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Self-Supervised Transformer for Sparse and Irregularly

Sampled Multivariate Clinical Time-Series

SINDHU TIPIRNENI and CHANDAN K. REDDY, Virginia Tech

Multivariate time-series data are frequently observed in critical care settings and are typically characterized

by sparsity (missing information) and irregular time intervals. Existing approaches for learning representa-

tions in this domain handle these challenges by either aggregation or imputation of values, which in-turn sup-

presses the fine-grained information and adds undesirable noise/overhead into the machine learning model.

To tackle this problem, we propose a Self-supervised Transformer for Time-Series (STraTS) model, which

overcomes these pitfalls by treating time-series as a set of observation triplets instead of using the standard

dense matrix representation. It employs a novel Continuous Value Embedding technique to encode continu-

ous time and variable values without the need for discretization. It is composed of a Transformer component

with multi-head attention layers, which enable it to learn contextual triplet embeddings while avoiding the

problems of recurrence and vanishing gradients that occur in recurrent architectures. In addition, to tackle

the problem of limited availability of labeled data (which is typically observed in many healthcare applica-

tions), STraTS utilizes self-supervision by leveraging unlabeled data to learn better representations by using

time-series forecasting as an auxiliary proxy task. Experiments on real-world multivariate clinical time-series

benchmark datasets demonstrate that STraTS has better prediction performance than state-of-the-art meth-

ods for mortality prediction, especially when labeled data is limited. Finally, we also present an interpretable

version of STraTS, which can identify important measurements in the time-series data. Our data preprocess-

ing and model implementation codes are available at https://github.com/sindhura97/STraTS.
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1 INTRODUCTION

Time-series data is routinely collected in various healthcare settingswhere differentmeasurements
are recorded for patients throughout their course of stay (See Figure 1 for an illustrative example).
Predicting clinical outcomes like mortality, decompensation, length of stay, and disease risk from
such complex multivariate time-series data can facilitate both effective management of critical
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Fig. 1. An illustrative example of a multivariate clinical time-series with irregular time points and missing
values.

care units and automatic personalized treatment recommendations for patients. The success of
deep learning in image and text domains realized by convolutional and recurrent networks [7, 28],
and Transformer models [30] have inspired the application of these architectures to develop better
prediction models for time-series data as well. However, time-series in the clinical domain portray
a unique set of challenges that are described below.

—Missingness and Sparsity: A patient’s condition may demand observing only a subset of
variables of interest. Thus, not all the variables are observed for every patient. Also, the
observed time-series matrices are very sparse as some variables may be measured more
frequently than others for a given patient.

— Irregular time intervals and Sporadicity: Not all clinical variables are measured at reg-
ular time intervals. Thus, the measurements may occur sporadically in time depending on
the underlying condition of the patient.

— Limited labeled data: Patient-level clinical data is often expensive to obtain and labeled
data subsets pertaining to a specific prediction task may be even more limited (for e.g., build-
ing a severity classifier for Covid-19 patients.)

A straight-forward approach to deal with irregular time intervals and missingness is to ag-
gregate measurements into discrete time intervals and add missingness indicators, respectively.
However, this suppresses important fine-grained information because the granularity of observed
time-series may differ from patient to patient based on the underlying medical condition. Existing
sequence models for clinical time-series [4] and other interpolation-based models [26] address this
issue by including a learnable imputation or interpolation component. Such techniques add unde-
sirable noise and extra overhead to the model, which usually worsens as the time-series become
increasingly sparse. These models rely on an effective imputation/interpolation scheme in order
to achieve strong performance on the target task. But it is unreasonable to impute clinical vari-
ables without careful consideration of the domain knowledge about each variable which might be
non-trivial to obtain.
Considering these shortcomings, we design a framework that does not need to perform any

such operations and directly builds a model based only on the observations that are available in the

data. Thus, unlike conventional approaches, which view each time-series as a matrix of certain
dimensions (#features × #time-steps), our model regards each time-series as a set of observation
triplets (a triple containing time, variable, and value) without the necessity for aggregation or im-
putation. The proposed STraTS (acronym for Self-supervised Transformer for Time-Series) model
embeds these triplets by using a novel Continuous Value Embedding (CVE) scheme to avoid
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the need for binning continuous values before embedding them. The use of CVE for representing
the time dimension preserves the fine grained information which is lost when the time-axis is
discretized. STraTS encodes contextual information of observation triplets using a Transformer-
based architecture with multi-head attention (MHA). We choose this over recurrent neural
network (RNN) architectures because the sequential nature of RNN models hinders parallel pro-
cessing while the Transformer bypasses this by using self-attention to attend from every token to
every other token in a single step.
To build robust representations using limited labeled data, we employ self-supervision and de-

velop a time-series forecasting task to pretrain STraTS. This enables learning generalized repre-
sentations in the presence of limited labeled data and alleviates sensitivity to noise. Furthermore,
interpretable models are usually preferred in healthcare but existing deep models for clinical time-
series lack this component. Thus, we also propose an interpretable version of our model (I-STraTS)
which slightly compromises on performance metrics but can identify important measurements in
the input. Though we evaluate the proposed model only on binary classification tasks, our frame-
work can also be utilized in other supervised and unsupervised settings, where learning robust and
generalized representations of sparse and sporadic time-series is desired. The main contributions
of our work can be summarized as follows:

— Propose a Transformer-based architecture called STraTS for clinical time-series, which ad-
dresses the unique challenges of missingness and sporadicity of such data by avoiding ag-
gregation and imputation.

— Develop a novel CVE mechanism using a one-to-many feed-forward network (FFN) to
embed continuous times and measured values in order to preserve fine grained information.

— Utilize forecasting as a self-supervision (proxy) task to leverage unlabeled data to learn more
generalized and robust representations.

— Propose an interpretable version of STraTS that can be used when interpretability is more
desired compared to quantitative performance gains.

— Demonstrate through an extensive set of experiments that the design choices of STraTS lead
to a better performance compared to competitive baseline models for mortality prediction
on two real-world clinical datasets.

The rest of this article is organized as follows. In Section 2, we review relevant literature about
tackling sparse and sporadic time-series data, and self-supervised learning. Section 3 formally de-
fines the prediction problem and gives a detailed description of the architecture of STraTS along
with the self-supervision approach. Section 4 presents experimental results comparing STraTS
with various baselines and demonstrates the interpretability of I-STraTS with a case study. Finally,
Section 5 concludes the article and provides future directions.

2 RELATEDWORK

2.1 Clinical Time-Series

A straightforward approach to address missing values and irregular time intervals is to impute
and aggregate the time-series, respectively, before feeding them to a classifier [5, 20]. However,
such classifiers ignore the missingness in the data, which can be quite informative. Lipton et al.
[21] show that phenotyping performance can be improved by passing missingness indicators as
additional features to an RNN classifier. But they still lose fine-grained information by aggregating
each time-series into hourly intervals.
Several early works rely on Gaussian Processes (GP) [24] to model irregular time-series. For

example, Lu et al. [23] represent each time-series as a smooth curve in a reproducing kernel

Hilbert space (RKHS) usingGP by optimizingGP parameters usingExpectationMaximization
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(EM), and then derive a distance measure on the RKHS, which is used to define the SVM classifier’s
kernel. To account for uncertainty in GP, Li and Marlin [18] formulate the kernel by applying an
uncertainty-aware base kernel (called the expected Gaussian kernel) to a series of sliding windows.
These works take a two-step approach by first optimizing GP parameters and then training the
classification model. To enable end-to-end training, Li and Marlin [19] again represent time-series
using GP posterior at predefined time points but use the reparametrization trick to back-propagate
the gradients through a black-box classifier (learnable by gradient-descent) into the GPmodel. The
end-to-end model is uncertainty-aware as the output is formulated as a random variable. Futoma
et al. [11] extend this idea to multivariate time-series with the help of multitask GP [3] to consider
inter-variable similarities. Though GP provide a systematic way to deal with uncertainty, they are
expensive to learn and their flexibility is limited by choice of covariance and mean functions.
Shukla and Marlin [26] also propose an end-to-end method that constitutes interpolation and

classification networks stacked in a sequence. They develop learnable interpolation layers to ap-
proximate the time-series at regular predefined time points in a deterministic fashion (unlike GP-
basedmethods) and allow information sharing across both time and variable dimensions. However,
the input to the classifier is a densely interpolated multivariate time-series which causes loss of
information if the number of interpolation points is small and slows down computations while
adding noise otherwise.
Instead of using a separate interpolation module followed by a traditional classifier, other ap-

proaches modify traditional recurrent architectures for clinical time-series to deal with missing
values and/or irregular time intervals. For example, Baytas et al. [2] developed a time-aware long-

short termmemory (T-LSTM) which is a modification of the LSTM cell to adjust the hidden state
according to the irregular time gaps. ODE-RNN [25] uses ODEs to model the continuous-time dy-
namics of the hidden state while also updating the hidden state at each observed time point using
a standard GRU cell. The GRU-D model [4] is a modification of the GRU cell which decays inputs
(to global means) and hidden states through unobserved time intervals. DATA-GRU [29], in addi-
tion to decaying the GRU hidden state according to elapsed time, also employs a dual attention
mechanism based on missingness and imputation reliability to process inputs before feeding them
to a GRU cell. All these methods use an RNN with sequence length being the number of unique
timestamps in the input, which can be quite large for irregular time-series, and as a result, can
slow down computations.
The imputation/interpolation schemes in the models discussed above can lead to excessive com-

putations and unnecessary noise, particularly when missing rates are quite high. Our model is
designed to circumvent this issue by representing sparse and irregular time-series as a set of ob-
servations. Horn et al. [13] develop SeFT with a similar idea and use a parametrized set function
for classification. The attention-based aggregation used in SeFT contains the same queries for all
observations to facilitate low memory and time complexity while compromising on accuracy. The
initial embedding in SeFT contains fixed time encodings while our approach uses learnable em-
beddings for all the three components (time, variable, value) of the observation triplet.
The challenge of training in scenarios with limited labeled data still remains. In order to address

this issue, we turn towards self-supervision for a better utilization of the available data to learn
effective representations.

2.2 Self-Supervised Learning

Supervised deep learning models often rely on large amounts of labeled data to learn generalized
and robust representations. Limited labeled data can make the model easily overfit to training
data and make the model more sensitive to noise. Since labeled data is expensive to obtain, self-
supervised learning was introduced as a technique to solve this challenge. This technique trains
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the model on carefully constructed proxy tasks that improve the model’s performance on target
prediction tasks. The labeled datasets for proxy tasks are obtained from the unlabeled data in an in-
expensive semi-automatic process. Yann Le Cunn1 describes self-supervised learning as to “predict
any part of the input from any other part”. Self-supervised learning enables the model to learn cor-
relations in input data which enhance the model’s learning of supervised target prediction tasks.
Liu et al. [22] review the state-of-the-art self-supervised learning methods in computer vision, nat-
ural language processing, and graph representation learning. Though this technique has shown
great performance boosts with image [15] and text [9, 31] data, its application to time-series data
has been limited. One such effort is made by Jawed et al. [14], which uses a 1D CNN for dense
univariate time-series classification and shows increased accuracy by using forecasting as an addi-
tional task in a multi-task learning framework. Zerveas et al. [33] pretrained a Transformer model
using a denoising objective and showed improved performance on regression and classification
tasks with dense multivariate time-series. In our work, we demonstrate time-series forecasting
as a viable and effective self-supervision task for a Transformer model. Our work is the first to
explore self-supervised learning in the context of sparse and irregular multivariate time-series.

3 PROPOSED APPROACH

In this section, we describe our STraTS model by first introducing the problem with relevant no-
tation and definitions and then explaining the different components of the model, which are illus-
trated in Figure 3.

3.1 Problem Definition

As stated in the previous sections, STraTS represents each time-series as a set of observation
triplets. Formally, an observation triplet is defined as a triple (t , f ,v ) where t ∈ R≥0 is the time,
f ∈ F is the feature/variable, and v ∈ R is the value of the observation. Amultivariate time-series

T of length n is a defined as a set of n observation triplets i.e., T = {(ti , fi ,vi )}ni=1.
Consider a datasetD = {(dk ,Tk ,yk )}N

k=1
withN labeled samples, where thekth sample contains

a demographic vector dk ∈ RD , a multivariate time-series Tk , and a corresponding binary label
yk ∈ {0, 1}. In this work, each sample corresponds to a single ICU stay where several clinical
variables of the patient are measured at irregular time intervals and the binary label indicates in-
hospital mortality. The underlying set of time-series variables denoted by F may include vitals
(such as temperature), lab measurements (such as hemoglobin), and input/output events (such as
fluid intake and urine output). Thus, the target task aims at predicting yk given (dk ,Tk ).
Our model also incorporates forecasting as a self-supervision task. For this task, we consider a

bigger dataset with N ′ ≥ N samples given by D′ = {(dk ,Tk ,mk , zk )}N ′
k=1

. Here, mk ∈ {0, 1} |F |
is the forecast mask which indicates whether each variable was observed in the forecast window
and z

k ∈ R |F | contains the corresponding variable values when observed. The forecast mask is
necessary because the unobserved forecasts cannot be used in training and are hencemasked out in
the loss function. The time-series in this dataset are obtained from both the labeled and unlabeled
time-series by considering different observation windows. Figure 2 illustrates the construction of
inputs and outputs for the target task and forecasting task.

3.2 Architecture of STraTS

The architecture of STraTS is illustrated in Figure 3. Unlike most of the existing approaches which
take a time-series matrix as input, STraTS defines its input as a set of observation triplets. Each

1https://drive.google.com/file/d/1r-mDL4IX_hzZLDBKp8_e8VZqD7fOzBkF/view.
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Fig. 2. An illustration of input and output construction for target and self-supervision (forecasting) tasks.
The target task uses a fixed length observation window to predict in-hospital mortality. The forecasting task
has an observation window that is followed by a fixed length prediction window in which only a subset of
variables may be observed. Note that several observation windows are considered for each time-series for
the forecasting task.

observation triplet in the input is embedded using the Initial Triplet Embedding module. The ini-
tial triplet embeddings are then passed through a Contextual Triplet Embedding module which uti-
lizes the Transfomer architecture to encode the context for each triplet. The Fusion Self-attention
module then combines these contextual embeddings via self-attention mechanism to generate an
embedding for the input time-series which is concatenated with demographics embedding and
passed through a FFN to make the final prediction. The notations used in the article are summa-
rized in Table 1.

3.2.1 Initial Triplet Embedding. Given an input time-series T = {(ti , fi ,vi )}ni=1, the initial em-

bedding for the ith triplet ei ∈ Rd is computed by summing the following component embeddings:
(i) Feature embedding e

f

i
∈ Rd , (ii) Value embedding e

v

i
∈ Rd , and (iii) Time embedding e

t

i
∈ Rd .

In other words, ei = e
f

i
+ e

v

i
+ e

t

i
∈ Rd . Feature embeddings ef (·) are obtained from a simple

lookup table similar to word embeddings. Since feature values and times are continuous unlike
feature names which are categorical objects, we cannot use a lookup table to embed these continu-
ous values unless they are categorized. Some researchers [30, 32] have used sinusoidal encodings
to embed continuous values. We propose a novel CVE technique using a one-to-many FFN with
learnable parameters i.e., ev

i
= FFNv (vi ), and e

t

i
= FFN t (ti ).

Both FFNs have one input neuron andd output neurons and a single hidden layer with �
√
d� neu-

rons and tanh(·) activation. They are of the form FFN (x ) = U tanh(Wx+b) where the dimensions
of weights {W ,b,U } can be inferred from the size of hidden and output layers of the FFN. Unlike
sinusoidal encodings with fixed frequencies, this technique offers more flexibility by allowing end-
to-end learning of continuous value and time embeddings without the need to categorize them.

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 6, Article 105. Publication date: July 2022.



Sparse and Irregularly Sampled Multivariate Clinical Time-Series 105:7

Fig. 3. The overall architecture of the proposed STraTS model. The Input Triplet Embedding module em-
beds each observation triplet, the Contextual Triplet Embedding module encodes contextual information
for the triplets, the Fusion Self-Attention module computes time-series embedding, which is concatenated
with demographics embedding and passed through a dense layer to generate predictions for target and
self-supervision (forecasting) tasks.

Table 1. Notations used in this Article

Notation Definition

N # Time-series for target task
N ′ # Time-series for forecasting task

d ∈ RD Demographics vector
F Set of clinical variables

ti ∈ R≥0 Time of ith observation
fi ∈ F Variable of ith observation
vi ∈ R Value of ith observation
(t , f ,v ) Observation triplet

T = {(ti , fi ,vi )}ni=1 Multivariate time-series
y, ỹ ∈ {0, 1} True and predicted outputs for target task

z, z̃ ∈ R |F | True and predicted outputs for forecasting task

m ∈ {0, 1} |F | Forecast mask

e
t
i , e

v
i ∈ Rd CVE for time and value

e
f
i ∈ Rd Variable embedding

ei ∈ Rd Initial triplet embedding

e
T ∈ Rd Time-series embedding

e
d ∈ Rd Demographics embedding

3.2.2 Contextual Triplet Embedding. The initial triplet embeddings {e1, . . . , en } are then passed
through a Transformer architecture [30] with M blocks, each containing a MHA layer with h at-
tention heads and a FFN with one hidden layer. Each block takes n input embeddings E ∈ Rn×d
and outputs the corresponding n output embeddings C ∈ Rn×d that capture the contextual
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information. MHA layers use multiple attention heads to attend to information contained in dif-
ferent embedding projections in parallel. The computations of the MHA layer are given by

Hj = so f tmax

( (
EW

q
j

) (
EW

k
j

)T
√
d/h

) (
EW

v
j

)
j = 1, . . . ,h, (1)

MHA(E) = (H1 ◦ · · · ◦ Hh )Wc . (2)

Each head projects the input embeddings into query, key, and value subspaces using matrices
{Wq

j ,W
k
j ,W

v
j } ⊂ Rd×dh . The queries and keys are then used to compute the attention weights

which are used to compute weighted averages of value (different from value in observation triplet)
vectors. Finally, the outputs of all heads are concatenated and projected to original dimension with
Wc ∈ Rhdh×d . The FFN layer takes the form

F(X) = ReLU
(
XW

f
1 + b

f
1

)
W

f
2 + b

f
2 , (3)

with weights Wf

1
∈ Rd×2d , bf

1
∈ R2d , Wf

2
∈ R2d×d , bf

2
∈ Rd . Dropout, residual connections, and

layer normalization are added for every MHA and FFN layer. Also, attention dropout randomly
masks out some positions in the attention matrix before the softmax computation during training.
The output of each block is fed as input to the succeeding one, and the output of the last block
gives the contextual triplet embeddings {c1, . . . , cn }.

3.2.3 Fusion Self-Attention. After computing contextual embeddings using a Transformer, we
fuse them using a self-attention layer to compute time-series embedding e

T ∈ Rd . This layer first
computes attention weights {α1, . . . ,αn } by passing each contextual embedding through a FFN
and computing a softmax over all the FFN outputs.

ai = u
T
a tanh(Waci + ba ), (4)

αi =
exp (ai )∑n
j=1 exp (aj )

∀i = 1, . . . ,n, (5)

Wa ∈ Rda×d , ba ∈ Rda , ua ∈ Rda are the weights of this attention network which has da neurons
in the hidden layer. The time-series embedding is then computed as

e
T =

n∑
i=1

αici. (6)

3.2.4 Demographics Embedding. We realize that demographics can be encoded as triplets with
a default value for time. However, we found that the prediction models performed better in our
experiments when demographics are processed separately by passing d through a FFN as shown
below. The demographics embedding is thus obtained as

e
d = tanh

(
W

d
2 tanh

(
W

d
1 d + b

d
1

)
+ bd2

)
∈ Rd , (7)

where the hidden layer has a dimension of 2d .

3.2.5 Prediction Head. The final prediction for target task is obtained by passing the concate-
nation of demographics and time-series embeddings through a dense layer with weightswT

o ∈ Rd ,
bo ∈ R and sigmoid activation.

ỹ = siдmoid
(
w
T
o [e

d ◦ eT ] + bo
)
. (8)

The model is trained on the target task using cross-entropy loss.
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3.2.6 Self-Supervision. We experimented with both masking and forecasting as pretext tasks
for providing self-supervision and found that forecasting improved the results on target tasks.
The forecasting task uses the same architecture as the target task except for the prediction layer
i.e.,

z̃ =Ws [e
d ◦ eT ] + bs ∈ R |F | . (9)

A masked MSE loss is used for training on the forecasting task to account for missing values in
the forecast outputs. Thus, the loss for self-supervision is given by

Lss =
1

|N ′ |

N ′∑
k=1

|F |∑
j=1

mk
j

(
z̃
k
j − zkj

)2
, (10)

where m
k
j = 1 (or mk

j = 0) if the ground truth forecast zkj is available (or unavailable) for jth
variable in kth sample. The model is first pretrained on the self-supervision task and is then fine-
tuned on the target task.

3.3 Interpretability

We also propose an interpretable version of our model, which we refer to as I-STraTS. Inspired by
Choi et al. [6] and Zhang et al. [34], we alter the architecture of STraTS in such a way that the
output can be expressed using a linear combination of components that are derived from individual
features. Specifically, the output of I-STraTS is formulated as

ỹ = siдmoid

(
w
T
o

[
d ◦

n∑
i=1

αiei

]
+ bo

)
. (11)

Contrary to STraTS, (i) we combine the initial triplet embeddings using the attentionweights in Fu-
sion Self-attention module, and (ii) directly use the raw demographics vector as the demographics
embedding. The above equation can also be written as

ỹ = siдmoid

( D∑
j=1

wo[j] d[j] +
n∑
i=1

d∑
j=1

αi wo[j + D] ei [j] + bo

)
(12)

Thus, we assign a “contribution score” to the jth demographic feature as wo[j]d[j] and to the ith
time-series observation as

∑d
j=1 αi wo[j + D] ei [j].

4 EXPERIMENTS

We evaluated our proposed STraTSmodel against state-of-the-art baselines on two real-world EHR
databases for the mortality prediction task. This section starts with a description of the datasets
and baselines, followed by a discussion of results focusing on generalization and interpretability.

4.1 Datasets

We experiment with time-series extracted from two real-world EHR datasets, which are described
below. The dataset statistics are summarized in Table 2.

MIMIC-III [16]: This is a publicly available database containing medical records of about 46k
critical care patients in Beth Israel Deaconess Medical Center between 2001 and 2012. We filtered
ICU stays to include only adult patients and extracted 129 features from the following tables: input
events, output events, lab events, chart events, and prescriptions for each ICU stay. For mortality
prediction task, we only include ICU stays that lasted for atleast one day with the patient alive at
the end of first day, and predict in-hospital mortality using the first 24 hours of data. For forecasting,

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 6, Article 105. Publication date: July 2022.
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Table 2. Basic Statistics of the Two Datasets used in our Experiemnts

MIMIC-III PhysioNet-2012

# ICU stays 52,871 11,988
# ICU stays (supervised) 44,812 11,988
# Avg. span of time-series 101.9h 47.3h
# Avg. span of time-sries (supervised) 23.5h 47.3h
# Variables 129 37
Avg. variable missing rate 89.7% 79.7%
Avg. # observations/stay 401 436
Demographics Age, Gender Age, Gender, Height, ICU Type
Task 24-hour mortality 48-hour mortality
% positive class 9.7% 14.2%

Note that the Avg. variable missing rate and Avg. # observations/stay are calculated using only the supervised

samples.

the set of observationwindows is defined (in hours) as {[min(0,x−24),x ) | 20 ≤ x ≤ 124, x%4 = 0}
and the prediction window is the 2-hour period following the observation window. Note that we
only consider those samples which have atleast one time-series measurement in both observation
and prediction windows. The data is split at patient level into training, validation, and test sets in
the ratio 64 : 16 : 20.

PhysioNet Challenge 2012 [12]: This processed dataset from Physionet Challenge 20122 con-
tains records of 11,988 ICU stays of adult patients. The target task aims at predicting in-hospital
mortality given the first 48 hours of data for each ICU stay. Since demographic variables “gender”
and “height” are not available for all ICU stays, we perform mean imputation and add missingness
indicators for them as additional demographic variables. To generate inputs and outputs for fore-
casting, the set of observation windows is defined (in hours) as {[0,x ) | 12 ≤ x ≤ 44, x%4 = 0}
and the prediction window is the 2-hour period following the observation window. The data from
set-b and set-c together is split into training and validation (80:20) while set-a is used for testing.

4.2 Baseline Methods

To demonstrate the effectiveness of STraTS over the state-of-the-art methods, we compare it with
the following baseline models.

—Gated Recurrent Unit (GRU) [7]: The input is a time-series matrix with hourly aggre-
gation where missing variables are mean-imputed. Binary missingness indicators and time
since the last observation of each variable are also included as additional features at each
time step. The final hidden state is transformed by a dense layer to generate output.

— Temporal Convolutional Network (TCN) [1]: This model takes the same input as GRU
which is passed through a stack of temporal convolution layers with residual connections.
The representation from the last time step of the last layer is transformed by a dense layer
to generate output.

— Simply Attend and Diagnose (SaND) [27]: This model also has the same input represen-
tation as GRU and the input is passed through a Transformer with causal attention and a
dense interpolation layer.

—GRUwith trainable Decays (GRU-D) [4]: The GRU-D cell takes a vector of variable values
at each time one or more measurements are seen. The GRU-D cell, which is a modification to

2https://physionet.org/content/challenge-2012/1.0.0/.
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the GRU cell, decays unobserved values in this vector to global mean values and also adjusts
the hidden state according to elapsed times since the last observation of each variable.

— Interpolation-prediction Network (InterpNet) [26]: This model consists of a semi-
parametric interpolation network that interpolates all variables at regular predefined time
points, followed by a prediction network which is a GRU. It also uses a reconstruction loss
to enhance the interpolation network. The input representation is similar to that of GRU-D
and therefore, no aggregation is performed.

— Set Functions for Time Series (SeFT) [13]: This model also inputs a set of observation
triplets, similar to STraTS. It uses sinusoidal encodings to embed times and the deep network
used to combine the observation embeddings is formulated as a set function using a simpler
but faster variation of MHA.

For all the baselines, we use two dense layers to get the demographics encoding and concate-
nate it to the time-series representation before the last dense layer. All the baselines use sigmoid
activation at the last dense layer for mortality prediction. The time-series measurements (by vari-
able) and demographics vectors are normalized to have zero mean and unit variance. All models
are trained using the Adam optimizer [17].

4.3 Evaluation Metrics

The following metrics are used to quantitatively compare the baselines and proposed models
for the binary classification task of mortality prediction. (i) ROC-AUC: Area under ROC curve.
(ii) PR-AUC: Area under precision-recall curve. (iii) min(Re, Pr): This metric is computed as the
maximum of “minimum of recall and precision” across all thresholds.

4.4 Implementation Details

Table 3 lists the hyperparameters used in the experiments for all models for MIMIC-III and
PhysioNet-2012 datasets. All models are trained using a batch size of 32 with Adam optimizer
and training is stopped when sum of ROC-AUC and PR-AUC does not improve for 10 epochs. For
pretraining phase using the self-supervision task, the patience is set to 5 epochs and epoch size
is set to 256,000 samples. For MIMIC-III dataset, we set the maximum number of time-steps for
GRU-D and InterpNet, and the maximum no. of observations for STraTS using the 99th percentile
for the same. This is done to avoid memory overflow with batch gradient descent. The deep mod-
els are implemented using keras with tensorflow backend. For InterpNet, we adapted the official
code from https://github.com/mlds-lab/interp-net. For GRU-D and SeFT, we borrowed implemen-
tations from https://github.com/BorgwardtLab/Set_Functions_for_Time_Series. The experiments
are conducted on a single NVIDIA GRID P40-12Q GPU. Our implementation and data-processing
codes for STraTS are available at https://github.com/sindhura97/STraTS.

4.5 Prediction Performance

We train each model using 10 different random samplings of 50% labeled data from the train and
validation sets. Note that STraTS uses the entire labeled data and additional unlabeled data (if
available) for self-supervision. Table 4 shows the results for mortality prediction on MIMIC-III
and PhysioNet-2012 datasets which are averaged over the 10 runs. STraTS achieves the best per-
formance on all metrics, improving PR-AUC by 3.2% and 3.5% on MIMIC-III and PhysioNet-2012
datasets over the best baseline, respectively. This shows that our design choices of triplet em-
bedding, attention-based architecture, and self-supervision enable STraTS to learn better repre-
sentations. We expected the interpolation-based models GRU-D and InterpNet to outperform the
simpler models GRU, TCN, and SaND. This was true for all cases except that GRU showed a better
performance than GRU-D and InterpNet on the MIMIC-III dataset, for reasons that are unclear.
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Table 3. Hyperparameters used for Our Experiments in this Article

Model MIMIC-III PhysioNet-2012

GRU units = 50, rec d/o = 0.2, output d/o = 0.2,

lr = 0.0001

units = 43, rec d/o = 0.2, output d/o =

0.2, lr = 0.0001

TCN layers = 4, filters = 128, kernel size = 4,

d/o = 0.1, lr = 0.0001

layers = 6, filters = 64, kernel size = 4,

d/o = 0.1, lr = 0.0005

SAnD N = 4, r = 24, M = 12, d/o = 0.3, d = 64, h =

2, he = 8, lr = 0.0005

N = 4, r = 24, M = 12, d/o = 0.3, d = 64,

h = 2, he = 8, lr = 0.0005

GRU-D units = 60, rec d/o = 0.2, output d/o = 0.2,

lr = 0.0001

units = 49 rec d/o = 0.2, output d/o =

0.2, lr = 0.0001

SeFT lr = 0.001, n_phi_layers = 4,

phi_width = 128, phi_dropout = 0.2,

n_psi_layers = 2, psi_width = 64,

psi_latent_width = 128, dot_prod_dim =

128, n_heads = 4, attn_dropout = 0.5,

latent_width = 32, n_rho_layers =

2, rho_width = 512, rho_dropout =

0.0, max_timescale = 100.0,

n_positional_dims = 4

lr = 0.00081, n_phi_layers = 4,

phi_width = 128, phi_dropout =

0.2, n_psi_layers = 2, psi_width =

64, psi_latent_width = 128,

dot_prod_dim = 128, n_heads = 4,

attn_dropout = 0.5, latent_width = 32,

n_rho_layers = 2, rho_width = 512,

rho_dropout = 0.0, max_timescale =

100.0, n_positional_dims = 4

InterpNet ref_points = 96, units = 100, input d/o =

0.2, rec d/o = 0.2, lr = 0.001

ref_points = 192, units = 100, input

d/o = 0.2, rec d/o = 0.2, lr = 0.001

STraTS(ss-) &

I-STraTS(ss-)

d = 32, M = 2, h = 4, d/o = 0.2, lr = 0.0005 d = 32, M = 2, h = 4, d/o = 0.2, lr = 0.001

STraTS &

I-STraTS

d = 50, M = 2, h = 4, d/o = 0.2, lr = 0.0005 d = 50,M = 2, h = 4, d/o = 0.2, lr = 0.0005

Table 4. Mortality Prediction Performance on MIMIC-III and PhysioNet-2012 Datasets

ROC-AUC PR-AUC min(Re,Pr)

MIMIC-III

GRU 0.886 ± 0.002 0.559 ± 0.005 0.533 ± 0.007
TCN 0.879 ± 0.001 0.540 ± 0.004 0.525 ± 0.005
SAnD 0.876 ± 0.002 0.533 ± 0.011 0.515 ± 0.008
GRU-D 0.883 ± 0.003 0.544 ± 0.007 0.527 ± 0.005
InterpNet 0.881 ± 0.002 0.540 ± 0.007 0.516 ± 0.005
SeFT 0.881 ± 0.003 0.547 ± 0.011 0.524 ± 0.01
STraTS 0.891 ± 0.002 0.577 ± 0.006 0.541 ± 0.008

PhysioNet-2012

GRU 0.831 ± 0.003 0.468 ± 0.008 0.465 ± 0.009
TCN 0.813 ± 0.005 0.430 ± 0.01 0.433 ± 0.009
SAnD 0.800 ± 0.013 0.406 ± 0.021 0.418 ± 0.018
GRU-D 0.833 ± 0.005 0.481 ± 0.008 0.468 ± 0.012
InterpNet 0.822 ± 0.007 0.460 ± 0.017 0.455 ± 0.017
SeFT 0.832 ± 0.005 0.454 ± 0.017 0.465 ± 0.009
STraTS 0.839 ± 0.008 0.498 ± 0.012 0.483 ± 0.01

The results show mean and standard deviation of the metrics after repeating the experiment

10 times by sampling 50% labeled data each time.

To test the generalization ability of different models, we evaluate STraTS and the baseline mod-
els by training them on varying percentages of labeled data. Lower proportions of labeled data
can be observed in real-world when there are several right-censored samples. Figures 4 and 5
show the results for MIMIC-III and PhysioNet-2012 datasets, respectively. The performance of
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Fig. 4. Mortality prediction performance on MIMIC-III dataset for different percentages of labeled data av-
eraged over 10 runs.

Fig. 5. Mortality prediction performance on PhysioNet-2012 dataset for different percentages of labeled data
averaged over 10 runs.

all models degrades with reduced amount of labeled data. But STraTS is seen to have a crucial
advantage compared to other models in scarce labeled data settings, which can be attributed to
self-supervision.

4.6 Ablation Study

We compared the predictive performance of STraTs and I-STraTS, with and without self-
supervision and the results are reported in Table 5. “ss+” and “ss–” are used to refer to mod-
els trained with and without self-supervision, respectively. We observe that (i) Adding inter-
pretability to STraTS slightly reduces the prediction scores as a result of constraining model
representations. (ii) Adding self-supervision improves performance of both STraTS and I-STraTS.
(iii) I-STraTS(ss+) outperforms STraTS(ss–) on all metrics on MIMIC-III dataset, and on the PR-
AUC metric for PhysioNet-2012 dataset. This demonstrates that the performance drop from intro-
ducing interpretability can be compensated by the performance improvements obtained through
self-supervision.

4.7 Interpretability

To illustrate how I-STraTS explains its predictions, we present a case study for an 85-year-old
female patient from the MIMIC-III dataset who expired on the 6th day after ICU admission. The
I-STraTS model predicts the probability of her in-hospital mortality as 0.94 using only the data
collected on the first day. The patient had 380 measurements corresponding to 58 time-series vari-
ables. The top 5 variables ordered by their average “contribution score” along with the range (for
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Table 5. Ablation Study: Comparing Mortality Prediction Performance of STraTS and
I-STraTS with and Without Self-Supervision

ROC-AUC PR-AUC min(Re,Pr)

MIMIC-III

I-STraTS (ss–) 0.878 ± 0.002 0.542 ± 0.006 0.516 ± 0.008
I-STraTS (ss+) 0.887 ± 0.003 0.556 ± 0.008 0.531 ± 0.005
STraTS (ss–) 0.881 ± 0.002 0.546 ± 0.007 0.525 ± 0.012
STraTS (ss+) 0.891 ± 0.002 0.577 ± 0.006 0.541 ± 0.008

PhysioNet-2012

I-STraTS (ss–) 0.826 ± 0.008 0.456 ± 0.018 0.467 ± 0.025
I-STraTS (ss+) 0.833 ± 0.007 0.478 ± 0.015 0.466 ± 0.010
STraTS (ss–) 0.835 ± 0.009 0.467 ± 0.023 0.471 ± 0.017
STraTS (ss+) 0.839 ± 0.008 0.498 ± 0.012 0.483 ± 0.010

(‘ss+’ and ‘ss–’ are used to indicate models trained with and without self-supervision, respectively.)

Table 6. Case Study: Top 5 Variables Ordered by ‘average contribution score’
Obtained from I-STraTS Model for an ICU Stay from MIMIC-III Dataset

Variable Range/Value ‘avg. contribution score’

Age 85 0.458
Lactate [1.7, 6.4] mmol/L 0.175
LDH [275, 306] IU/L 0.115
Platelet Count [127, 132] K/uL 0.100
RDW [22.0–22.1]% 0.083

multiple observations) or value (for only one observation) are shown in Table 6. In addition to old
age, we can also observe that I-STraTS considers the abnormal values of Lactate, LDH, Platelet
count, and RDW as the most important factors in predicting that the patient is at high risk of
mortality. The discharge summary for this patient indicates PEA arrest as the cause of death. Ele-
vated Lactate and LDH levels as seen in this case are known to be associated with cardiac arrest
[8, 10]. Such predictions cannot only guide the care givers in identifying high-risk patients for
better resource allocation but also guide the clinicians into understanding the contributing factors
and make better diagnoses and treatment choices, especially at the early stages of treatment before
the condition becomes more severe and uncontrollable.
To obtain a more fine-grained intuition, the observed time-series for some variables in this ICU

stay are plotted in Figure 6, alongwith the corresponding contribution scores. It is interesting to see
that the contribution scores appear to be positively or negatively correlated with the underlying
values or time for several variables. For example, the model gives more weight to higher values of
Lactate and LDH that are linked to cardiac arrest, which is the patient’s cause of death. Similarly,
the model pays more attention to increased blood glucose of 210 mg/dL. As GCS-verbal remains
at a constant low of 1, the model gives it more and more weight as time progresses.

5 CONCLUSION

Weproposed a Transformer-basedmodel, STraTS, for prediction tasks onmultivariate clinical time-
series to address the challenges faced by existing methods in this domain. Our approach of using
observation triplets as time-series components avoids the problems faced by aggregation and im-
putationmethods for sparse and sporadic multivariate time-series.We used a novel CVE technique
which uses parameterized embeddings for continuous values and multi-head attention layers to
learn contextual representations. The self-supervision task of forecasting using unlabeled data
enables STraTS to learn more generalized representations, thus outperforming state-of-the-art
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Fig. 6. Case study: An illustration of a few time-series with contribution scores for a patient fromMIMIC-III
dataset.

baselines. In addition, we also showed that STraTS generalizes well even when labeled data is
scarce and is also more robust to noise compared to existing methods. We also proposed an in-
terpretable version of STraTS, called I-STraTS, for which self-supervision compensates the drop
in prediction performance from introducing interpretability. This work can motivate other re-
searchers to explore more self-supervision tasks for clinical time-series data. Along with exploring
more self-supervision tasks, future work should look at adapting STraTS or optimizing its compu-
tational efficiency for longer time series where attention matrices can become large and infeasible.
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