al. [27] propose TimeGAN by jointly
training with a GAN loss, a reconstruction loss, and a sequential
prediction loss. To generate time-series data with conditions,
Ramponi et al. [28] propose T-CGAN by specifying the time
step of a data sample as the condition. Esteban et al. [34]
propose a recurrent conditional GAN, RCGAN, to generate
real value medical data. Du et al. [35] propose a GAN-based
anomaly detection algorithm for multivariate time series data.
Liu et al. [36] also apply the GAN framework in BeatGAN by
adding an encoder and decoder to reconstruct time-series data for
anomaly detection. However, generating multi-label synthetic
data from imbalanced datasets is not considered in SeqGAN
and TimeGAN. For T-CGAN, when generating a sample, it only
uses the temporal position of this sample as the condition, thus
ignoring temporal correlations of the entire sequence and the
imbalanced distribution of labels. For RCGAN and BeatGAN,
they are designed for real-value time-series data and do not fit
for EHR data.

C. Generating EHR With GANs

To generate sequential EHR data, Lee et al. [19] and
Sun et al. [20] leverage adversarial autoencoder [37] with a

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 07,2025 at 03:17:55 UTC from IEEE Xplore. Restrictions apply.

1730

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 4, APRIL 2024

TABLE I
COMPARISON OF GANS FOR GENERATING EHR

P - medGAN CTGAN EMR-WGAN RDP-CGAN TimeGAN T-CGAN MTGAN
roperties [22] [25] [24] [26] [27] [28] (Proposed)

Time-series data generation X X X X v v v
Preserving temporal correlations X P X X v X v
Uncommon diseases generation X v X X X X v
Stable training with sparse EHR X X X X X X v

sequence-to-sequence autoencoder. However, compared to au- TABLE II

toencoders, GANs allow for more flexibility and diversity in NOTATIONS USED IN THIS PAPER

enerating samples. Gong et al. [38] propose DiffSeq to generate

£ £ p geta [. 1prop qloe Notation | Explanation

text sequences based on the diffusion model [39]. Unfortunately, : . —

training diffusion models requires large-scale datasets to achieve Xt Diagnosis vector of the -th visit

. K . G,D Generator and Critic
sta.lble training [40], which may not be suitable for EHR gener- DD Real and generated EHR datasets
ation. z,z Real and generated sample
Recently, GANs are applied to generate EHR to address P Generated probability distribution for diseases
the problem of limited data sources in healthcare applications. H,H Real and generated hidden states
. . c Smooth conditional matrix
Che et al. [41] propose ehrGAN by feeding the generator with Ger The GRU model in the generator
masked real data to generate EHR data. Choi et al. [22] pro- Faru Pre-trained GRU model for real EHR data

pose medGAN by introducing an auto-encoder. The generator
outputs a latent feature, and medGAN uses the auto-encoder to
decode synthetic data from the latent feature. Baowaly et al. [23]
replace the GAN framework in medGAN with WGAN-GP
and propose medWGAN. EMR-WGAN is proposed by Zhang
et al. [24]. It removes the auto-encoder in medGAN and let
the generator directly output synthetic data. Torfi et al. [26]
propose RDP-CGAN with a convolutional auto-encoder and
convolutional GAN. The RDP-CGAN model also uses a differ-
ential privacy method to preserve privacy in the synthetic EHR
data.

However, these GANs only generate single visits instead of
patient-level data. As a result, the synthetic EHR data generated
by these GANSs cannot be used for many time-series tasks such
as temporal health event prediction. In addition, they do not
consider uncommon diseases given that the diseases in EHR
datasets are usually imbalanced, which decreases the quality
of the synthetic EHR data. Furthermore, a majority of GANs
for EHR generation are not stable when dealing with sparse
EHR data, which may make it difficult to train the GANs. In
general, we compare related GANs in Table I based on the
important properties required for generating EHR. In this work,
we simultaneously consider generating patient-level EHR data
and uncommon diseases.

III. PROBLEM FORMULATION

In this section, we describe the EHR dataset in detail and for-
mally define the research problem, EHR generation. In addition,
we list important symbols and their corresponding explanations
in Table II.

An EHR dataset consists of visit sequences of patients to
healthcare facilities. A visit contains different data types, such as
diagnoses, procedures, lab tests, and clinical notes. An important
feature in EHR data is diagnoses represented by disease codes,
such as ICD-9 [42] or ICD-10 [43]. In this work, we focus on
generating diagnoses, and the research questions is formulated

into a time-series multi-label generation problem. To describe
an EHR dataset, we first give the following definitions:

Definition 1 (Visit): A visit contains one or multiple diag-
noses. The ¢-th visit is denoted by a binary vector x; € {0,1}4,
where d is the number of distinct diseases, i.e., disease types in
the EHR dataset. xi = 1 means the disease i is diagnosed in the
t-th visit.

Definition 2 (Visit sequence): Given a patient u, the visit
sequence of this patient is denoted as ¢, = (x1,X2,...,X7) €
{0,1}%*T, where T is the sequence length.

Definition 3 (EHR dataset): An EHR dataset D is a collection
of visit sequences: D = {x,, | u € U}, where U is a patient set.

Based on these descriptions of EHR data, the EHR generation
problem is defined as below:

Definition 4 (Problem formulation): Givenareal EHR dataset
D, we aim to generate a synthetic EHR dataset D such that D
has the following properties:

1) The disease distribution of D is close to D.

2) The disease type in D is similar to D when |D| = |D|.

Here, | - | denotes the number of data samples.

IV. THE PROPOSED MTGAN MODEL

In this section, we introduce some preliminaries about GANs
and discuss the proposed MTGAN to generate discrete diag-
noses in electronic health records, including detailed challenges
in generating EHR data and our proposed generator, critic, and
the training strategy. The model overview of MTGAN is shown
in Fig. 2.

A. Preliminaries of Generative Adversarial Networks

In a typical framework of generative adversarial networks
(GANS), there exists a generator G that takes a noise z € R®
from a random distribution as the input and generates a syn-
thetic data sample & = G(z). The discriminator D is another

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 07,2025 at 03:17:55 UTC from IEEE Xplore. Restrictions apply.

LU et al.: MULTI-LABEL CLINICAL TIME-SERIES GENERATION VIA CONDITIONAL GAN

Generator Critic
Target Probability Synthetic
disease samples
| x;—h;
i ling o " .
! x _ asserstein
Input noise X;—hy— = distance
-
xr—hy
GRU H
f— £
] x :
@ ___________________________________ L

Real sequence

Fig. 2. Model overview of MTGAN. The generator uses a GRU to obtain
patient-level diagnosis probabilities with hidden states and use the probabilities
to calculate attention scores as a conditional matrix to generate the target disease.
The critic calculates a Wasserstein distance by considering both synthetic/real
samples and their temporal features.

key part of GANSs. It tries to distinguish real data samples
x from generated samples &. The underlying mechanism of
GANs can be formulated as a min-max game: the generator
tries to generate realistic samples to deceive the discriminator
and let it think & is real; the discriminator conducts a binary
classification and tries to classify all real and synthetic samples
correctly. A vanilla GAN is optimized using the following loss
function:

ngn max E [logD (z)]+ E [log(1—D(G(2)))]. (1)

T~Px Z~pz

However, such a simple GAN is sometimes hard to train due
to the vanishing gradient problem, mode collapse, and failure
to converge. To address these issues, Arjovsky et al. [31] use
the Wasserstein distance in WGAN to train the generator and
discriminator (called a critic in WGAN). Gulrajani et al. [32]
introduce a gradient penalty for training the critic in WGAN-
GP. The updated loss functions to train the generator and critic
respectively are as follows:

Lp= E [D(G=)]- E [D(@)
+LE [(18:D@)]2 -1, @
Lo= - E [D(G(); @)

where Lg and L are the losses for the generator and critic,
respectively; A is a coefficient for the gradient penalty; & = ex +
(1 —€)&, e ~ U[0,1] is sampled from a uniform distribution; A
denotes the derivation operation; and || - || means ¢#2-norm. In
these two loss functions, D(-) calculates a critic score for an
input. It tries to maximize the score for real data and minimize
the score for synthetic data. It turns the binary classification
of the original GAN into a regression problem. By introducing
Wasserstein distance and gradient penalty, training GAN can
be more stable. Therefore, similar to EMR-WGAN [24] and
Smooth-GAN [29], we also introduce the gradient penalty in
the training of WGAN.

1731

B. Generator

As we discussed before, to generate realistic EHR samples,
we must address the following specific challenges:

C1: How to incorporate temporal features of visit sequences

to increase the correlation of adjacent visits?

C2: How to generate uncommon diseases in the real EHR

dataset D with an unbiased distribution?

1) Temporally-Correlated Probability ~ Generation: In
TimeGAN [27], when generating sequences, an intuitive
method is using recurrent neural networks (RNN). In each time
step, the input of the RNN cell is a random noise and the hidden
state passed from the previous time step. The output of each
time step is a new hidden state. We can use the hidden state
to generate each visit and combine all visits as a sequence.
However, we think that using noises to generate visits for every
time step may somewhat bring uncontrollable randomness
and weaken the temporal correlation between adjacent visits.
We believe an optimized generator is able to generate the
entire sequence given a single noise vector at the beginning of
the sequence. Similar to the temporal health event prediction
task studied in GRAM [5], CGL [2], and Chet [7], a good
generator should predict (generate) the diagnoses in the next
visit, given all previous visits. Therefore, based on this idea, we
propose to recursively generate the visit sequence from a single
noise vector z, in order to increase the temporal correlation of
adjacent visits, i.e., the challenge C1.

Given a random noise vector z € R* and a visit length 7T,
since the disease values in each visit is 0 or 1, we first generate
the disease probability P; in the first visit by decoding the noise
vector:

P, = 0(Wz) e R%)

Here, W € R?** is the weight to project the noise into the visit
space. o is the sigmoid function. After having the first visit, we
can recursively generate the disease probability of remaining
visits using a gated recurrent unit (GRU) [44] ggry:

flt = Geru (Pu fltfl) e R, ©)
Pi=o0 (Wflt) e R ©)

Here h, denotes the hidden state of GRU at the time step t.
We set flo = 0 and set the noise dimension to be the same as
hidden units of GRU, because we regard the noise vector as the
initial hidden state. Next, we use GRU to calculate the hidden
state of the time step ¢ using the hidden state of ¢ — 1 and the
generated visit probability P,. Then, we use the same decoding
for z to generate P, for the visit ¢ + 1. Finally, we combine all
the generated disease probabilities as a patient-level distribution
P for a synthetic EHR data sample: P = (P1,Ps,...,Pp) €
RdXT.

2) Smooth Conditional Matrix: After generating the patient-
level probabilities, we need to address the challenge of generat-
ing uncommon diseases, i.e., C2. To deal with highly imbalanced
tabular data, CTGAN [25] is proposed to use conditional vectors
to guide the GAN training process. More specifically, it first

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 07,2025 at 03:17:55 UTC from IEEE Xplore. Restrictions apply.

1732

specifies a category for a tabular feature as the target category.
Then, it uses a conditional vector where the corresponding
entry for the target category is 1. Finally, it concatenates the
conditional vector with the noise vector as the generator input
to generate samples that belong to the target category.

Inspired by CTGAN, we aim to specify a target disease and
adopt the conditional vector to generate a visit sequence that
contains the target disease. However, CTGAN is designed for
non-sequential data. For a visit sequence, the target disease may
appear in one or multiple visits. If we directly concatenate the
conditional vector with the noise vector, this input will have the
highest impact on the first visit and a decreasing impact on the
remaining visits, due to the characters of RNN-based models. As
aresult, it is highly possible that this disease only appears in the
first visit. If we concatenate the conditional vector for all Py, the
generator may output a visit sequence where each visit contains
the target disease. To avoid these extreme cases, we propose
to smooth the conditional vector into a conditional matrix ¢ €
R*T for all visits. First, we apply a location-based attention
method [45] to the generated probability to broadcast the target
disease 7 into a probability distribution (attention score) for all
visits:

vy = W,P; € R, wheret € {1,2,...,T}, @)
evt

ST e ®

v
r=1€¢7

score; =

Here, W,, € R'*?is an attention weight, and Ez;l score; = 1.
With this score, if the generator assigns a higher probability of
the target disease to the visit ¢, the GAN model can generate cor-
responding co-occurred diseases in this visit. After calculating
the score for each visit, we create a conditional matrix ¢ € 09*7
and set the entry c;; corresponding to the target disease ¢ and
visit ¢ as score;:

Ci,¢ = score;. ©)

Then, we use c to calibrate the generated probability by adding
c to P and get a calibrated probability P:

P = min(1,P @c) € R*7, (10)

Here, @ denotes an element-wise sum of two matrices. We also
clip P to make sure it is no greater than 1. In this way, the target
disease is smoothed to all 7" visits. Therefore, the conditional
matrix can increase the probability of target diseases and let the
uncommon diseases gain more exposure.

In summary, given a noise vector z and a target disease
i, the generator GG is able to generate a calibrated proba-
bility distribution P for diseases of a visit sequence: P =
(P1,Py,...,Pr) = G(z,i). We will discuss how to generate
discrete diagnoses in Section IV-D.

C. Critic

For the critic distinguishing real and fake EHR data, there is
still a specific challenge to be addressed to improve the quality
of synthetic samples:

C3: How to calculate a sequential Wasserstein distance for

real and synthetic visit sequences?

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 4, APRIL 2024

Given a visit sequence, an optimized critic should consider
two aspects to determine whether this sequence is real or not.
The first is whether each visit in a sequence is real. The second
is whether this visit sequence is able to reflect temporally-
correlated characters. These two aspects are intuitive because
a visit sequence looks real only if each independent visit looks
real. Furthermore, even if each visit looks real, the entire se-
quence may not be real. For example, we exchange two visits
from two different patients or from the same patient. Even
though each visitis real, the critic should still detect the abnormal
visit sequence if the two exchanged visits are largely different.

Based on the above analysis, we propose a sequential critique
that can simultaneously distinguish whether individual visits are
real and whether the entire sequence are real. Given an input
sequence T = (X1, Xa,...,x7) € {0,1}%*T and the temporal
features of this sequence H = (hy, hy, ..., hy) € R&>T that
correspond to each visit, the critic first concatenates the diagno-
sis vector x; and temporal feature vector h, for each visit. Then
it uses a multi-layer perceptron (MLP) to calculate a critic score
for this visit. Finally, the score r for the sequence is an average
of all visits. This process can be summarized as follows:

m; = x; || h, € R, (11)
1 T

r= TZ MLP(m;) € R. (12)
t=1

Here, || denotes the concatenation operation. In this equation,
We use the average of all visits because we hypothesize m,
contains the temporal feature of each visit and therefore is
capable of distinguishing time-series data. In this way, the critic
can simultaneously consider individual visits and the temporal
correlation of adjacent visits. Note that, the visit sequence x can
be either a real or a generated sequence.

In summary, given an input sequence x and the temporal
features H of «, the critic D computes a score for this sequence:
r = D(x,H).

D. Training Strategy

After defining the generator and the critic, there are still two
remaining problems when generating diseases and training the
critic with real/synthetic samples and temporal features:

1) How to get temporal features of real samples?

2) How to obtain discrete diagnoses from the generated prob-

ability distribution?

1) Temporal Feature Pre-Training: For the first problem,
when generating the probability distribution, we have already
got the hidden state h; for each generated visit. We conjecture
that if the generator is optimized, the distribution of hidden state
for generated visits should also be consistent with real samples.
Therefore, we design a prediction task to pre-train a base GRU
to calculate the hidden state for real samples. Given a real visit
sequence x = (x1,Xa,...,xr) € {0,1}9*T we aim to use a
GRU g’gru that has an identical structure to gen to predict the
next visit for each x; in . To do this, we first transform x
into a feature sequence (X1, Xa, . .., X7_1) € {0,1}*(T=1 and
a label sequence (y1,¥2,...,y7-1) € {0,137 where

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 07,2025 at 03:17:55 UTC from IEEE Xplore. Restrictions apply.

LU et al.: MULTI-LABEL CLINICAL TIME-SERIES GENERATION VIA CONDITIONAL GAN

Yt = X¢41. We then use the gém to calculate the hidden state
h, for x; and predict the next visit y;:

ht = géru (Xt7 htfl) € Rs, (13)

y: =0 (W'h;) € R%. (14)

Here, we also set hg = 0. To pre-train the gém, we use a binary
cross-entropy loss for a single visit prediction, and calculate the
sum of all visits as the final 108s Lpye:

d

pre = ZZ}’leg)@

t=1 i=1

]- 7yz) 1Og (1 7}’2) (15)

After getting the pre-trained gém, we freeze its param-
eters and use it to calculate the temporal features H =
(hy,hy,... hy) = gi,(x) € RT for real samples in the
critic. For the synthetic data, we let the generator G return both
the probability P and the hidden state H = (fll, hy, ..., flT) €
RYT: (P, H) = G(z,1).

2) Discrete Disease Sampling: In Section IV-B, our gen-
erator outputs a probability distribution of visit sequences.
When training the generator, it is reasonable to directly feed
the probability distribution to the critic because we aim to
let the generator increase the probability of occurred diseases
and decrease the probability of unoccurred diseases based on
gradients flowed from the critic. However, if we directly use
the probability distribution to train the critic, it will increase the
uncertainty of the generator and make the training less stable.
For example, let us say that the generator gives a probability
of 0.8 for a disease. After training the critic, it gives a lower
score for this generation. When training the generator in the
next step, it only knows 0.8 leads to a lower score but does
not know whether to increase or decrease the probability to
reach a higher score. As a consequence, we may need many
iterations to make the training of generator converge after a
lot of explorations in the input space. To stabilize the training
process, we propose to train the critic by sampling from the
generated distribution P to get a discrete diagnoses sequence
& = (X1,Xg,...,%p) ~ P € {0,1}7T, where

%, ~ Bernoulli (Pt) e {0,1}%. (16)

Here, we use ~ to denote element-wise sampling, and
Bernoulli(p) means sampling from a Bernoulli distribution with
the success probability as p. In this approach, the synthetic data
for training the critic are discrete. We also use the probability 0.8
as an example. Assume the sampled output is 1, after a generator
optimization step, it not only knows 0.8 will get a low score, but
also learns that it should decrease the probability to reach a
higher score.

There is another advantage of generating discrete diseases
by sampling. In traditional GANs for generating EHR such
as medGAN [22], medWGAN [23], Smooth-GAN [29], and
RDP-CGAN [26], after getting the disease probability from
either the generator or autoencoder, they directly round the
probability to get the discrete diseases. However, for uncommon
diseases, the probabilities of them are usually low. Rounding the
probability will further decrease the frequency of uncommon

1733

Algorithm 1: MTGAN-Training (D, géru, Neritic)-
: Real EHR dataset D
Pre-trained GRU g,

Critic training number nitic
1 d + Count the disease number in D

Input

2 repeat

3 Sample a target disease ¢ ~ UJ0, d]
Training the critic

4 for j < 1 to nepitic do

5 Sample real data © ~ py|;, noise z ~ p,

coefficient € ~ UJ0, 1]

6 H < g ()

7 P, H « G(z,1)

8 Sample discrete diseases & ~ P

9 T—ex+ (1—¢€)x

10 H«eH+(1-eH

11 Optimize the critic D using Lp

12 end
Training the generator

13 Sample noise z ~ p.

u | P H« G(z,1)
15 Optimize the generator G using Lg
16 until convergence

diseases in generated samples. Therefore, we use sampling
from the probability as another measure to generate uncommon
diseases, i.e., C3.

Finally, we use the losses L and Lp to train the generator
and critic respectively, given a target disease ¢ ~ U[0, dJ:

Lp = EgplD (& H))| - Eanp,, [D(@, H)
~ 2
+ 3B s Fop [(HA@HD (:c H) o — 1) } ,
(17)
Lg= —E.., [D(P,H). (18)

The pseudo-code for training MTGAN is summarized in
Algorithm 1. In each iteration, we first sample a target disease
i from a discrete uniform distribution U[0, d]. When training
critic at lines 3-11, we sample real data & ~ p,; that contain
this target disease in any visit, following the setting in CT-
GAN. When calculating the gradient penalty, besides letting
& = ex + (1 — €)&, we also incorporate H = ¢H + (1 — ¢)H
with the same € into the calculation. At lines 13-15, we train
the generator by feeding the synthetic probabilities into critic.
Finally, we repeat the training of the critic and the generator until
they converge.

V. EXPERIMENTAL SETUPS
A. Evaluation Metrics

_ To evaluate the statistical quality of the generated EHR dataset
D, we use the following metrics:

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 07,2025 at 03:17:55 UTC from IEEE Xplore. Restrictions apply.

1734

® Generated disease types (GT): We use the generated dis-
ease types to evaluate whether the GAN model can generate
all diseases in D. When |D| = |D|, D should contain
similar disease types as D.

® Visit/patient-level Jensen-Shannon divergence (JSDy,)):
JSD is a metric to evaluate a visit/patient-level distribution
of disease relative frequency between D and real EHR
dataset D. Here, the visit/patient-level frequency of a dis-
ease means the relative frequency of visit/patient that this
disease appears. For patient-level frequency, if a disease
appears in multiple visits of a patient, the disease frequency
is still counted as 1. A lower divergence value means better
generation quality.

® Visit/patient-level normalized distance (NDy, ;1): The
Jensen-Shannon divergence focuses on the overall distribu-
tions, especially on the difference between data points that
have high probability. As a result, the penalty should not
be given for the difference between uncommon diseases
that originally have a low probability. Therefore, to further
evaluate the distribution of uncommon diseases, we adopt
a normalized visit/patient-level distance. Given two distri-
butions p,, and p;z of the visit/patient-level disease relative
frequency in real and generated datasets, the distance is
calculated as follows:

19)

Here, C is the entire disease set in the EHR dataset, and
d is the number of diseases as mentioned before. A good
generation should also have a low normalized distance.

® Required sample number to generate all diseases (RN): We

use this metric to evaluate the ability of GANs to generate
uncommon diseases. When generating all diseases, |ﬁ|
should also contain close sample numbers to |D].

To assess whether the generated EHR dataset D is actually
meaningful as an extension of real EHR data, we use a deep
learning-based approach to train predictive models for health
events on real and synthetic training data. More specifically, we
pre-train predictive models on synthetic data, fine-tune these
models on real training data, and finally test them on real test
data of downstream tasks. It aims to quantify how much the
generated EHR data can boost the training of predictive models
on downstream tasks. Here, we apply three temporal prediction
tasks:

® Diagnosis prediction: It predicts all diagnoses of a patient

in the visit 7" 4 1 given previous 7 visits. It is a multi-label
classification.

® Heart failure/Parkinson’s disease prediction: It predicts if

a patient will be diagnosed with heart failure/Parkinson’s
disease in the visit 7'+ 1 given all the previous T visits.!
It is a binary classification. Here, heart failure is one of the
most frequent diseases in the EHR datasets we used in this
work. The Parkinson’s disease is an uncommon disease.

IThe ICD-9 codes for heart failure and Parkinson’s disease start with 428 and
332, respectively.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 4, APRIL 2024

TABLE III
STATISTICS OF MIMIC-IIT AND MIMIC-IV DATASETS

Dataset MIMIC-III MIMIC-IV
patients 7,493 10,000
visits 19,894 36,607
Max. # visit per patient 42 55
Avg. # visit per patient 2.66 3.66
diseases 4,880 6,102
Max. # diseases per visit 39 50
Avg. # diseases per visit 13.06 13.38
patients with heart failure 3,364 2,137
patients with Parkinson 109 153
x10” x10°

4 Heart failure 3

2 i}

5 52

22 2 Heart failure

@ o1

o 0 arkinson's disease o 0 Parkinson's disease

Disease

(b) MIMIC-IV

Disease

(@) MIMIC-III

Fig.3. Visit-level relative frequency distribution of diseases in the MIMIC-III
and MIMIC-1V datasets.

The evaluation metrics for diagnosis prediction are weighted
F-1 score (w-F). For heart failure/Parkinson prediction, we use
the area under the ROC curve (AUC).

B. Datasets

We use the MIMIC-III [15] and MIMIC-IV [46] datasets to
validate the generation of MTGAN. MIMIC-III contains 7,493
patients who have multiple visits, i.e., visit sequences, from 2001
to 2012. For MIMIC-1V, we randomly select 10,000 patients
with multiple visits from 2013 to 2019 to avoid overlaps with
MIMIC-III. The statistics of MIMIC-III and MIMIC-IV are
shown in Table III. We also illustrate the visit-level disease dis-
tribution of MIMIC-IIT and MIMIC-1V in Fig. 3 in descending
order, including annotations for heart failure and Parkinson’s
disease. The curves illustrate that the disease relative frequency
in both datasets is a long-tail distribution. It further verifies the
significance of improving the generation quality for uncommon
diseases.

To conduct the predictive tasks, we randomly split the two
datasets into training and test sets. The MIMIC-III contains
6,000 and 1,493 patients in training and test sets, respectively,
while MIMIC-IV contains 8,000 and 2,000, respectively. The
training sets of MIMIC-III and MIMIC-IV have 16,055 and
29,804 visits, respectively. It is worth noting that MTGAN is
trained using the training sets to ensure there is no data leakage
when testing.

C. Baseline Models

To evaluate the quality of generated EHR data, we select
various GAN models as baselines. They can be divided into
two major types: GANS for visit-level generation and GANs for
patient-level generation.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 07,2025 at 03:17:55 UTC from IEEE Xplore. Restrictions apply.

LU et al.: MULTI-LABEL CLINICAL TIME-SERIES GENERATION VIA CONDITIONAL GAN

1) GANs for Visit-Level Generation: We adopt four GANs
as baselines that generate single visits:

®* medGAN [22]: It uses the generator to output a latent
feature and applies a pre-trained auto-encoder to decode
the latent feature as the discriminator input.

® CTGAN [25]: It uses a training-by-sampling strategy to
generate imbalanced tabular data. The input of the CTGAN
generator is the concatenation of a noise vector and a
conditional vector.

e EMR-WGAN [24]: It removes the auto-encoder in medW-
GAN [23] and directly generates visits with the generator.

e RDP-CGAN [26]: It uses a convolutional auto-encoder and
discriminator under the framework of WGAN.

For these GANs generating single visits, we only calculate
GT, JSD,,, ND,,, and RN to evaluate the statistical results and
do not use them for temporal prediction tasks since they cannot
generate visit sequences.

2) GANs for Patient-Level Generation: We select three
GANS to generate visit sequences:

* WGAN-GP [32]: We implement WGAN-GP’s generator
with GRU to generate time-series data. The input of each
GRU cell is a random noise.

o TimeGAN [27]: It uses RNN to generate hidden features
and proposes unsupervised, supervised, and reconstruction
losses to train the GAN model.

® T-CGAN [28]: It applies a conditional GAN by specifying
the time step of generated visits. The input of the generator
is a concatenation of a noise vector and a time step condi-
tional vector. When generating visit sequences, we specify
the time step from 1 to 7" and combine all generated visits
chronologically into a sequence.

D. Parameter Settings

The parameter settings for baselines are listed as follows:

e medGAN: We use three fully-connected (FC) layers with
skip-connection and batch normalization as the generator.
Each layer has 128 hidden units. The discriminator has
three FC layers with 256 and 128 hidden units. The au-
toencoder contains two FC layers with 128 hidden units.

® CTGAN: It uses three FC layers without skip-connection
as the generator. The hidden units are all 128. The discrim-
inator is the same as medGAN.

o EMR-WGAN: The generator and critic of EMR-WGAN
have the same hyper-parameter settings as medGAN.

e RDP-CGAN: We use six 1-d conv layers for both encoder
and decoder with kernel sizes {3, 3, 4, 4, 4, 4} and {4, 4,
4,4, 3, 3}. We use three conv layers in the generator with
kernel sizes {3, 3, 3} and five conv layers in the critic with
kernel sizes {3, 3, 4, 4, 4}.

® WGAN-GP: It uses a GRU with 128 hidden units as the
generator. The critic has two FC layers with 128 hidden
units. We calculate the sum of the Wasserstein distance for
each visit as the final discriminator loss.

® TimeGAN: The generator, discriminator, embedder, recov-
ery, and supervisor all have a GRU with 128 hidden units.

e T-CGAN: It has the same generator and critic as CTGAN.

1735

In our experiments, we ran MTGAN multiple times and
investigated the model performance with different randomly
initialized parameters. We found that the model tends to pro-
vide results at the same level under different random initializa-
tions. Therefore, we randomly initialize all model parameters to
achieve generality. The size of the noise vector as well as GRU
hidden units s is 256. The MLP used in the critic has one hidden
layer with 64 hidden units. For base GRU pre-training, we run
200 epochs with Adam optimizer [47] and set the learning rate
to 1073, For training MTGAN, we run 3 x 10° iterations with
batch size 256. The learning rates for the generator and critic are
10~* and 10~° and decay by 0.1 every 10 iterations. The critic
training number N is 1. We use the Adam optimizer and set
B1 =0.5 and B3 = 0.9. The X for gradient penalty is 10, the
same as WGAN-GP [32]. All programs are implemented using
Python 3.8.6 and PyTorch 1.9.1 with CUDA 11.1 on a machine
with Intel 19-9900 K CPU, 64 GB memory, and Geforce RTX
2080 Ti GPU. The source code of MTGAN is released publicly
at https://github.com/LuChang-CS/MTGAN.

VI. EXPERIMENTAL RESULTS

A. Statistical Evaluation

To evaluate the statistical difference between generated EHR
data D and real data D, we utilize visit-level GANs to generate
16,055 and 29,084 visits, and utilize patient-level GANS to gen-
erate 6,000 and 10,000 patients, when training with MIMIC-III
and MIMIC-IV, respectively. The statistical evaluation results
on these datasets are shown in Table I'V.

For the generated disease types (GT), the results should be
close to real disease types. All baselines can only generate
less than 4,000 diseases, while the disease types generated by
MTGAN are close to real data. The visit/patient-level Jensen-
Shannon divergence (JSD,, JSD,) shows that MTGAN can
synthesize a good EHR dataset in terms of the overall disease
distribution, while the results of other baselines are almost on
par. However, when considering uncommon diseases, we can
conclude from the normalized distance (ND,,, ND,,) that MT-
GAN has better ability in generating diseases with low frequency
than other baselines. This conclusion is further validated by the
required sample number (RN) to generate all diseases. In this
experiment, we keep generating samples until the disease type in
the synthetic dataset D reaches the disease type in the real dataset
D. For all baselines, we stop at 107 samples given that they
cannot generate more uncommon diseases. However, MTGAN
is able to generate all diseases only using 7,952 and 11,734
samples for MIMIC-IIT and MIMIC-1V, respectively. Although
these sample numbers are larger than the real patient numbers in
MIMIC-III and MIMIC-1V, the ability to generate uncommon
diseases of MTGAN is verified.

When comparing visit-level and patient-level distance of
GANS for visit sequences, it should be noted that almost all mod-
els have lower scores for JSD,, than JSD,,. It shows that retaining
temporal correlation in visit sequences is harder than solely
learning the disease distribution in single visits. In spite of this,
we see that MTGAN has a minimal difference between JSD,, and
JSD,, than nearly all baselines. It is worth noting that although

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 07,2025 at 03:17:55 UTC from IEEE Xplore. Restrictions apply.

https://github.com/LuChang-CS/MTGAN

1736 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 4, APRIL 2024

TABLE IV
STATISTICAL EVALUATION RESULTS ON GENERATED DATA BASED ON MIMIC-III AND MIMIC-1V

Single Visit Visit Sequence

Metrics Real
medGAN CTGAN EMR-WGAN RDP-CGAN WGAN-GP TimeGAN T-CGAN MTGAN

GT 1,356 2,742 1,210 3,161 1,775 1,037 2,344 4,431 4,880
= JSD, 0.2342 0.1983 0.1762 0.1587 0.1843 0.3344 0.1604 0.1344 0
O JsD,, — — — — 0.2022 0.3518 0.1969 0.1413 0
= ND, 1.6751 1.2911 1.6213 0.9067 1.5817 1.7791 1.2943 0.6563 0
= ND,, — — — — 1.5924 1.7719 1.3312 0.6645 0

= RN > 107 > 107 > 107 > 107 > 107 > 107 > 107 7,952 6,000
Params 3.84M 2.59M 1.96M 12.07M 1.35M 3.05M 1.95M 5.84M —

GT 1,807 2,915 1,396 3,835 1,747 1,331 2,686 5,677 6,102
= JSD, 0.2130 0.2217 0.1912 0.1662 0.2135 0.4004 0.1540 0.1467 0
o JSD,, — — — — 0.2500 0.4153 0.1963 0.1649 0
= ND, 1.6709 1.4306 1.6902 0.9709 1.6911 1.7849 1.4222 0.6705 0
= ND,, — — — — 1.7015 1.7911 1.4731 0.6843 0

Z RN > 107 > 107 > 107 > 107 > 107 > 107 > 107 11,734 10,000
Params 4.78M 3.21M 2.43M 15.01M 1.67M 3.68M 2.42M 7.25M —

GT: Generated disease type; JSDv, JSDp: Visit/patient-level Jensen-Shannon divergence; NDv, NDp: Visit/patient-level normalized distance; RN: Required sample number

to generate all disease types.

T-CGAN also achieves a relative low distance, it has a large

3 Disease types Average disease number / visit

difference between visit-level and patient-level distance. We 5 2 3000]

infer that T-CGAN does not keep temporal information in visit 4+ 2000 L

sequences, because it only specifies the time step of a visit while 34 10004 } B

not considering previous visits. Therefore, we can conclude that 2 ggf I

MTGAN is able to generate visit sequences, and meanwhile h —[*ﬂ‘”‘%"‘?W 10 e

preserve temporal correlations between adjacent visits. 0 : ; 7 T : ; T T
In summary, MTGAN can generate uncommon diseases as Iterations x10° Iterations x10°

well as keep similar disease distribution to real EHR datasets.

Meanwhile, MTGAN can generate visit sequences while con- (a) MIMIC-HI

sidering temporal correlations between visits. <15t Disease types Average disease number / visit

B. Analysis of GAN Training

To analyze the stability of training different GANS for gener-
ating EHR data, we plot the disease types and average disease
number per visit during training on the MIMIC-III and MIMIC-

3000 -
2000 -
1000

307
20+
101 — e

AN\

O =~ N WO
P W T S

0 1 2 3
IV datasets in Fig. 4. From the trend of disease types in the left lterations x10°
figures of Fig. 4(a) and (b), we notice that baseline GANs relying (b) MIMIC-IV
on the Wasserstein distance (CTGAN, EMR-WGAN, WGAN-
GP, and T-CGAN) can generate over 2,000 disease types at — medGAN — EMR-WGAN — TimeGAN — T-CGAN
— CTGAN — RDP-CGAN WGAN-GP — MTGAN

the beginning of training. However, this number dramatically
drops to O after a few iterations, and slowly increases during
training. This phenomenon can also be reflected by the average
disease number per visit in the right figures. The average disease
number per visit of these GANs starts from a high value (over
1,000). Then this number decreases to 0 and increases around
the real average disease number of MIMIC-III and MIMIC-1V,
i.e., 13.06 and 13.38. We infer it is due to the instability of
baseline GANs. In the beginning of training, the generator
of baselines tend to generate zero diseases in order to get a
lower Wasserstein distance, because of the high sparsity of the
EHR data. An exception is RDP-CGAN. We infer it is because
RDP-CGAN pre-trains the auto-encoder so that it can generate
diseases in the beginning. On the contrary, GANs based on the
binary classification (medGAN, TimeGAN) do not have such a
phenomenon but they are unstable at a latter stage. Nevertheless,

Fig.4. Trend of generated disease types (left) and average disease number per
visit (right) during training on MIMIC-III and MIMIC-IV.

they converge at a lower number of disease types and have a
higher Jensen-Shannon divergence and normalized distance.

However, from Fig. 4, we can see that the generated disease
types of MTGAN stabilize at a high number and are close to the
real number of disease types in MIMIC-III (4,880) and MIMIC-
IV (6,102). Furthermore, even though MTGAN is also based on
the Wasserstein distance, the average disease number per visit
does not dramatically drop, but gradually decreases to the real
data. This makes MTGAN more stable and easier to train than
baselines, in terms of adjusting the learning rate, batch size, and
other key hyper-parameters.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 07,2025 at 03:17:55 UTC from IEEE Xplore. Restrictions apply.

LU et al.: MULTI-LABEL CLINICAL TIME-SERIES GENERATION VIA CONDITIONAL GAN

TABLE V
STATISTICAL RESULTS OF MTGAN VARIANTS ON MIMIC-III AND MIMIC-IV

Metrics M. M.- Maist Murans MTGAN
GT 4,284 4,044 3,339 3,362 4,431
= JSD, 0.4167 0.1508 0.1414 0.1791 0.1344
Q JSD,, 0.4040 0.1534 0.1521 0.1846 0.1413
S ND, 0.7637 0.8467 0.9894 1.0244 0.6563
E ND, 0.7783 0.8388 0.9959 1.0038 0.6645
RN 9,232 > 107 229,628 170,800 7,952
GT 5,622 4,548 4,588 4,330 5,677
Z JSD, 0.3327 0.1910 0.1769 0.1599 0.1467
L_") JSD,, 0.3264 0.2028 0.1935 0.1957 0.1649
S ND, 0.7711 09748 0.9460 1.0586 0.6705
E ND, 0.7961 0.9962 0.9783 1.0619 0.6843
RN 40,850 > 107 1,488,966 91,530 11,734
TABLE VI

TIME TAKEN (IN SECONDS) FOR TRAINING ONE ITERATION AND GENERATING
6,000 SAMPLES

Model WGAN-GP TimeGAN T-CGAN MTGAN
Training 0.15 041 0.19 0.23
Generating 2.36 5.87 2.57 3.02

C. Empirical Time Complexity Analysis

To further demonstrate the time required in training and
generating, we report the time in seconds (s) of the GANs
for visit sequence generation in Table VI, i.e., WGAN-GP,
TimeGAN, T-CGAN, and the proposed MTGAN. Here, the
training time refers to the time for training models in an iteration,
while generating time is the time for generating 6,000 samples.
We see that although with the conditional matrix and sampling
strategies, both the training and generating time of MTGAN
are at the same level compared with other methods, which
means that our model can achieve better performance without
increasing the time complexity.

D. Ablation Study

To study the effectiveness of the various components, we
conduct ablation studies by removing or changing parts of the
model. The variants of MTGAN are listed as follows:

® My : In the critic, we remove the hidden state in Equa-

tion (11). In addition, we let the generator only output the
probability but not the hidden state of GRU.

® M. : We remove the conditional matrix in the generator to

verify the contribution of it to uncommon disease genera-
tion. As a result, the generated synthetic data are directly
sampled from the GRU outputs.

® Miis: In (17) and (18), we uniformly sample target dis-

eases. In Mgy, we sample target diseases from the visit-
level disease distribution in real EHR dataset to study the
impact of sampling in the GAN training.

® Mans: To test the effect of GRU in the generator of

MTGAN, we replace gy with Transformer [48], since
Transformer is also effective in EHR-related tasks [49],
[50], [51]. More specifically, we use a Transformer encoder
module, including a positional encoding part and a masked
self-attention part to generate diseases from 7' noises. In

1737

the critic, we also remove the hidden state in Equation (11),
since the generator cannot output it for synthetic data.

We report the statistical results of MTGAN variants in
Table V. Comparing My and MTGAN, we notice both JSD
and ND have a large increase, but it can still generate all disease
types within a small sample number. However, after removing
the conditional matrix, M. cannot generate all disease types with
107 generated samples. We can conclude that distinguishing
hidden states in the critic is able to improve the quality of
synthetic EHR data in terms of the disease distribution, and the
conditional matrix helps to learn the distribution of uncommon
diseases.

When comparing between My;sc and MTGAN, we notice that
JSD does not have a large difference, but ND of My, increases
a lot. Additionally, Mg;s; requires more samples to generate all
disease types. We conjecture it is because uncommon diseases
have low frequencies and therefore occur less in the synthetic
data when sampling from the visit-level disease distribution.
This also leads to a high normalized distance and more samples
to generate all disease types.

The last comparison is replacing GRU in the generator with
a Transformer encoder. Although Transformer is effective and
has gained great success in natural language processing, it does
not achieve superior performance to GRU. We infer that it is
because the visit sequences in MIMIC-III and MIMIC-IV are
not sufficiently long and hence GRU can adequately capture the
temporal features of EHR data. Furthermore, we think even with
positional encoding, it is still hard to learn temporal information
given that the inputs of all time steps are noises.

In summary, we conclude that both the hidden state critique
and the conditional matrix contribute to the EHR data generation
in terms of overall disease distributions and especially uncom-
mon diseases.

E. Downstream Task Evaluation

In this experiment, we evaluate the synthetic data of GANs for
patient-level generation, i.e., WGAN-GP, TimeGAN, T-CGAN,
and MTGAN. As mentioned in Section V-A, we select three
temporal prediction tasks as the downstream tasks: Diagnosis
prediction, heart failure prediction, and Parkinson’s disease pre-
diction. Here, we choose two predictive models as baselines of
downstream tasks:

e Dipole [52]: It is a bi-directional RNN with attention

methods to predict diagnoses.

® GRAM [5]: It is an RNN-based model using disease do-

main knowledge to predict diagnoses and heart failure.

We first train Dipole and GRAM only using the training
data of MIMIC-III and MIMIC-IV as baselines (w/o synthetic).
Then, we generate synthetic EHR that are trained with WGAN-
GP, TimeGAN, T-CGAN, and MTGAN, respectively. Here,
the synthetic data have equal sample numbers to real training
data. Next, we pre-train a new Dipole and GRAM using these
synthetic data, fine-tune them using real training data, and finally
test them on real test data. The experimental results including
baseline results, pre-training and fine-tuning results, and their
increments are shown in Table VII. In this table, the synthetic

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 07,2025 at 03:17:55 UTC from IEEE Xplore. Restrictions apply.

1738

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 4, APRIL 2024

TABLE VII

DOWNSTREAM TASK EVALUATION BY PRE-TRAINING DIPOLE AND GRAM ON SYNTHETIC DATA, FINE-TUNING ON REAL TRAINING DATA

M Dipole GRAM
odels

Diagnosis Heart Failure Parkinson Diagnosis Heart Failure Parkinson
= w/o synthetic 19.35 82.08 68.80 21.52 83.55 73.81
5 w/ WGAN-GP 20.02 (+3.46%) 82.67 (+0.72%) 69.11 (+0.45%) 22.48 (+4.46%) 84.06 (+0.61%) 74.29 (+0.65%)
= w/ TimeGAN 19.60 (+1.29%) 82.69 (+0.74%) 68.57 (-0.33%) 22.06 (+2.51%) 83.84 (+0.35%) 73.85 (+0.05%)
E w/ T-CGAN 20.38 (+5.32%) 83.38 (+1.58%) 69.33 (+0.77%) 22.30 (+3.62%) 84.22 (+0.80%) 74.40 (+0.80%)
p w/ MTGAN 20.48 (+5.84%) 83.41 (+1.62%) 70.45 (+2.40%) 22.57 (+4.88%) 84.19 (+0.77%) 75.06 (+1.69%)
~ w/o synthetic 23.69 88.69 72.59 23.50 89.61 78.51
5 w/ WGAN-GP 24.17 (+2.03%) 88.78 (+0.10%) 72.81 (+0.30%) 23.68 (+0.77%) 89.81 (+0.22%) 78.81 (+0.38%)
= w/ TimeGAN 23.62 (-0.30%) 88.63 (-0.07%) 72.55 (-0.06%) 23.61 (+0.47%) 89.68 (+0.08%) 78.56 (+0.06%)
E w/ T-CGAN 24.60 (+3.84%) 89.04 (+0.39%) 72.76 (+0.23%) 23.75 (+1.06%) 89.94 (+0.37%) 78.90 (+0.50%)
= w/ MTGAN 24.74 (+4.43%) 89.11 (+0.47%) 73.16 (+0.79%) 24.09 (+2.51%) 90.05 (+0.49%) 79.35 (+1.07%)

The results are reported on real test data. Note that “w/o synthetic” indicates that the model is trained using only real training data. We use w-F1 (%) for Diagnosis
prediction, AUC (%) for Heart failure and Parkinson’s disease prediction. The synthetic data have equal sample numbers as real training data.

Diagnosis Heart Failure Parkinson
;\;20.5 ;\?34_0 ;\? 70.0
T 20.0 6]]
w 83.0
< 2 2 69.0
19.5
- - - - - 82.0% - - - - - - - - -
0 05 1 15 2 0 05 1 15 2 0 05 1 15 2
Ratio Ratio Ratio
(a) Dipole on MIMIC-III
Diagnosis Heart Failure Parkinson
25.0 89.2
SP £80.0 £730
T (8} (8}
£240 2888 2
725
0 05 1 15 2 0 05 1 15 2 0 05 1 15 2
Ratio Ratio Ratio
(c) Dipole on MIMIC-1V
—— WGAN-GP —— TimeGAN
Fig. 5.

data can enhance the predictive models on almost all tasks,
among which MTGAN has the largest improvement on the di-
agnosis prediction. We infer that the synthetic EHR data provide
more samples especially samples with uncommon diseases, so
that the predictive models can provide a better prediction for
them. Additionally, compared to other GANs, MTGAN has the
most predominant results on the Parkinson’s disease prediction.
It further proves that MTGAN can learn a better distribution
for uncommon diseases and boost downstream tasks especially
related to these uncommon diseases.

In Table VII, we pre-train Dipole and GRAM on the syn-
thetic data that have the same number of samples as that of
the real training data. In addition, we conduct more experi-
ments by adopting different sample numbers of synthetic data
in pre-training. Here, we set the ratios of synthetic data over
real training data as {0.5,1,1.5,2} to explore the impact of
the synthetic data amount during pre-training on downstream
tasks. The results are illustrated in Fig. 5. Each predictive model
is tested on three tasks with every dataset. In general, with
the growth of pre-training data, we notice that the w-F3 and
AUC of prediction also show an increasing trend. It shows that

Diagnosis Heart Failure Parkinson
9 225 ;\? 84.2 ;\; 75.0
= o 84.0 o
¥ 220 S S
s < 838 < 74.0
21.51% - - - » . .
0 05 1 15 2 0 05 1 15 2 0 05 1 15 2
Ratio Ratio Ratio
(b) GRAM on MIMIC-III
Diagnosis Heart Failure Parkinson
= ~90.0 —
®24.0 ® 2790
i S 898 S
3 < < 785
23.5 '
0 05 1 15 2 0 05 1 15 2 0 05 1 15 2
Ratio Ratio Ratio
(d) GRAM on MIMIC-IV
—=— T-CGAN —— MTGAN

Downstream task evaluation by training Dipole and GRAM with different ratios of synthetic data over real training data.

these GAN models can learn effective disease distributions in
EHR data to some extent. It is still worth noting that MTGAN
can generate synthetic EHR data that are more beneficial to
downstream tasks than other GANs, especially the Parkinson’s
disease prediction. Therefore, we may conclude that MTGAN
can generate EHR data that have more accurate disease distri-
bution and more advantages in boosting downstream tasks.

VII. CONCLUSION

GAN-based models are commonly adopted to generate high-
quality EHR data. To tackle the challenges of generating EHR
with GAN, we proposed MTGAN to generate time-series visit
records with uncommon diseases. MTGAN can preserve tempo-
ral information as well as increase the generation quality of un-
common diseases in generated EHR by developing a temporally
correlated generation process with a smooth conditional matrix.
Our experimental results showed that the synthetic EHR data
generated by MTGAN not only have better statistical properties,
but also achieve better results than the state-of-the-art GAN
models with regards to the performance of predictive models
on multiple tasks, especially for predicting uncommon diseases.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 07,2025 at 03:17:55 UTC from IEEE Xplore. Restrictions apply.

LU et al.: MULTI-LABEL CLINICAL TIME-SERIES GENERATION VIA CONDITIONAL GAN

In this work, we mainly focused on GAN models to gen-
erate diseases, i.e., multi-label generation. Therefore, one of
the shortcomings of MTGAN is that it does not consider other
feature types in EHR, such as procedures, medications, or lab
tests. In the future, we plan to explore effective methods to
generate real values including lab tests and vital signs of patients.
Furthermore, we will utilize the GAN method to deal with
missing values in the EHR data.

ACKNOWLEDGMENTS

Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

[1]

[2]

[3]

[4]

[5]

[6]

[9]

[10]

(1]

[12]

(13]

[14]

[15]

[16]

[17]

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 07,2025 at 03:17:55 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

J. Zhang, K. Kowsari, J. H. Harrison, J. M. Lobo, and L. E. Barnes,
“Patient2Vec: A personalized interpretable deep representation of the
longitudinal electronic health record,” IEEE Access, vol. 6, pp. 65 333-65
346, 2018.

C. Lu, C. K. Reddy, P. Chakraborty, S. Kleinberg, and Y. Ning, “Collab-
orative graph learning with auxiliary text for temporal event prediction in
healthcare,” in Proc. 13th Int. Joint Conf. Artif. Intell., 2021, pp. 3529—
3535.

H. Xu, W. Wu, S. Nemati, and H. Zha, “Patient flow prediction via
discriminative learning of mutually-correcting processes,” IEEE Trans.
Knowl. Data Eng., vol. 29, no. 1, pp. 157-171, Jan. 2017.

S. Darabi, M. Kachuee, S. Fazeli, and M. Sarrafzadeh, “TAPER: Time-
aware patient EHR representation,” /EEE J. Biomed. Health Inform.,
vol. 24, no. 11, pp. 3268-3275, Nov. 2020.

E. Choi, M. T. Bahadori, L. Song, W. F. Stewart, and J. Sun, “GRAM:
Graph-based attention model for healthcare representation learning,” in
Proc. 23rd ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2017,
pp. 787-795.

C. Lu, C. K. Reddy, and Y. Ning, “Self-supervised graph learning with
hyperbolic embedding for temporal health event prediction,” IEEE Trans.
Cybern., vol. 53, no. 4, pp. 2124-2136, Apr. 2023.

C. Lu, T. Han, and Y. Ning, “Context-aware health event prediction via
transition functions on dynamic disease graphs,” in Proc. AAAI Conf. Artif.
Intell., 2022, pp. 4567-4574.

Y. An et al., “Prediction of treatment medicines with dual adaptive
sequential networks,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 11,
pp. 5496-5509, Nov. 2022.

J. Huang, C. Osorio, and L. W. Sy, “An empirical evaluation of deep
learning for ICD-9 code assignment using MIMIC-III clinical notes,”
Comput. Methods Prog. Biomed., vol. 177, pp. 141-153, 2019.

M. Kamran and M. Farooq, “An information-preserving watermarking
scheme for right protection of EMR systems,” IEEE Trans. Knowl. Data
Eng., vol. 24, no. 11, pp. 1950-1962, Nov. 2012.

C. Ma, L. Yuan, L. Han, M. Ding, R. Bhaskar, and J. Li, “Data level pri-
vacy preserving: A stochastic perturbation approach based on differential
privacy,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 4, pp. 3619-3631,
Apr. 2023.

T. Bai, A. K. Chanda, B. L. Egleston, and S. Vucetic, “EHR phenotyping
via jointly embedding medical concepts and words into a unified vector
space,” BMC Med. Inform. Decis. Mak., vol. 18, no. 4, pp. 15-25, 2018.
H. Song, D. Rajan, J. J. Thiagarajan, and A. Spanias, “Attend and diagnose:
Clinical time series analysis using attention models,” in Proc. 32nd AAAI
Conf. on Artif. Intell., 2018, pp. 4091-4098.

K. Yin, W. Cheung, B. C. Fung, and J. Poon, “Learning inter-modal corre-
spondence and phenotypes from multi-modal electronic health records,”
IEEE Trans. Knowl. Data Eng., vol. 34, no. 9, pp. 4328-4341, Sep. 2022.
A.E.Johnsonetal., “MIMIC-III, a freely accessible critical care database,”
Sci. Data, vol. 3, no. 1, pp. 1-9, 2016.

T. J. Pollard, A. E. Johnson, J. D. Raffa, L. A. Celi, R. G. Mark, and
0. Badawi, “The eICU collaborative research database, a freely available
multi-center database for critical care research,” Sci. Data, vol. 5, no. 1,
pp. 1-13, 2018.

1. Goodfellow et al., “Generative adversarial nets,” in Proc. Adv. Neural
Inf. Process. Syst., 2014, pp. 2672-2680.

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

(36]

(371

[38]

[39]

[40]

[41]

[42]

1739

D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
2013, arXiv:1312.6114.

D. Lee et al., “Generating sequential electronic health records using dual
adversarial autoencoder,” J. Amer. Med. Inform. Assoc., vol. 27, no. 9,
pp. 1411-1419, 2020.

S. Sun et al., “Generating longitudinal synthetic EHR data with recurrent
autoencoders and generative adversarial networks,” in Proc. Heteroge-
neous Data Manage., Polystores Analytics Healthcare VLDB Workshops,
Springer, 2021, pp. 153-165.

J. Gui, Z. Sun, Y. Wen, D. Tao, and J. Ye, “A review on generative
adversarial networks: Algorithms, theory, and applications,” IEEE Trans.
Knowl. Data Eng., vol. 35, no. 4, pp. 3313-3332, Apr. 2023.

E. Choi, S. Biswal, B. Malin, J. Duke, W. F. Stewart, and J. Sun,
“Generating multi-label discrete patient records using generative adver-
sarial networks,” in Proc. Mach. Learn. Healthcare Conf., PMLR, 2017,
pp- 286-305.

M. K. Baowaly, C.-C. Lin, C.-L. Liu, and K.-T. Chen, “Synthesizing
electronic health records using improved generative adversarial networks,”
J. Amer. Med. Inform. Assoc., vol. 26, no. 3, pp. 228-241, 2019.

Z. Zhang, C. Yan, D. A. Mesa, J. Sun, and B. A. Malin, “Ensuring
electronic medical record simulation through better training, modeling,
and evaluation,” J. Amer. Med. Inform. Assoc., vol. 27, no. 1, pp. 99-108,
2020.

L. Xu, M. Skoularidou, A. Cuesta-Infante, and K. Veeramachaneni, “Mod-
eling tabular data using conditional GAN,” in Proc. Adv. Neural Inf.
Process. Syst., 2019, pp. 7335-7345.

A. Torfi, E. A. Fox, and C. K. Reddy, “Differentially private synthetic
medical data generation using convolutional GANSs,” Inf. Sci., vol. 586,
pp. 485-500, 2022.

J. Yoon, D. Jarrett, and M. Van der Schaar, “Time-series generative
adversarial networks,” in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 5508-5518.

G. Ramponi, P. Protopapas, M. Brambilla, and R. Janssen, “T-CGAN:
Conditional generative adversarial network for data augmentation in noisy
time series with irregular sampling,” 2018, arXiv: 1811.08295.

S. Rashidian et al., “Smooth-GAN: Towards sharp and smooth synthetic
EHR data generation,” in Proc. Int. Conf. Artif. Intell. Med., Springer,
2020, pp. 37-48.

L. Yu, W. Zhang, J. Wang, and Y. Yu, “SeqGAN: Sequence generative
adversarial nets with policy gradient,” in Proc. AAAI Conf. Artif. Intell.,
2017, pp. 2852-2858.

M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative ad-
versarial networks,” in Proc. Int. Conf. Mach. Learn., PMLR, 2017,
pp. 214-223.

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,
“Improved training of Wasserstein GANSs,” in Proc. Adv. Neural Inf.
Process. Syst., 2017, pp. 5769-5779.

H. Wang et al., “Learning graph representation with generative adversarial
nets,” IEEE Trans. Knowl. Data Eng., vol. 33, no. 8, pp. 3090-3103,
Aug. 2021.

C. Esteban, S. L. Hyland, and G. Ritsch, “Real-valued (medical)
time series generation with recurrent conditional GANs,” 2017, arXiv:
1706.02633.

B. Du, X. Sun, J. Ye, K. Cheng, J. Wang, and L. Sun, “GAN-based
anomaly detection for multivariate time series using polluted training
set,” IEEE Trans. Knowl. Data Eng., early access, Nov. 17, 2021,
doi: 10.1109/TKDE.2021.3128667.

S. Liu et al., “Time series anomaly detection with adversarial recon-
struction networks,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 4,
pp. 4293-4306, Apr. 2023.

A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey, “Adversarial
autoencoders,” 2015, arXiv:1511.05644.

S. Gong, M. Li, J. Feng, Z. Wu, and L. Kong, “DiffuSeq: Sequence to
sequence text generation with diffusion models,” in Proc. Int. Conf. Learn.
Representations, 2023, pp. 1-20.

J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,”
in Proc. Adv. Neural Inf. Process. Syst., 2020, pp. 6840-6851.

T. Moon, M. Choi, G. Lee, J.-W. Ha, and J. Lee, “Fine-tuning diffusion
models with limited data,” in Proc. Workshop Score-Based Methods, 2022,
pp. 1-14.

Z. Che, Y. Cheng, S. Zhai, Z. Sun, and Y. Liu, “Boosting deep learning
risk prediction with generative adversarial networks for electronic health
records,” in Proc. IEEE Int. Conf. Data Mining, 2017, pp. 787-792.
CDC, “ICD-9-CM - International classification of diseases, ninth revision,
clinical modification,” Nov. 2015, Accessed: May 10, 2020. [Online].
Available: https://www.cdc.gov/nchs/icd/icd9cm.htm

https://dx.doi.org/10.1109/TKDE.2021.3128667
https://www.cdc.gov/nchs/icd/icd9cm.htm

1740

[43] CDC, “ICD-10 - International classification of diseases, tenth revision,”
Feb. 2020, Accessed: May 10, 2020. [Online]. Available: https://www.cdc.
gov/nchs/icd/icd10cm.htm

[44] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” in Proc. Workshop
Deep Learn., 2014, pp. 1-9.

[45] M.-T. Luong, H. Pham, and C. D. Manning, “Effective approaches to
attention-based neural machine translation,” in Proc. Conf. Empirical
Methods Natural Lang. Process., 2015, pp. 1412-1421.

[46] A.Johnson, L. Bulgarelli, T. Pollard, S. Horng, L. A. Celi, and R. Mark,
“MIMIC-1V,” 2021. [Online]. Available: https://physionet.org/content/
mimiciv/1.0/

[47] D.P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. 3rd Int. Conf. Learn. Representations, Y. Bengio and Y. LeCun,
Eds., San Diego, CA, USA, May 7-9, 2015, pp. 1-15.

[48] A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural Inf.

Process. Syst., 2017, pp. 6000-6010.

Y. Meng, W. Speier, M. K. Ong, and C. W. Arnold, “Bidirectional repre-

sentation learning from transformers using multimodal electronic health

record data to predict depression,” IEEE J. Biomed. Health Inform., vol. 25,

no. 8, pp. 3121-3129, Aug. 2021.

A. Amin-Nejad, J. Ive, and S. Velupillai, “Exploring transformer text

generation for medical dataset augmentation,” in Proc. 12th Lang. Resour.

Eval. Conf., 2020, pp. 4699-4708.

[51] Y.Lietal., “BEHRT: Transformer for electronic health records,” Sci. Rep.,
vol. 10, no. 1, pp. 1-12, 2020.

[52] F. Ma, R. Chitta, J. Zhou, Q. You, T. Sun, and J. Gao, “Dipole: Diagnosis
prediction in healthcare via attention-based bidirectional recurrent neural
networks,” in Proc. 23rd ACM SIGKDD Int. Conf. Knowl. Discov. Data
Mining, 2017, pp. 1903-1911.

[49]

[50]

Chang Lu (Member, IEEE) received the BS and MS
degrees from the School of Computer Science, Fudan
University, in 2016 and 2019, respectively. He is
working towards the PhD degree with the Department
of Computer Science at Stevens Institute of Technol-
ogy, advised by Dr. Yue Ning. His research interests
include Big Data, deep learning, and interpretable
predictive models in healthcare domain.

Chandan K. Reddy (Senior Member, IEEE) received
the MS degree from Michigan State University and
the PhD degree from Cornell University. He is a
professor with the Department of Computer Science
at Virginia Tech. His primary research interests are
machine learning and natural language processing
with applications to various real-world domains in-
cluding healthcare, software, transportation, and E-
commerce. He has published more than 175 peer-
reviewed articles in leading conferences and journals.
He received several awards for his research work
including the Best Application Paper Award at ACM SIGKDD conference in
2010, Best Poster Award at IEEE VAST conference in 2014, Best Student Paper
Award at IEEE ICDM conference in 2016, and was a finalist of the INFORMS
Franz Edelman Award Competition in 2011. He is serving on the editorial boards
of ACM Transactions on Knowledge Discovery from Data, IEEE Big Data,
and ACM Transactions on Intelligent Systems and Technology journals. He is a
distinguished member of ACM.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 4, APRIL 2024

Ping Wang (Member, IEEE) received the PhD degree
in computer science from Virginia Tech, in 2021.
She is an assistant professor with the Department of
Computer Science, Stevens Institute of Technology.
Her research interests are in the broad area of data
mining and machine learning with particular focus
on healthcare analytics, including clinical question
answering, information extraction, graph mining, and
survival analysis. She has published peer-reviewed
papers in leading conferences and high impact jour-
nals, including WWW, CIKM, AAAI, ACM Trans-
actions on Knowledge Discovery from Data, IEEE Transactions on Knowledge
and Data Engineering, and ACM Computing Surveys. She won the “Research
PhD Student of the Year” award from the Department of Computer Science,
Virginia Tech in 2021. She has served as a reviewer for various journals and on
the program committees in the areas of machine learning, NLP, and healthcare.

Dong Nie received the BEng degree in computer sci-
ence from Northeastern University, Shenyang, China,
the MSc degree in computer science from the Uni-
versity of Chinese Academy of Sciences, Beijing,
China, and the PhD degree in computer science from
the University of North Carolina at Chapel Hill. His
research interests include computer vision, medical
image analysis, and natural language processing.

Yue Ning (Member, IEEE) received the PhD degree
in computer science from Virginia Tech. She is an
assistant professor with the Department of Computer
Science, Stevens Institute of Technology, where she is
also affiliated with the Stevens Institute for Artificial
Intelligence (SIAI). Her research interests are in the
general areas of machine learning, data analytics,
and social media analysis. Specifically, she is fo-
cused on developing predictive methods to capture
spatiotemporal, dynamic, and interpretable patterns
in large-scale data with applications in computational
social science and health informatics. Her research is supported by Stevens
Institute of Technology, Nvidia, and the National Science Foundation.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 07,2025 at 03:17:55 UTC from IEEE Xplore. Restrictions apply.

https://www.cdc.gov/nchs/icd/icd10cm.htm
https://www.cdc.gov/nchs/icd/icd10cm.htm
https://physionet.org/content/mimiciv/1.0/
https://physionet.org/content/mimiciv/1.0/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

