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Pre-Processing Censored Survival Data Using

Inverse Covariance Matrix Based Calibration
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Abstract—Censoring is a common phenomenon that arises in many longitudinal studies where an event of interest could not be
recorded within the given time frame. Censoring causes missing time-to-event labels, and this effect is compounded when dealing with
datasets which have high amounts of censored instances. In addition, dependent censoring in the data, where censoring is dependent
on the covariates in the data leads to bias in standard survival estimators. This motivates us to develop an approach for pre-processing
censored data which calibrates the right censored (RC) times in an attempt to reduce the bias in the survival estimators. This calibration
is done using an imputation method which estimates the sparse inverse covariance matrix over the dataset in an iterative convergence
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framework. During estimation, we apply row and column-based regularization to account for both row and column-wise correlations
between different instances while imputing them. This is followed by comparing these imputed censored times with the original RC
times to obtain the final calibrated RC times. These calibrated RC times can now be used in the survival dataset in place of the original
RC times for more effective prediction. One of the major benefits of our calibration approach is that it is a pre-processing method for
censored data which can be used in conjunction with any survival prediction algorithm and improve its performance. We evaluate the
goodness of our approach using a wide array of survival prediction algorithms which are applied over crowdfunding data, electronic
health records (EHRs), and synthetic censored datasets. Experimental results indicate that our calibration method improves the AUC
values of survival prediction algorithms, compared to applying them directly on the original survival data.

Index Terms—Survival analysis, pre-processing, right censoring, imputation, healthcare, crowdfunding

1 INTRODUCTION

ENSORING is a common phenomenon that appears in

many real-world application domains such as health-
care, engineering, social sciences, etc. In longitudinal stud-
ies, observations are called censored when the information
about their event time is incomplete. For example, let us
consider a healthcare application where a set of patients are
being monitored over a period of time for a the occurrence
of a particular event of interest (such as risk for readmission
or death). A patient who does not experience the event of
interest within the duration of the study is said to be right
censored [1]. The survival time of such a patient is consid-
ered to be atleast as long as the duration of the study.
Another important example of right censoring is when a
subject drops out of the study before the end of the study
and did not experience the event until that time. These char-
acteristics make censoring an important issue in survival
analysis representing a particular type of missing data. This
problem is also called the missing time-to-events problem
and has a significant practical value [2], [3], [4].
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In traditional survival analysis, the model is built on such
data by labeling the censored instances with a value such as
the duration of the study or last known follow up time [5], [6],
[7]. This phenomenon is called right censoring and is
observed in several real-world datasets. This can become a
significant problem, especially when the data has many right
censored instances (> 40% of overall number of instances). To
overcome this problem, we propose to solve it by developing
an approach called calibrated survival analysis which can
learn an appropriate probable time-to-event label value for
the right censored instances. We now explain our motivation
for developing this framework for calibrating time-to-event
values for censored instances by explaining the inherent prob-
lem associated with censored data, and we also explain the
two-dimensional correlation-based structure in censored data
using an example from the crowdfunding domain.

1.1 Motivation
Censoring in data can be divided into two kinds of methods,
namely, independent and dependent censoring. Independent
censoring is a phenomenon where the covariates and censor-
ing are assumed to be independent [6], [8]. Only under this
assumption alone, traditional estimators such as Kaplan-
Meier (KM) remain unbiased yielding true estimates. How-
ever, most datasets violate independent censoring and exhibit
a phenomenon called dependent censoring where the covari-
ates in the data and censoring are correlated with each other.
In this scenario, the KM estimator is biased which affects the
performance of several existing survival analysis methods.

To address this issue, in this paper, we present an
approach called calibrated survival analysis which employs
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a novel form of censoring called imputed censoring. The
goal of imputed censoring is to reduce the bias in standard
survival estimators, and this is accomplished by using a reg-
ularized inverse covariance-based imputation algorithm.
We use covariance-based imputation methods as they are
well equipped to capture correlations between censored
instances while performing imputation which other meth-
ods such as matrix factorization do not capture.

The correlation structure in censored data exhibits a unique
phenomenon which can be explained by considering a typical
crowdfunding scenario. In this scenario, we define an event of
interest as the time taken by a project to reach its pre-defined
goal amount and succeed. Considering two projects which
got censored, one can notice that to impute the time-to-event
labels for these instances two factors need to be considered
which are (i) time taken by instances similar to both of them to
reach the goal amount (row-wise correlation) (ii) importance
of similar features for both censored instances in determining
the time-to-event (column-wise correlation). To account for
both these phenomena, we use a row and column based regu-
larization approach within an inverse covariance estimation
procedure to appropriately estimate the time-to-event label.
Our proposed calibrated survival analysis approach imputes
the time-to-event labels for censored instances using a regular-
ized inverse covariance matrix approach. In this paper, we
present both the column-based (REC) and the row, column
based (TREC) algorithms in Section 3.

Another important motivation for proposing a calibrated
survival analysis framework for such real-world censored
datasets can be obtained from the theory of representation
learning [9]. Representation learning attempts to learn a novel
representation of the data which captures the inherent struc-
ture, so that any predictive algorithm can perform better on
the learned new representation. In calibrated survival analy-
sis, through imputed censoring, we are effectively learning a
new represenation of the original survival data by solving the
bias problem explained earlier. We also state that imputed
censoring preserves the original censored nature of the prob-
lem, and does not output a predictive model directly. Hence,
our proposed approach can be used in conjunction with other
existing predictive survival analysis methods. In other words,
our method can be treated as an important pre-processing
step that incorporates correlation structures and accordingly
imputes the censored values.

1.2 Our Contributions
The major contributions of this paper are as follows:

e Propose a calibrated survival analysis framework
which uses a novel imputed censoring approach to
model the time-to-event variable. This imputed cen-
soring approach uses a row and column regulariza-
tion based inverse covariance estimation algorithm
to impute the censored instances. The goal of this
approach is to impute the labels for the censored
instances by estimating their probable time-to-event
labels in order to build a more effective representa-
tion of the survival data which an algorithm can
leverage upon.

e Study the formulation of our row and column based
regularized inverse covariance method which is
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used in imputed censoring exhaustively. We discuss
the properties of this algorithm using the L; and Lo
regularizers, but the framework can work with any
regularizer with a defined L, norm where (p > 1).

e Evaluate the effectiveness of our calibration method
by comparing the survival AUC (concordance
index) [10] values obtained using standard survival
regression algorithms on the data with and without
our time-to-event calibration. We also conduct
experiments to assess the convergence and the
impact of regularizers and regularization parameters
on the performance of our algorithm.

This paper is organized as follows, In Section 2, we present
the related work on the topic of using censoring with machine
learning methods. In particular, we explain the advancements
in the field of Cox regression and also discuss other
approaches which integrate censoring with Bayesian meth-
ods. In Section 3, we introduce important notations and defi-
nitions. In Section 4, we explain the formulation of the
proposed algorithms which integrate censoring with regular-
ized inverse covariance models. In Section 5, we present the
experimental results obtained using our methods and present
the tables comparing the results before and after applying cal-
ibration and we also present runtime and convergence results.
Finally, in Section 6, we present the conclusions derived at the
end of our study and discuss the practical implications of the
proposed work.

2 RELATED WORK

In this section, we present the related work in the area of
using machine learning methods for survival analysis, and
also describe imputation methods for censored data. In the
survival analysis domain, Cox regression has garnered sig-
nificant interest from researchers in the biostatistics and
machine learning communities [2], [11].

o  Cox regression and its extensions: Cox regression is a
semi-parametric method which uses a proportional-
ity hazards (PH) assumption. It is widely used
because of its effective performance and ease of
availability. Some of the major extensions to Cox
regression include using the lasso, elastic net and
kernel elastic net regularizers [12], [13]. Graph regu-
larization has also been used with Cox regression,
where the graph laplacian is used as a penalty [14].
Finally, structured regularizers have also been used
with Cox regression to integrate group based infor-
mation into the optimization problem [13]. Other
extensions include integrating active learning with
Cox regression which can help an expert build an
interactive Cox regression framework [15].

e  Bayesian methods for censored data: Censored Naive
Bayes (CensNB) is an approach which applies the
standard Naive Bayes algorithm for censored
data [16]. In this algorithm, the conditional survivor
function is learned by initializing the functions using
non-parametric densities, which are then subse-
quently smoothed using a weighted loess smoother.
These models use an approach called inverse proba-
bility of censoring weighting (IPCW) for each of the
records in the dataset. Bayesian Networks-based
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TABLE 1
Notations Used in This Paper

Description

n number of instances

4 number of columns

X P data matrix

) censored indicator variable
3 n X n Row covariance matrix
A

p X p column covariance matrix
“th

v; mean of """ row

I mean of 5 column
qr row regularizer

Py row penalty

e column regularizer
Pe column penalty

methods have also been used to enhance the perfor-
mance of survival trees [17], [18]. The imputation on
missing instances is done using the bayesian net-
work computed on complete instances and the
model has shown to perform well in clinical trials.

e  Estimation of missing time-to-events: Multiple imputa-
tion for censored data is a method where the failure
times are imputed using an asymptotic data augmen-
tation scheme based on the current estimates and the
baseline survival curve [19]. Once this is done a stan-
dard procedure such as Cox regression is applied to
the imputed data to update the estimates. A similar
problem has been dealt within the crowdsourcing
domain which predicts the time-to-event directly
using the survival function [20]. Misglasso is an exten-
sion to the approach for imputing missing values by
using the graphical lasso algorithm [23], [24]. Other
popular approaches include the Softimpute algorithm
which uses a nuclear norm minimization subject to
constraints to fill the missing entries [25]. Risk stra-
tified imputation in survival analysis is another
approach which performs stratified imputation of
missing time-to-events based on groups of patients
who are similar to each other. The stratification is
done to ensure that not too many samples are
imputed, and the imputation is done among censored
instances which are similar to each other. An auxiliary
variable approach to multiple imputation in survival
analysis is proposed in this paper with the goal to
improve efficiency using Monte Carlo methods [26].
Finally, Elastic net Buckley James (EN-BJ) [27] is a
method which directly models the response for events
using the least squares method, and for the censored
instances the response variable is imputed using the
conditional expectation values given the correspond-
ing censoring times and covariates. This algorithm
uses the elastic-net regularization term with this AFT
model and was applied on high-dimensional genomic
data obtaining good performance.

Our approach is different from the methods mentioned
above as we aim at calibrating the time-to-event value and
build a more effective representation of the survival data.
Our approach is unique as it does not build a learner, and it
can be used as a pre-processing step along with any base
survival prediction algorithm to enhance its performance.
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3 PRELIMINARIES

In this section, we explain an overview of our proposed
method for converting a censored dataset into a calibrated
censored dataset. We begin by presenting the table of nota-
tions used in this paper in Table 1.

In this section, we present an overview of our pre-process-
ing calibration method which can convert any given dataset
with right censoring into a calibrated right censored dataset.
In this approach, we build a framework that uses both single
and composite regularization by imposing regularizers and
user provided penalty parameters on both the rows (single)
and rows, columns (composite) of the feature matrix.

Before presenting the algorithmic details, we review the
notations used throughout the paper. In this paper, we will
often refer to right censoring as censoring and vice versa. 1,
represents a unit vector of n entries. We use i to denote the
row index and j to denote the column index.

X here represents the concatenated matrix of the features
and time-to-event label values. We assume that X originally
is not centered w.r.t. row and column means. The last col-
umn of X corresponds to the time attribute (7'). The remain-
ing features correspond to the survival covariates. The time-
to-event labels for those instances which are right censored
originally are represented using 7)., The labels finally
learned after using our approach are referred to as 7¢q;,. We
will also use the abbreviation (RC) for right censored instan-
ces frequently through the remainder of this section.

The observed and missing parts of row ¢ are o; and m;,
respectively, and o; and m; are the analogous parts of col-
umn index j. Let m and o denote the complete set of missing
and observed elements, respectively. X;, denotes the
observed components of an uncensored observation ¢ and
Xi,m; denote the missing components of a censored instance.
This is defined this way inorder to include the notion of
both missing feature values and the missing time-to-event
label information for the censored instance. However, this is
simplified later on when we confine the missingness to the
last column of the matrix alone which corresponds to the
time attribute. For each instance in X, we partition the mean
and covariance to correspond to the observed parts of
instance i and denote them by 1, and A, ,,, respectively.

We now look at the probability distribution used for esti-
mating time-to-event labels in this paper. This distribution
is called a mean-restricted matrix variate normal distribu-
tion [28] which has certain desirable properties such as non-
negativity and dual covariance parameters which are
needed for modeling censored event times. We provide the
formulation of the probability distribution below

p(v, 1, 3,4) = (2m) S PR|A T

1 T TyA-1
X €t7“< — §(X — Ul(p) — 1(n),u )A (1)

(X — vl — 1(,L>MT)T2*1>.

In Eq. (1), etr(-) represents the exponential of the trace
term here. It can be clearly seen here that the row and col-
umn means are subtracted from X to center the
concatenated feature time matrix. This distribution implies
that the time-to-event labels are modeled with a mean v; +
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Fig. 1. Flow diagram of our approach.

w; along with variance 2;iAj;. Due to this formulation, the
estimated time-to-event labels are non-negative which can-
not be guaranteed with the simple normal distribution. This
makes the mean-restricted matrix variate normal distribu-
tion ideally suited for modeling probable non-negative
event times for censored instances.

This modeling can also be viewed as a random effects
model where the estimated time-to-event label value can be
expressed as v; + u; + €;; where €;; ~ N(0,2;4;;) which has
two additive fixed effects depending on the row and column
means and a random effect whose variance depends on the
product of the corresponding row and column covariances.

The goal of this method is to impute the time-to-event for
RC events, and in this process, calibrating it to a more opti-
mal value. This is called the calibration step of our method
where we impute the time-to-event labels for the right cen-
sored instances. We emphasize that the imputed censoring
employed here preserves the censoring in this dataset.

4 PRE-PROCESSING USING INVERSE COVARIANCE
MATRIX BASED CALIBRATION

In this section, we present the flow diagram of our approach
which is followed by presenting the two methods for cali-
brated survival analysis. We begin by explaining the REgu-
larized inverse covariance based Calibration (REC) method,
and then present the Transposable REgularized covariance
based Calibration (TREC) method. Before exploring the
inner details of these algorithms, we state explicitly that
both these approaches are only meant to build a more
effective representation of the original survival data. The
time values in the calibrated censored dataset are not
the predicted values, but are only estimated by our iterative
convergence framework in an effort to facilitate the process.

4.1 Overview of Our Approach

We provide a flow diagram in Fig. 1 which explains how
our approach works on right censored survival data. We
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labeled the flow diagram with numbers which indicate the
steps and the direction being taken in the process. Initially,
in (1), we identify the set of right censored instances in the
dataset and extract the features, events and the original RC
times and store them. In (2), we replace these times using
temporary missing labels in order to facilitate our method
for identifying and imputing these selected instances. These
are combined with the features and events extracted from
(1) to create a concatenated dataset. Before creating this
concatenated dataset, the features and events are also stored
separately to be used in the final step.

In (3), we apply the two main algorithms which will be dis-
cussed in this section, namely, REC and TREC. This gives us
the imputed times for RC instances which are now compared
with the original RC times in (4). The procedure used to com-
pare these times is discussed in this section after the REC algo-
rithm. After this step, in (5), we obtain the calibrated RC times
and status variables. Finally, in (6), these calibrated outputs
are combined with the feature and event matrix from (2) to
obtain the final survival dataset. With this overview of our
approach, we now look into the details of the two main algo-
rithms proposed here, namely, REC and TREC.

4.2 REC Algorithm

In this section, we begin by explaining the REC method
which receives the censored dataset as the input and out-
puts the calibrated times and status, which are used for
learning the final model. This algorithm is designed using
an iterative convergence style optimization procedure where
we initialize the missing time-to-event values and update
our estimates iteratively until convergence is observed.

We now present the regularized likelihood equation
used in REC algorithm in Eq. (2) which uses a single column
based regularization term. One can notice that an important
difference between this and the EM algorithm term is the
regularization term used. Imputation is a part of the E step
of the algorithm in which the conditional expectation of
the complete data log-likelihood is taken given the current
parameter estimates. The computation in REC can be
divided into two parts which are (i) imputation-based cali-
bration and (ii) covariance correction steps respectively. We
outline both these steps in Egs. (3) and (4)

n

1 -
gobs(:u“a A) = 5 Z[log |A07}ni‘
i=1
—(Xo, — /’Log)TA;:oi(X(’i - /’LOL')] = |l A lae -
2

The first step, imputation-based calibration, is given in
Eq. (3). This step also involves the covariance-based correc-
tion term and the next step is given in Eq. (4). The covari-
ance-based correction term is defined so because it is added
to the cross products forming the covariance matrix

szj =E(Xij| X0, 1, A)

/ ! /-1 / . .
— I’Lmi + Ami,oiAoi,ai(‘ri:Ui - “’UI-)7 if J €m;
Xivj7 lf ] € 0; (3)
/ i 1—=1 Al ey
Ci iy = Ami,ml - Ami,oiAoi,oiAoi,mi7 if B 7 €m;
LI T .
0, otherwise.
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Fig. 2. Flow diagram for the CompareTimes procedure.

We can notice that in the covariance correction term ¢, ;. is
non-zero only when both jand j are missing (censored in our
context). The second step of our REC algorithm is the maximi-
zation step which is given in Eq. (5). In this maximization
step, A is computed which is done by replacing 1 with (i in A

E(XiJX{“’j/ | XUH y /L/, A,) XL JX 1+ C; g (4)

In Algorithm 1, we follow an iterative convergence rou-
tine similar to the traditional EM algorithm with the only
difference being the introduction of a row-based regulariza-
tion term and the corresponding covariance correction
term. We set ¢,=1 using the L, regularizer due to its formu-
lation as the graphical lasso which can be solved using coor-
dinate-descent techniques efficiently

. ltr(A’A—l) -
)(xu

In Algorithm 1, in Line 3, we do segregate the survival
data as outlined in (1) and (2) in Fig. 1. In Lines 4-6, we do
the EM style optimization as explained above to iteratively
estimate the values for RC instances until convergence is
observed. In Lines 7-8, we employ the CompareTimes proce-
dure as given in Fig. 2, where we compare the imputed RC
times obtained from Line 6 and compare those to the origi-
nal RC times. The comparison is done using the following
rule. We know that for right censored instances there is a
chance for the event to occur in the future which is not cap-
tured due to censoring. After applying REC, if the imputed
RC time for an instance exceeds its original RC time, we
conclude that this can be considered as an event and relabel
it accordingly. We also modify the censored status () from
0 to 1 to indicate this is an event. This modified vector is
stored in the calibrated status vector (8.,;,). However, if the
imputed RC time is less than or equal to the original RC
time, we cannot make any conclusion whether this is an
event or not. So instances in this category are left unchanged
and their censored time and status are the same as their
original RC times and status, respectively.

(9\9") zog|A pe | A7 Iy,

(5)

_21 1[($7J Mj)+cz/1}
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Algorithm 1. REC Algorithm

1: Input: features and time matrix X, status §
2: Output: calibrated RC times T, calibrated status 8.4
3: Initialization:

(a) Store original RC times 7,,;, and replace them
with temporary missing labels.
(b)  Set the missing labels as: )A(iﬁm,l. = Sico, Xij/ i
©  Set 1 A“) as the empirical mean, covariance.
4: E Step:

(@) Compute E(X; |2, u'* ),AM) as in
Eq. (B
(b) Compute E(X; ; X; /| X; 0, u¥, A®) asin
Eq. 4)
5: M Step:

(a) Update Estimates: /1 J&A v

(b) Maximize penalized log-likelihood w.r.t. A™"
to obtain the new estimate A

6: Repeat Steps 3-5 until convergence.

7: Estimate imputed RC times (7},,,) and compare with origi-
nal RC times (T, using the CompareTimes procedure
given in Fig. 2.

8: Output calibrated time-to-event variable T, and
calibrated status 8..p.

This column-based regularization captures one aspect
of imputing censored instances by considering the feature
importance among different censored instances in deter-
mining their corresponding time-to-event labels while
imputing them. This approximation of the probable event
time for right censored instances as done by our approach is
one of its hallmarks which eventually leads to generating a
better representation of the survival data. We now present
the TREC algorithm which improves over REC by consider-
ing the two-dimensional correlation structure in contrast to
the uni-dimensional correlation approach employed by the
former method.

4.3 TREC Algorithm

In this section, we present the TREC algorithm which tries
to learn the inverse covariance matrix from censored data
by imposing row and column-based regularization on the
likelihood function. This is called the Transposable REgular-
ized covariance based Calibration (TREC) method for
censored data. The novelty of this framework lies in inter-
preting censoring as an imputation problem on the time-to-
event variable by modeling its dependence on both row and
column based features [29]. The formulation for the log-like-
lihood function in TREC is given by Eq. (6)

(v, u, 2, A)

= glog =7+ glog AT

1 )
—§T(E%X—u@V4mwﬁA%X—u@fqmw%ﬂ

o 127 g = 1 A7 -
(6)

In Eq. 6), |.ll,, = Em |.], and ¢, and g. are either 1 or 2,
which Corresponds to either L; or L, regularizer. We
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consider these two choices as they are the most popular reg-
ularizers employed. Considering the L; norm when ¢, are .
are set to 1 it is observed that solution obtained reaches a
stationary point, but it not guaranteed to be the global
maximum.

This happens because of the higher number of stationary
points when using the L; penalty. However, maximization
with the L; penalties can be achieved by applying the
graphical lasso algorithm. This coordinate-wise maximiza-
tion method used in the graphical lasso leads to a simple
iterative algorithm, but it does not necessarily converge to a
global maximum.

While considering the L, penalty, on the other hand, the
problem can be solved by taking the eigenvalue decomposi-
tion and a global maximum can be found. This leads to a
global maximum, but the solution does not have a simple iter-
ative form as in the case of the L; norm. However, in both the
cases, we observe that better initialization of the row and col-
umn estimates can result in a faster convergence rate.

The optimal way of beginning such assignment is
through initializing them with their corresponding MLE
estimates for faster convergence. In this regard, we now
give the proof for the maximum likelihood estimate (MLE)
of the mean parameters.

Theorem 1. The MLE estimates for v and p are

(Xej — i)

p 7

n

~ NP
o=3"
A n

M= i

Proof. Expanding the trace term of /(M,%,A) w.r.t. 4 and v
and then taking partial derivatives, we get

EY4
= 25 tu1TA™ — o3 (X — 1A =0
v
=01 =x—1u”
1T X -1 T ) XC/. _ X
= 0= M — Eé']:l Jiuj .
p p

This can be extended in a similar manner to obtain /it as
well which ends the proof. O

With these MLE initial estimates derived, we now pro-
pose the TREC algorithm with the L; and Ly norms as regu-
larizers. The algorithm uses a strategy similar to block
coordinate descent by maximizing on one block of coordi-
nates at a given time, thus saving considerable computa-
tional time [30]. Conditional maximization (CM) is done
with respect to one block of coordinates either 3 ' or A™".

We now put these steps together and present all the
details in Algorithm 2. In this Algorithm, we begin by ini-
tializing ¥ and & from the observed uncensored instances
using the MLE estimates given in Eq. (7). We then use these
values to initialize the time-to-event label and begin the
computation as given in Eq. (10).

After convergence, the final values of ¥ and /i are calcu-
lated, subsequently 75, is computed through our imputa-
tion step. Subsequently, we use the CompareTimes procedure
to obtain 774, and 8.4 which are the final outputs.
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We now provide the details of the convergence and com-
plexity of our TREC algorithm. The novelty of our frame-
work lies in estimating both the row and column sparse
inverse covariance matrices. The complexity associated
with each column wise computation is O(np) and this com-
putation over p columns amounts to a O(np?) time complex-
ity. The resulting optimization problem is convex with
respect to each term and it can be efficiently solved using
blockwise descent methods.

Algorithm 2. TREC Algorithm

1: Input: Features and time matrix X, status §, regularization

parameters p,., p., Gr, e
2: Output: Calibrated RC Times T, calibrated status 8.4

3: Initialization:

(a) Estimate U and it from observed uncensored
instances using Eq. (7).

(b)  Initialize time for censored instances as U; + 4i;
(c) Start with nonsingular estimates % and A.
(d) Initalize matrices G,C, F, D.

4: EStep(A): Calculate X737' X + G(37)

as in Eq. (10)
5: M Step(A):

(a) Update estimates of ¥ and fi.
(b) Maximize @ with respect to A~ to obtain
A using gradient as given in Egs. (11) and (12).
6: E Step(3): Calculate XA~ X7 + F(A™Y)
as in Eq. (10)
7: M Step(2):

(a) Update estimates of ¥ and fi.
(b) Maximize @) with respect to 3" to obtain
2 using gradient as in Eqs. (11) and (12).

8: Repeat Steps 3-7 until convergence.

9: Estimate imputed censored times (7},,,) and compare with
original RC times (7,,;,) using the CompareTimes procedure
given in Fig. 2.

10: Output calibrated time-to-event variable 7., and cali-
brated status 8.qs.

4.4 Algorithm Analysis

We now develop the steps involved in the blockwise optimi-
zation algorithm mathematically, beginning with the
observed data log-likelihood which we seek to maximize.
We use this term X . to condense the likelihood equation to

0;,]

express it in a simpler form as given in Eq. (8)

Xp =3, (X — vy)

2595

1 . n .
é(U, s 27 A) - 5 [2?:110g |20j{n] | + 27',:1 | Ao,}o, ‘ i|

1 n * T * —
- §Tr( i:l(Xi,oi - /’Lo,-) (Xi,o,» - Moz-)Aa,ﬁ}o,;)
= 127 g = 1 A7 g -
(®)

We now derive a simple form to express each of our
blockwise steps. One is expressed with respect to ™' and
the other with respect to A" as in Eq. (10). This is possible
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because of the structure of the matrix-variate model, specifi-
cally the trace term. The model parameters are reprlesented
using 6 = {v, u, >, A}. The E step, denoted by Q(0|6, X,), is
expressed in Eq. (9)
QO16,X,) = E(t(v.1.2,8) | X,.6)
x E[Tr(XTS'A7'X)|X,,6]
x Tr[E(X"S'X | X,,0)A7})
x Tr[E(XA™'XT | X,,0)37Y).
We now provide the proof for our proposition for obtain-

ing the simple forms of the conditional maximization step
which will be used in our blockwise algorithm.

Proposition 2. The E step is proportional to the following form

E[Tr(X"S'XA™Y) | X,,6]
= Tr[(X"S7 X+ G(E)A ]
= Tr[(XA' X7 + F(A™)= 7]
where X = B(X | X,,6) and

(10)

Tr(CI3 ™) Tr(CP3 ™)
GEh = : :

Tr(CPVs™) Tr(Cw)s™)

Tr(DIA™Y Tr(DIWA™
F(A™) =

Tr(D(nDA—l) Tr(D(nn)Afl)
C(}J ) — COU(X(’,j7 ch/ | Xm 0 )

D) = Cov(Xy, X | X, 6).

ir |
We now present the proof for this proposition

Theorem 2. We first show that

E[Tr(XTS7'XA™Y)|X,,60] = Tr[(XTs7'X
+GE YA,

Proof. Let A = XT3 7' X, then,

E[Tr(X"S7'XA™Y) | X,,0] = Tr[E(A|X,,0),A™"]

B(AX,.6) = E(XPS7'X, )| X,.6)
n n
= E[Z Zthij’O'Jf1|X079j|
k=1 t=1

n n n n

DN WEPTES D WL
k=1 t=1 k=1 t=1
= XIS7IX 4 T3,

Thus, E(A|X,,0) = XT3 'X + GE ™)
The proof showing
E[Tr(XTS7'XA™Y) | X,,6]
=Tr[(XTS ' X + F(A™)s ™,
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Fig. 3. Percentage of right censored instances in EHR and Kickstarter
datasets.

is similar to the calculation above with B = XA™' X7
E(Bi|X,,0) = Xi, A7 X7 4 Tr(DUA™Y).
O

We now present the gradient equations which are being
used in TREC with the L; and L, norms in Egs. (11) and (12)

aQ 7A_XT2*1X+G(2*1) 20,

AT - ——sgn(A™")
o 11
aQ XA'XT+ F(A™Y 20, . (4
g =2 ———sgn(X)
03 p

We use a notation now through the remainder of this
paper to represent the regularizer being used in TREC.
L-TREC represents using the L; norm in TREC. The same
notation can be extended to the L,-TREC algorithm

0Q _\ X'3X4+GET) 4dp s
ATl n n (12)
0Q XA'XT+ F(A™Y  4p, oy
S - ~ Pyt
02, p p

5 EXPERIMENTAL RESULTS

In this section, we present the experimental results obtained
using the proposed REC, TREC methods for calibrated sur-
vival analysis on EHRs, Crowdfunding (Kickstarter) [31]
and synthetic datasets. In Fig. 3, we present a bar graph
which plots the censored statistics for the kickstarter and
EHRs. One can clearly observe that the distribution of right
censored instances is higher for the kickstarter data com-
pared to the EHRs, which is an important characteristic of
the data collected from the crowdfunding domain.

In this section, we will discuss the data collection and
pre-processing steps for the EHRs and kickstarter datasets.
We conduct various experiments to study the importance of
imputing censored instances using our methods. We pro-
vide plots which illustrate the improvements obtained in
survival regression algorithms after applying our approach.
Finally, we also study the effect of both the regularizers and
regularization parameters on the runtime performance of
our algorithms.

5.1 Dataset Description
We will first describe the various kinds of datasets used in
our experiments. This includes the Kickstarter data, EHRs
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TABLE 2
Kickstarter Data Statistics for 18,143 Projects

Attr Mean Min Max StdDev
Goal 26,531 100 100,000,000 758,366
Pledged 11,023 100 6,224,955 78,550
backers 138 1 35,383 633
Days 31 1 60 10.5

and synthetic datasets. We explain the data collection and
pre-processing steps involved with each of these datasets.

5.1.1 Crowdfunding Datasets

For the experiments in this paper, we obtained six months
of Kickstarter (a popular crowdfunding platform) data from
www kickspy.com. This dataset spans from 12/15/13 to
06/15/14, which consists of projects characterized by 30
project-based attributes. The attributes in the kickstarter
datasets include a number of static features such as project
goal amount, duration, textual content, etc., and two
dynamic features: per-day increase in number of backers
and pledged amount as given in Table 2. In this manner, a
total of 18,143 projects with over 1 million backers were
obtained and processed using the procedures followed
in [32]. The attribute used to determine the censoring in the
kickstarter datasets is the duration of the project.

Each project in our kickstarter database is tracked over a
period of time until either its goal date is reached or it obtains
the goal amount. If a project reaches its goal amount (event in
this scenario) in a specified duration (time-to-event) this is
measured as a success. However, failure to reach the specified
goal amount by the end of the study would imply that the
instance has been censored (possibly attains the goal amount
at a later time). With this notion of censoring, we present the
percentage of censored instances in kickstarter data in Table 3.

5.1.2 Electronic Health Records (EHRSs)

We now provide the description for the EHRs considered.
These datasets are longitudinal EHRs for patients admitted
at the Henry Ford Health System, Detroit, Michigan over a
period of 10 years. The event here is heart failure readmis-
sion and the duration is measured after the patient has been
discharged from primary index hospitalization.

The statistics with the right censored percentages are
provided for 5 of our sample datasets in Table 4. Readm-
index represents the index of readmission for the patients.
EHRO is for data for the index hospitalization. Similarly,
EHRn represents the dataset for the n'" rehospitalization for
the patient set considered. It should be noted that as n
increases the number of patients will be reduced.

5.1.3 Synthetic Datasets

We generate synthetic datasets by setting the pairwise
correlation between any pair of covariates to vary from
—0.5 to 0.5. Feature vectors of different dimensionality are
generated to construct three synthetic datasets. For each of
these synthetic datasets, the generated failure times 7" are
generated through a Weibull AFT model.

We compare the effect of calibrated survival analysis on
any given dataset before and after applying it, by evaluating
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TABLE 3
Description of Censored Statistics in the Kickstarter Projects

Name Startdate Enddate # Projects  Censored (%)
Kick 1 1/12/2013 1/1/2013 4175 52.99
Kick 2 1/1/2014 15/3/2014 5229 47.36
Kick 3 16/3/2014 31/4/2014 5720 51.25
Kick 4 1/5/2014 30/6/2014 2969 48.58
TABLE 4
Basic Statistics for EHRs

Readm Rows Columns Censored (%)

EHR 0 4417 77 22.20

EHR 1 3410 77 17.98

EHR 2 2749 77 16.44

EHR 3 2209 77 13.63

EHR 4 1801 76 12.05

the performance using a standard survival learner. In our
experiments, for each dataset, we create a new one after
applying TREC based calibration and this is labeled as
With, and the version before applying TREC based calibra-
tion is labeled as Without. We use this notation throughout
this section.

5.2 Performance Evaluation

We will now describe the evaluation metrics used in this
work along with some of the implementation details for
both the algorithms proposed in this paper as well as details
pertaining to baseline comparison algorithms.

5.2.1 Evaluation Metrics

In this section, we explain the evaluation metrics used for
our experimental results. Popular metrics used in survival
analysis, such as time-based AUC and survival AUC aim at
evaluating the relative risk of a event for two instances, than
predicting the absolute survival times for these instances.
These metrics are introduced below

AUC(T.) = P(Y; < Yj|Y; < T.,Y; > T.)
1 N N
num(T,) YiZ:Tc Y_,Z:n !

(13)

In Eq. (13), we define the time-based AUC estimated at
any given time 7. num(T,) denotes the number of compara-
ble pairs at time 7, and I is an indicator function. AUC(17)
can be used to define the Survival AUC metric which meas-
ures the weighted average of the time-based AUC as given
in Eq. (14). In this equation, 7, represents the set of all possi-
ble event times in the dataset, and num represents the
cumulative number of comparable pairs calculated over all
event times

Survival AUC = L Z AUC(T,) - num(T). (14)

num T.eT,

5.2.2 Implementation Details

We implemented both REC and TREC in the R program-
ming language. As mentioned earlier we implemented the
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versions corresponding to both the L; and L, norms in
TREC. The glasso R package was used for solving the
graphical lasso problem for solving the corresponding
subproblems in REC and TREC. The iterative blockwise
gradient descent algorithm was implemented as the main
optimization routine for solving TREC. The corresponding
parameters for regularization in REC and TREC were deter-
mined through five-fold cross validation.

In this section, we will refer to L,-TREC as TREC, and
this has been used for obtaining the results in this section.
As mentioned earlier, we prefer the L, norm as it gives us a
global maximum compared to the L; norm. So all the cali-
brated datasets have been generated using the L,-TREC and
REC algorithms. We reiterate explicitly that if a regularizer
is not mentioned with TREC, then it is assumed to be the
Lo-TREC algorithm itself. As REC uses the L; norm alone,
we do not specify the norm explicitly, and it assumed that
REC refers to using the L; norm formulation only.

We now briefly discuss the implementation details per-
taining to baseline comparison algorithms. The software for
CensNB is available at' and we used our code for KEN-
COX and OSCAR-COX [13]. The randomForestSRC and
CoxNet R packages are used for running random survival
forests and EN-COX, respectively.

We now briefly explain the baseline imputation algorithms
used for comparing the performance of REC and TREC. The
first baseline algorithm is Softlmpute which is a method
which uses the nuclear norm regularizer and iteratively repla-
ces the missing elements with those obtained from a soft
thresholded singular value decomposition (SVD). It tries to
minimize the nuclear norm subject to certain constraints [25].

The other baseline method is Misglasso which is a
method that replaces the missing values using the standard
graphical lasso by modifying the update step in the EM iter-
ation [24]. We implement the misglasso algorithm by using
the graphical lasso R package (glasso). The softlmpute R
package is used for the SoftImpute algorithm. The code for
REC and TREC algorithms is available here”.

5.3 Integrating TREC with Survival Regression
Algorithms

In this section, we present results which demonstrate the
robustness of TREC algorithm on several datasets. We do
not report the results obtained after applying REC as this is
simply a part of the TREC framework, and we do not want
to highlight this as two different contributions while pre-
senting the results. REC is more simpler in terms of formu-
lation and obtaining a solution compared to TREC.
However, TREC is more robust in terms of performance
which will be shown in this section. The baseline algorithms
used in for comparison in this section are

(1)  Elastic net Cox (EN-COX) [12]: EN-COX integrates the
elastic net penalty with the Cox partial log-likelihood
loss function to deal with correlated features in sur-
vival data.

(2)  Kernel elastic net Cox (KEN-COX) [13]: KEN-COX
supplements EN-COX with an additional feature

1. https:/ /sites.google.com/a/umn.edu/jwolfson/software
2. https:/ / github.com/MLSurvival/survutils
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kernel term to capture more feature correlation
among the survival covariates.

(3)  Oscar Cox (OSCAR-COX) [13]: This method uses the
Octagonal Shrinkage Clustering Algorithm for
Regression (OSCAR) [33] as a regularizer along with
the Cox partial log-likelihood loss function to cap-
ture feature grouping among survival covariates.

(4) CoxBoost [34]: This is an extension of Cox regression
which uses the boosting method to create an ensem-
ble of learners.

(5)  Censored Naive Bayes (CensNB) [16]: This is a bayesian
based approach which uses inverse probability
weighted censoring mechanism to obtaining proba-
bility estimates for prediction.

(6)  Random Survival Forests (RSF) [35]: RSF and CoxBoost
are ensemble based methods which use survival
trees and boosting for prediction, respectively.

(7)  Boosted Concordance Index (BoostCI) [36]: This
approach optimizes the concordance index directly
to build an effective regression model in contrast to
other maximum likelihood based approaches such
as Cox regression.

(8)  Elastic net Buckley James (EN-BJ) [27]: EN-BJ uses a
semi-parametric accelerated failure time (AFT)
model with elastic net regularization.

The results from Tables 5 and 6 indicate that when
TREC is applied on the censored dataset (With), the sur-
vival regression algorithm is able to yield a better perfor-
mance in comparison to using the original right censored
dataset (Without). We attribute this better performance to
the fact that TREC models the censored missing time-to-
event values using a row and column regularization
method which infers the correlation patterns among cen-
sored instances which is needed to impute the time-to-
event labels for RC instances correctly. The improve-
ments in survival AUC values are prominent with both
Cox regression-based algorithms as given in Table 5, and
other survival algorithms as given in Table 6. These
improvements also confirm that the performance of our
approach does not depend on using any specific kind of
survival regression algorithm.

In addition, in this experiment, we also report the
p-values measuring whether the difference between the
model built on the calibrated data using TREC differs
significantly from the model built without calibration.
We report these p-values in brackets next to the concor-
dance index. These are reported for two algorithms here,
namely, CoxBoost and EN-BJ only as the performance of
our pre-processing approach does not depend the algo-
rithm being used for prediction. This value is calculated
by comparing two concordance indices wusing this
method [37] and estimating if their difference is statisti-
cally significant by calculating the corresponding p-val-
ues. Using these metrics the better performing model
among the With and Without calibrated datasets is marked
in bold in Tables 5 and 6 for each algorithm. The p-values
in Tables 5 and 6 indicate that survival models built
on the calibrated data are more robust as indicated by the
overall low p-values. p-values < 0.05 are considered to be
good enough to show the statistical significance of the
results obtained using our methods. A good survival
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TABLE 5
Comparison of Survival AUC Values with Standard Deviation (std) and p-Values for Different Cox Regression Algorithms
without and with (TREC) Applied on Kickstarter, EHR, and Synthetic Censored Datasets

Dataset EN-COX KEN-COX OSCAR-COX CoxBoost
Without With Without With Without With Without With (p-value)
Kick 1 0.812 0.835 0.794 0.803 0.811 0.843 0.831 0.866 (0.039)
e (0.071) (0.044) 0.011) (0.027) (0.093) (0.064) (0.022) (0.075)
Kick 2 0.811 0.865 0.819 0.841 0.832 0.874 0.803 0.825 (7e-9)
e (0.132) (0.048) (0.031) (0.073) (0.045) (0.031) (0.045) (0.071)
Kick 3 0.807 0.820 0.793 0.833 0.814 0.833 0.793 0.827 (6e-15)
1 (0.049) (0.033) (0.104) (0.079) (0.022) (0.067) (0.097) (0.019)
Kick 4 0.773 0.817 0.782 0.811 0.821 0.853 0.811 0.833 (4e-7)
e (0.088) (0.045) (0.091) (0.037) (0.102) (0.076) (0.050) (0.061)
EHR 0 0.585 0.606 0.618 0.605 0.632 0.643 0.631 0.642 (0.041)
(0.094) (0.113) (0.021) (0.065) (0.016) (0.025) (0.033) (0.089)
EHR 1 0.592 0.609 0.611 0.637 0.629 0.655 0.622 0.625 (3e-14)
0.106) (0.041) (0.087) (0.055) (0.031) (0.074) 0.011) (0.061)
EHR 2 0.598 0.605 0.624 0.611 0.618 0.599 0.637 0.665 (5e-16)
(0.082) (0.041) (0.038) (0.091) (0.028) (0.116) (0.081) (0.064)
EHR 3 0.581 0.595 0.611 0.639 0.607 0.626 0.631 0.648 (9e-21)
0.016) (0.019) (0.058) (0.022) (0.030) (0.084) 0.011) (0.082)
EHR 4 0.618 0.633 0.641 0.655 0.644 0.661 0.689 0.675 (1e-8)
(0.043) (0.096) (0.088) (0.101) (0.041) (0.037) (0.021) (0.066)
Sun 1 0.668 0.673 0.681 0.699 0.677 0.664 0.693 0.715 (2e-7)
yn (0.027) (0.074) (0.065) (0.032) (0.072) 0.121) (0.084) (0.033)
Sun 2 0.872 0.902 0.890 0.910 0.927 0.943 0.872 0.933 (0.009)
yn (0.039) (0.104) (0.088) (0.057) 0.018) (0.041) (0.032) (0.017)
S 3 0.727 0.719 0.785 0.854 0.887 0.931 0.856 0.922 (4e-10)
yn (0.096) (0.041) (0.016) (0.041) (0.043) (0.109) (0.037) (0.029)
TABLE 6

Comparison of Survival AUC Values with Standard Deviation (std) and p-Values for CensNB, RSF, BoostCl, and
EN-BJ Algorithms without and with (TREC) Applied on Kickstarter, EHR, and Synthetic Censored Datasets

Dataset CensNB RSF BoostCI EN-BJ
Without With Without With Without With Without With (p-value}
Kick 1 0.771 0.804 0.802 0.799 0.785 0.803 0.818 0.824 (0.017)
e (0.066) (0.089) (0.069) (0.088) (0.113) (0.045) (0.029) (0.054)
Kick 2 0.783 0.809 0.811 0.833 0.743 0.733 0.853 0.879 (0.031)
1 (0.145) (0.071) (0.044) (0.077) (0.082) (0.103) (0.077) (0.141)
Kk 3 0.761 0.753 0.732 0.758 0.763 0.725 0.835 0.841 (1e-4)
e (0.002) (0.087) (0.043) (0.021) (0.089) (0.088) (0.022) (0.071)
Kick 4 0.722 0.773 0.796 0.812 0.722 0.744 0.839 0.851 (0.019)
1 (0.013) (0.091) (0.057) (0.028) (0.097) 0.114) (0.102) (0.064)
EHR O 0.572 0.591 0.599 0.611 0.517 0.552 0.594 0.601 (1e-26)
(0.037) (0.078) (0.069) (0.071) (0.093) (0.064) (0.033) (0.081)
EHR 1 0.575 0.588 0.583 0.609 0.543 0.565 0.571 0.604 (4e-10)
(0.092) (0.044) (0.117) (0.081) (0.025) (0.071) (0.062) (0.110)
EHR 2 0.573 0.606 0.581 0.591 0.575 0.591 0.566 0.601 (7e-12)
(0.044) (0.097) (0.118) (0.039) (0.068) (0.013) (0.034) (0.045)
EHR 3 0.609 0.631 0.611 0.636 0.626 0.639 0.593 0.614 (3e-16)
0.177) (0.085) (0.035) (0.087) (0.041) (0.045) (0.025) (0.088)
EHR 4 0.621 0.659 0.633 0.627 0.665 0.693 0.638 0.644 (1e-9)
(0.034) (0.082) (0.069) (0.076) (0.901) (0.119) (0.081) (0.067)
S 0.654 0.661 0.633 0.642 0.643 0.679 0.641 0.669 (2e-10)
yn (0.099) (0.133) (0.078) (0.091) (0.125) (0.188) (0.105) (0.087)
S 0.847 0.867 0.852 0.905 0.836 0.896 0.866 0.875 (3e-8)
yn (0.109) (0.086) (0.122) (0.076) (0.065) (0.018) (0.026) (0.004)
syn3 0.714 0.764 0.834 0.841 0.740 0.748 0.780 0.799 (1e-4)

(0.096) (0.155) (0.071) (0.033) (0.027) (0.164) (0.019) (0.031)
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Fig. 4. Runtime on kickstarter dataset using L;, Ly-norms in TREC.

model will have high concordance index and low p-val-
ues as illustrated in the results from Tables 5 and 6.
We attribute the good performance of these algorithms
due to our effective calibration technique which enhances
the predictive power of survival algorithms.

5.4 Impact of Regularizers and Regularization
Parameters on TREC Algorithm

In this section, we study the influence of the row and col-
umn regularizers and parameters on the convergence and
runtime of the TREC algorithm. We study the runtime using
both L; and L, regularizers in TREC to assess their time effi-
ciency. We use one of the kickstarter datasets (Kick 1) for
this experiment. The values of the row and column regulari-
zation parameters were obtained using cross validation for
this dataset.

In Fig. 4, we plot the runtime in seconds on the Y-axis,
and the number of instances sampled from Kick 1 dataset
are labeled on the X-axis. We run both our L; and L, norm
based TREC algorithms separately to measure their run-
time. We can observe that among the two norms Ly-norm is
more time efficient compared to the L;-norm. The L; norm
uses the graphical lasso solver and the higher number of
stationary points observed in this formulation results in
higher runtime to obtain convergence. This makes the L,
norm the more efficient regularizer due to better scalability.
However, the L, norm does not provide sparse solutions
with respect to the inverse covariance matrix estimated
which affects the interpretability of the solution when deal-
ing with high-dimensional datasets. So there is a trade-off
between choosing the L; and Ly-norms.

In another experiment, we also study the impact of the
choice of the regularization parameters on the conver-
gence of TREC. In Fig. 5, the X-axis represents the indices
of the four kickstarter datasets used in this paper. The Y-
axis represents the number of iterations needed for TREC
to converge for each dataset using three sets of regulariza-
tion parameter values. The legend indicates the values
chosen for the regularization parameters p, and p.. We
observe that the choice of regularization parameters does
not affect the convergence, as there is no uniform pattern
observed. So these experiments allow us to conclude that
the choice of regularizer is important, but the value of
these regularization parameters does not affect the conver-
gence of TREC significantly. We conducted this analysis
also to evaluate the impact of the regularization parame-
ters on the survival AUC values. We observed that the
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survival AUC values did not change much which indi-
cates that our framework is not sensitive to the row and
column regularization parameters in terms of both run-
times and performance.

5.5 Improvement in AUC with Imputed Censoring

In this experiment, we plot the survival AUC values of the
learning algorithm when we gradually sample instances
from the calibrated data (With) using different methods for
imputing the missing time-to-event values in survival data.
This experiment helps us interpret how the calibrated sam-
ples are contributing towards building a more efficient
model as they are sampled iteratively. The approaches used
for imputation in this experiment include Softimpute [25],
Misglasso [24], REC and TREC. In this experiment, we pres-
ent the results for the synthetic datasets, kickstarter datasets
and EHRs.

The learning algorithm considered for this experiment
was the (EN-COX) algorithm. As determined from the
previous experiment, the choice of the learning algorithm
was not a part of our approach, so we can choose any
arbitrary survival learner. We train the initial survival
model using all the uncensored instances, and we contin-
uously sample instances from a pool of censored instances
and add them to retrain a survival model. These censored
instances have been imputed using REC and TREC.
Simultaneously, we also impute these instances iteratively
using SoftImpute and Misglasso before training a new
survival model.

As imputed censored instances are added to the training
data from the censored pool, we retrain the model and plot
the survival AUC values on this combined dataset of the ini-
tial set of uncensored instances and the sampled censored
instances. From the plots in Fig. 6, we observe that the sur-
vival AUC values improve for most of the cases, with the
improvements being prominent for TREC compared to
other competing methods and REC stands as the second
best method.

The better performance of TREC is because it is effective
in interpreting the missing values in the time-to-event labels
for censored instances, as it imputes these values consider-
ing the two-dimensional correlation structure within the
covariance matrix in its formulation. Calibrated time-to-
event labels tend to provide the survival model with more
discriminative information which is evident from the
improvement in the survival AUC values.
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Fig. 6. Survival AUC values at varying percentages of censored samples obtained for calibrated synthetic, kickstarter, and EHR datasets using REC,

TREC, Softimpute, and Misglasso methods.

6 CONCLUSION

In this paper, we presented a framework for pre-processing
survival data by calibrating the time-to-event labels for right
censored instances in the dataset. We motivate the necessity
for this application by considering the two-dimensional cor-
relation structure in censored data which needs to be

inferred by a method before labeling these censored instan-
ces. These methods are very useful in several real-world
application problems such as (i) mining clinical data to
identify hospital readmissions (ii) following projects in
crowdfunding to determine their success. Traditional sur-
vival learners cannot be used directly for such data, since
the time-to-event label information that is used for censored
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instances is incomplete. Erroneous time-to-event labels in
such instances could misguide the learning algorithm which
is undesirable.

To overcome this problem, we introduce a pre-process-
ing method which makes it easy for a domain expert to con-
vert right censored data to calibrated right censored data
which is a more effective representation of the dataset. We
studied two methods in this paper, namely, REC and TREC.
REC uses the column-based regularization and TREC uses a
composite row and column-based regularization. The
experimental results reveal that both these methods help in
improving the survival AUC of algorithms in comparison
to other methods. This work can be extended to interval
based censoring to identify methods to calibrate censored
instances in that domain.
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