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A no-show occurs when a scheduled patient neither keeps nor cancels the appointment. A cancellation happens when individuals
contact the clinic and cancel their scheduled appointments. Such disruptions not only cause inconvenience to hospital management,
they also have a significant impact on the revenue, cost and resource utilization for almost all of the healthcare systems. In this
paper, we develop a hybrid probabilistic model based on multinomial logistic regression and Bayesian inference to predict accurately
the probability of no-show and cancellation in real-time. First, a multinomial logistic regression model is built based on the entire
population’s general social and demographic information to provide initial estimates of no-show and cancellation probabilities. Next,
the estimated probabilities from the logistic model are transformed into a bivariate Dirichlet distribution, which is used as the prior
distribution of a Bayesian updating mechanism to personalize the initial estimates for each patient based on his/her attendance
record. In addition, to further improve the estimates, prior to applying the Bayesian updating mechanism, each appointment in the
database is weighted based on its recency, weekday of occurrence, and clinic type. The effectiveness of the proposed approach is
demonstrated using healthcare data collected at a medical center. We also discuss the advantages of the proposed hybrid model and
describe possible real-world applications.

Keywords: Multinomial logistic regression, Dirichlet distribution, Bayesian inference, healthcare operations improvement, no-show
and cancellation prediction

1. Introduction

The problem of appointment no-show and cancellation,
which is also known as appointment disruption, can cause
significant disturbance in the smooth operation of almost
all scheduling systems. When scheduled patients do not at-
tend their appointments, resources will be underutilized,
while other patients cannot get timely appointments be-
cause part of the schedule is filled with patients who will not
attend. Also, when scheduled patients cancel their appoint-
ments, they often leave the clinic with a very short amount
of time to fill the schedule. In such cases, overbooking can
help to some extent, but it usually results in clinic conges-
tion and patient dissatisfaction. In fact, appointment no-
show and cancellation have far-reaching effects on clinic
efficiency, patient outcomes, and healthcare costs, which
can reach hundreds of thousands of dollars yearly (Moore

∗Corresponding author
Color versions of one or more of the figures in the article can

be found online at www.tandfonline.com/uhse.

et al., 2001; Bech, 2005; Hixon et al., 1999; Rust et al,. 1995;
Barron, 1980). Hence, accurate prediction of no-show and
cancellation probability is a cornerstone for any schedul-
ing system and non-attendance reduction strategy (Daggy
et al., 2010; Cayirli and Veral, 2003; Ho and Lau, 1992;
Cote, 1999; Hixon et al., 1999; and Moore et al., 2001).

In this article, we develop a hybrid probabilistic model
based on multinomial logistic regression and Bayesian in-
ference to predict accurately the probability of no-shows
and cancellations in real-time. The result of the proposed
method can be used to develop more effective appoint-
ment scheduling (Chakraborty et al., 2010; Glowacka et al.,
2009; Gupta and Denton, 2008; Hassin and Mendel, 2008;
Liu et al., 2009). It can also be used for developing effec-
tive strategies, such as selective overbooking for reducing
the negative effects of disturbances and filling appointment
slots while maintaining short waiting times (Laganga and
Lawrence, 2007; Muthuraman and Lawley, 2008; and Zeng
et al., 2010).

The rest of the article is organized as follows: Sec-
tion 2 summarizes some of the related work proposed
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A hybrid prediction model 15

in the literature. Section 3 describes the general scheme
of the proposed model. Section 4 explains our proposed
algorithm for predicting no-show and cancellation prob-
abilities. Section 5 presents the results of applying the
proposed prediction model to a healthcare dataset col-
lected at a medical center. Finally, Section 6 concludes our
work and presents some future extensions of the proposed
model.

2. Relevant background and problem formulation

Turkcan et al. ([2013)] provide a structured and represen-
tative review of no-show literature (see also Rowett et al.,
2010; Bowser et al,. 2010; Denhaerynck et al., 200; and
George et al., 2003). The rate of no-show in the reviewed
articles varies significantly for different clinical population
of patients, e.g., chronic care, primary care, etc., and lo-
cations, e.g., North America, Europe, etc., ranging from
close to zero up to 48-64% (see also Mitchell and Selmes,
(2007),;Bech, 2005; Cayirli et al., 2006, 2008; and Yehia
et al., 2008. Several reasons are reported for no-show in-
cluding: forgot appointment, conflict with appointment,
transportation, physically/mentally unwellness, scheduling
system problems, perceived disrespect, bad weather and fi-
nancial problems (See also Park et al., 2008; Neal et al.,
2005; Tuller et al., 2010; Sarnquist et al., 2011; Corfield
et al., 2008; Gany et al., 2001). Several factors are stud-
ied for predicting non-attendance behavior (Daggy et al.,
2010; Zeng et al., 2010; Turkcan et al., 2013; Cashman et al.,
2004; Cohen et al., 2008; Savageau et al., 2004; Alafaireet,
2010; Lehmann, 2007). The literature also shows the rela-
tionship between no-show and specific health outcomes in
some clinical populations including diabetic, dialysis, hu-
man immunodeficiency virus (HIV), primary care and psy-
chiatric (Schectman et al., 2008; Obialo et al., 2008; Murphy
et al., 2011; Bigby et al., 1984). Ample literature is avail-
able discussing interventions to reduce no-show including:
appointment reminders, patient education, and follow-up
after a no-show appointment, open-access scheduling, and
lean process improvement methods (see also Hardy et al.,
2001; Guse et al., 2003; Can et al., 2003; Kopach et al., 2007;
Murray and Tantau, 2000; LaGanga, 2011; Fischman,
2010; Garuda et al., 1998). In fact, the effectiveness of many
of the above intervention strategies and consequently clin-
ics’ performance significantly rely on the accurate predic-
tion of individual patients’ risk of non-attendance (Daggy
et al., 2010). Below we have divided the related quantita-
tive methods of predicting appointment disruption into two
groups of population-based models and individual-based
models.

Population-based techniques mainly use a variety of meth-
ods drawn from statistics and machine learning that can
be used for predicting no-shows and cancellations (Dove
and Schneider, 1981; Kotsiantis, 2007). These methods

use the information from the entire population (dataset)
in the form of set factors, in order to estimate the
(probability of) no-show, cancellation and attendance
(Baldi et al., 2000; Kotsiantis, 2007). Logistic regression
is one of the most popular statistical methods in this
category that is used for binomial regression, which can
predict the probability of disturbances by fitting numer-
ical or categorical predictor variables in data to a logit
function (Turkcan et al., 2013; Daggy et al., 2010; Hilbe,
2009). There has been some work using tree-based and
rule-based models that create if–then constructs to sepa-
rate the data into increasingly homogeneous subsets, based
on which of the desired predictions of disturbances can
be made (Glowacka et al., 2009). The problem with these
population- based methods is that although they provide
a reasonable estimate, they do not differentiate between
the behaviors of individuals and hence cannot update ef-
fectively, especially using small datasets. Another problem
with these methods is that once the model has been built,
adding new data has an insignificant effect on the result
especially when the size of the initial dataset is much larger
than the size of the new data. In Section 5, we will com-
pare the performance of above methods with the proposed
approach.

Individual based approaches are primarily based on time se-
ries and smoothing methods, which are used for predicting
the probability of a disruption in an appointment. These
methods utilize past behaviors of individuals for the es-
timation of future no-show and cancellations probability.
Potential time series methods for predicting no-shows and
cancellations include autoregressive models (Brockwell,
2009), time-frequency analysis models (Chatfield, 1996;
and Bloomfield, 1976), nonlinear filtering and Hidden
Markov Models (HMM), Stratonovich (1960). Common
smoothing algorithms that can be used for no-show and
cancellation include moving average, exponential smooth-
ing, and local regression (Simonoff, 1996; Cleveland, 1993;
and Winter, 1960). While individual-based methods are fast
and effective in modeling the behavioral (no-show) pattern
of each individual and work well with a small dataset, they
do not provide a reliable initial estimate of no-show and
cancellation probabilities, which is especially important in
our case. The main reason is that individual based meth-
ods usually employ a function of past data (attendance
record) to estimate the probability of a future event, e.g.
no-show and cancellation. But for the initial state where
there is no past history available, such function is inappli-
cable, and consequently, individual-based methods usually
use random guess for the initial estimate, e.g., probability
of no-show and cancellation. In Section 5, we will compare
the performance of the above- mentioned methods with the
proposed method.

As described above, each of the population-based and
individual-based approaches have some advantages and
disadvantages. However, none of the existing studies for
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16 Alaeddini et al.

prediction of appointment disruptions have considered us-
ing these methods together to overcome their problems and
improve their performance, even though related ideas have
been successfully employed for fields like universal back-
ground model (Reynolds et al., 2000), and recommender
systems (Adomavicius and Tuzhilin, 2005). In the next sec-
tion, we develop a hybrid approach that combines logis-
tic regression as a population-based approach along with
Bayesian inference as individual-based approach for pre-
diction of disturbances in appointment scheduling. The
proposed approach also contains an efficient linear pro-
gramming component to optimize its performance.

Indeed, the proposed approach generalizes and extends
Alaeddini et al. (2010) probabilistic model for no-show es-
timation to general types of disruptions, e.g. no-show and
cancellation. More specifically, this study extends Alaed-
dini et al. (2010) binomial logistic regression model for
initial estimation of no-show to a multinomial logistic re-
gression, which can take into account multiple types of
disruptions, namely no-show and cancellation. It also gen-
eralizes Alaeddini et al. (2010) Bayesian updating mecha-
nism for personalization of the no-show estimates for each
patient to general types of disruptions using the Dirichlet
distribution instead of the Beta distribution. In addition,
while Alaeddini et al. (2010) used a set of discrete sub-
weights to weight the appointments based on their recency,
this paper employs a modified versions of the generalized
logistic function (Richards, 1959) to design a continuous
weighting system. Above generalizations and extensions,
enable the proposed approach to develop one general in-
tegrated model (instead of multiple standalone models)
based on the same set of variables for considering dif-
ferent types of disruptions in appointment scheduling, as
they both can have significant but different impacts on the
system workload and patients’ waiting time; generally the
range of possible solutions to a cancellation case is more
diverse than a no-show case. The authors recognize that
the proposed model implicitly assumes that no-show and
cancellation can be predicted by the same set of variables,
and while this assumption has been verified for this study,
no-show and cancellation may not always have the same
predictors.

Some of the major contributions of this research include:
(i) Combining the strengths of multinomial logistic regres-
sion to provide a reliable initial estimate of no-show and
cancellation, and Bayesian updating to personalize the pre-
dictions for each patient based on her/his past attendance
behavior; (ii) Statistical integration of multinomial logis-
tic regression and Bayesian inference by transforming the
output of multinomial logistic regression, which is a multi-
nomial distribution, to its conjugate Dirichlet distribution
and applying the Bayesian updating to the Dirichlet dis-
tribution, which is a continuous distribution with several
good characteristics, such as flexibility and simplicity of
updating procedure; (iii) Developing and optimizing a set

of appointment weighting factors including: appointment
type, recency and weekday of occurrence to further improve
the predictions of the proposed model.

Notably, there is a significant difference between
the proposed method and Bayesian logistic regression
(O’Brien, and Dunson, 2004). Theoretically, in Bayesian
logistic regression, the main focus is modeling uncertainties
in the parameters of the model, namely the parameter of a
multinomial logistic regression. However, in the proposed
method, the primary concern is modeling the uncertainty
in the outputs of the model, namely no-show, cancellation,
and attendance. In addition, unlike the proposed model,
in Bayesian logistic regression, modeling a large number of
variables can be very challenging; as the number of variables
increase, efficient computation of posterior parameters gets
very difficult. Finally, while in the proposed method the ap-
propriate type of prior is chosen based on the relationship
between logistic regression and the Dirichlet distribution,
in Bayesian logistic regression, specifying an appropriate
choice of prior is usually trivial.

In Section 5, we compare the performance of the pro-
posed hybrid model with the representative algorithms
from each of population-based and individual-based ap-
proaches.

3. General scheme of the proposed model

The proposed model for predicting patient no-show and
cancellation is composed of three major components shown
in Figure 1. First, the data set will be preprocessed, and after
coding discrete variables, a multinomial logistic regression
model will be built based on the entire populations’ general
social and demographic information to provide an initial
estimate of no-show and cancellation probabilities. Second,
each appointment in the database will be weighted based on
its recency, weekday of occurrence, and clinic type. Third,
the personalized probability of no-show and cancellation
will be derived for each individual patient using a compre-
hensive Bayesian updating mechanism based on the popu-
lation estimate from Step 1 and weighted records of each
individual in Step 2.

In the rest of this section, we will provide a brief descrip-
tion about each of the above components, in the following
order: (i) Population-based estimate of appointment dis-
ruptions: multinomial logistic regression, (ii) Adaptation:
personalization of the predictions, and (iii) Appointment
weighting: effect of appointment recency, occurrence on
non-working days and clinic type; where we will present the
appointment- weighting component after the adaptation
component to better demonstrate its impact (in practice,
the appointment-weighting component will be applied be-
fore the adaptation component). In Section 4, we will show
how these components are connected together through the
proposed integrated algorithm.
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A hybrid prediction model 17

Fig. 1. The general scheme of the proposed method.

3.1. Population based estimate of appointment disruptions:
Multinomial logistic regression

The first component of the proposed method is a multi-
nomial logistic regression, which is used for initial (prior)
estimation of no-show and cancellation probabilities using
the (training) dataset of the individuals’ general social and
demographical information. Let X be the set of factors (ex-
planatory variables) affecting probability of attendance of
an individual, and let Y be the attendance type including
no-show, cancellation, and attendance. In the preprocess-
ing step of this study, the following factors were identified as
significant: (i) Sex, which is considered as a discrete factor
with two possibilities of male and female; (ii) Age, which
is considered as a continuous factor ranging from 25 to
92; (iii) Marital Status, which is considered as a discrete
factor with four categories of never-married, married, di-
vorced and widowed; (iv) Medical Service Coverage, which
is considered as a discrete factor with six categories ranging
from not service connected, to 50-100% service connected
(detail information of each category is available at Depart-
ment of Veteran Affairs website); (v) Distance to Medical
Center (mile), which is considered as a continuous fac-
tor and calculated using a free Excel add-on based on the
distance between patients’ residence ZIP and the medical
center; and (vi) Clinic Type (cluster), which is considered
as a discrete factor with three categories that are defined
by clustering the 271 clinics in the database based on their
disruption rates (see the Appendix for details). Likelihood
ratio chi-square tests for categorical variable and t-tests for
continuous variables have been used to check the signifi-
cance of the factors.

The multinomial logistic regression model F (X, Bk)then
takes the form:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Pk = exp (XBk)

1+�K
k=0exp (XBk)

, k = 1, 2, . . . , K − 1

and Pk = 1−�k−1
i=0 Pi

P0 = exp (XBk)

1+�K
k=0exp (XBk)

(1)

where Pk is the probability of kth event (In this study, we use
k = 0, 1, 2, representing no-show, cancellation, and atten-
dance, respectively). The unknown vector of parameters
Bk (Bk = [βk0, βk1, . . . , βkl ]) can be estimated using itera-
tive procedures, such as Newton-Raphson method or it-
eratively reweighted least squares (IRLS) (Agresti, 2002).
Notably, our preliminary analysis of data also shows neg-
ative correlation between the appointments occurred on
non-working days and the rates of no-show and cancella-
tion (P = 0.116 and 0.218). However, due to its sparsity,
addition of such factor makes the data matrix of the regres-
sion model severely rank deficient such that the estimation
of the model parameter becomes impossible. We address
this problem by including this factor to the model in a later
stage through another component (appointment weight-
ing), which will be discussed in detail later.

Also, the model proposed in the paper implicitly assumes
that no-show and cancellation can be predicted by the same
set of variables. In fact, one of the objectives of this research
was to develop a unified model (instead of multiple stan-
dalone models) to consider different types of disruptions
in appointment scheduling, as they can all have significant
impact on the system workload and patients’ waiting time.
However, while our initial statistical analysis has verified
above assumption for our dataset, no-show and cancella-
tion may not always have same predictors.

Finally, the proposed multinomial logistic regression ap-
proach provides a more compact and convenient model
for estimation no-show and cancellation, in comparison
to using two separated logistic regression models for no-
show/show and cancellation/show.

3.1.1. Example 1
For better understanding of how the above model applies
to the problem domain, we show a simple case study based
on the dataset used in Section 5 experimental results.

The dataset used for this example (the training dataset)
is created by dividing the original dataset of this study into
two disjoint datasets of approximately equal size, namely
training and testing. The original datasets contains the
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18 Alaeddini et al.

Table 1. Descriptive statistics of the training dataset used for fitting multinomial logistic regression

Frequency Rate

No-show Cancellation Show-up No-show Cancellation Show-up

Sex
Female 30 33 89 19.74% 21.71% 58.55%
Male 214 95 617 23.11% 10.26% 66.63%

Marriage Status
Never Married 63 30 223 19.94% 9.49% 70.57%
Married 80 46 181 26.06% 14.98% 58.96%
Divorced 64 31 121 29.63% 14.35% 56.02%
Widowed 38 19 182 15.90% 7.95% 76.15%

Medical Service Coverage (Predefined Categories)
Service Connected <5 56 16 171 23.05% 6.58% 70.37%
Service Connected, 50% To 100% 70 53 169 23.97% 18.15% 57.88%
Service Connected Less Than 50% 14 4 14 43.75% 12.50% 43.75%
Non-Service Connected 75 51 319 16.85% 11.46% 71.69%
Non-Service Connected, VA Pension 16 5 29 32.00% 10.00% 58.00%
Service Connected <6 6 3 7 37.50% 18.75% 43.75%

Clinic Cluster
1 10 28 45 12.05% 33.73% 54.22%
2 197 75 618 22.13% 8.43% 69.44%
3 38 23 44 36.19% 21.90% 41.90%

Age (Average) 56.53 52.17 60.12
Distance To Medical Center (Average) 13.72 15.32 14.87

information of 1543 attendance records of 99 patients;
therefore, 1078 attendance records (from 10/1/2009 to
12/23/2009) are considered for fitting multinomial logis-
tic regression. Table 1 provides some descriptive statistics
about the training dataset.

Applying model (1) to the above dataset and using it-
eratively reweighted least squares (IRLS) method, the pa-
rameters of the fitted multinomial logistic regression model
along with their standard error are computed as shown in
Table 2 (because we are modeling a categorical variable
with three mutually exclusive levels, namely no-show, can-
cellation and attendance, and because the occurrence of
any one of them automatically implies the non-occurrence
of the remaining two events (P2 = 1− (P0 + P1)), only two
sets of regression parameters are estimated (see Model 3)).
Meanwhile, the assumption of linear association between
the continuous covariates of the model and log odds of no-
show and cancellations has been verified to be appropriate.

Now for a sample patient in the dataset with the informa-
tion shown in Table 3, based on the estimated coefficients
(in Table 2), the probability of no-show, cancellation and
attendance is estimated as (0.14, 0.09, 0.77).

3.2. Adaptation: Personalization of the predictions

The result of above multinomial logistic regression is a
multinomial distribution with three variables, namely prob-
abilities of no-show, cancellation and attendance, where
the parameters (Pk, k = 0, 1, 2) of such distribution is

estimated based on all patients’ information in the (train-
ing) dataset using multinomial logistic regression. Such (ini-
tial) estimates can be personalized for each patient based
in her/his individual attendance records (in the training
dataset) to improve the prediction ability of the model.
Bayesian inference is another component of the proposed
method, which is used for updating the prior estimate of
no-show and cancellation probabilities from multinomial
logistic regression using the dataset of individual patient
attendance record (training dataset).

To use Bayes’ theorem, we need a prior distribution
g
(
α pri

)
that gives our belief about the possible values of the

parameter vector α = (α1, . . . , αK ) representing the prob-
abilities of no-show, cancellation and attendance before
incorporating the data (Z). The posterior distribution is
proportional to prior distribution times likelihood:

g (α pos |Z) = g
(
α pri

)× f
(
Z|α pri

)
∫1

0 g (a)× f (Z|a) da
(2)

In Bayesian statistics, the Dirichlet distribution is a com-
mon choice for updating the prior estimate of multino-
mial distribution parameters (distribution of the depen-
dentvariable in the multinomial logistic regression) because
(Bolstad, 2007):

1. The Dirichlet distribution is the conjugate prior of multi-
nomial distribution, giving the same posterior distribu-
tion as the prior (Dirichlet).
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20 Alaeddini et al.

Table 3. Information of a sample patient and a sample appointment in the dataset

Sex Age
Marriage

Status

Medical
service

coverage

Distance to
medical

center (mile)
Clinic
cluster Recency

Closeness to
non-work days

Probabilities of
no-show, cancellation

and show-up

Male 78 Widowed 50% -100% 15.90 2 322 days Not before
holiday

(0.14, 0.09, 0.77)

2. The Dirichlet distribution has very efficient updating
mechanism, where it only requires adding the number
of occurrence of each category to the prior parameters
αk.

3. In the context of our problem, the parameters of the
prior Dirichlet distribution is readily available and is
equal to the output of the multinomial logistic regres-
sion, which is not the case for many other types of prior
distributions, such as normal distribution.

4. Unlike multinomial distribution, the Dirichlet distribu-
tion is a continuous distribution, which is much easier
to work with in terms of inference and updating.

5. The Dirichlet distribution has a few parameters more
than multinomial distribution, which allows it to take
different shapes and makes it suitable for representing
different types of priors.

By definition, the Dirichlet distribution (denoted by
Dir (α)) is a family of continuous multivariate proba-
bilitydistributions parameterized by the vector α of pos-
itive reals. The Dirichlet distribution for random vari-
ables Z1, . . . , ZK with parameters α1, ..., αK > 0, K ≥ 2
(our work incorporates K = 3, which is based on the num-
ber categories: no-show, cancellation, and attendance) and
has a probabilitydensityfunction with respect to Lebesgue-
measure on the Euclideanspace RK−1 given by (Evans et al.
[2000]):

f (Z1, . . . , ZK ; α1, . . . , αK ) = 1
B (α)

K∏
k=1

Zαk−1
k (3)

for all Z1, . . . , ZK > 0 where ZK is an abbreviation
for 1− Z1 − . . .− ZK−1. The density is zero outside
this open (K − 1)-dimensional support of the Dirichlet

distribution is the set of K-dimensional vectors Z whose
entries are real numbers in the interval (0,1); furthermore,
the sum of the coordinates is 1. Another way to express
this is that the domain of the Dirichlet distribution is it-
self a set of probabilitydistributions, specifically the set of
K-dimensional discretedistributions. The normalizingcon-
stant is the multinomial betafunction, which can be ex-
pressed in terms of the gammafunction:

B (α) =
∏K

k=1 � (αk)

�
(∑K

k=1 αk

) , α = (α1, . . . , αK ) (4)

From the Bayesian perspective, the probability density
function of the Dirichlet distribution returns the belief that
the probabilities of K rival events are Zj given that j th event
has been observed α j − 1 times.

Based on the above discussion, Dir (α) can be used
as prior density of the proposed Baysian update mecha-
nism to update parameters α = (α1, . . . , αK ). The result of
Bayesian update is a new (posterior) Dirichlet with param-
eters vector:

α
pos
k = α

pri
k + yk (5)

where yk, k = 1, 2, 3 is the number of occurrence of each
category, namely no-show, cancellation and attendance, in
the (training) dataset. In other words, the Dirichlet distri-
bution can be updated simply by adding the new occur-
rence number of each category to the prior parameter αk
(Bolstad, 2007):

g (α|Z) =
�
(∑k

k=1 yk + αk

)
∏K

k=1 � (yk + αk)

K∏
k=1

Zαk+yk−1
k (6)

Table 4. Attendance record and Bayesian updated probabilities of no-show cancellation and show-up of the sample patient in Example
1 (No-show, cancellation, and show up are represented by 1, 2, and 3 respectively in the attendance record column)

Posterior mean of Dirichlet dist.

Appointment No. Appointment date Attendance record No-Show Cancellation Show-up

0.14 0.09 0.77
1 10/5/2009 1 0.57 0.05 0.38
2 10/29/2009 1 0.71 0.03 0.26
3 11/5/2009 2 0.53 0.27 0.19
4 12/4/2009 1 0.63 0.22 0.15
5 12/7/2009 1 0.69 0.18 0.13
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A hybrid prediction model 21

Fig. 2. Changing parameters of Dirichlet distribution for the sample patient during Bayesian update.

The posterior mean, which represents the updated es-
timate of the multinomial distribution parameters, would
then be E (ak|y1, . . . , yK ) = yk+ak∑K

k=1 yk+
∑K

k=1 ak
with variance:

Var (ak|y1, . . . , yK )

=
(yk + ak)

((∑K
k=1 yk +

∑K
k=1 ak

)
− (yk + ak)

)
((∑K

k=1 yk +
∑K

k=1 ak

)2 (∑K
k=1 yk +

∑K
k=1 ak + 1

))
(7)

Bolstad (2007) suggests choosing a prior distribution
that matches the belief about the location and scale. This
procedure, which is used in this research, can be formulated
by letting α

pri
k = Pk; where Pk is the output of the multi-

nomial logistic regression. As an alternative to the above
procedure, several researchers (Leonard, 1973; Aitchison,
1985; Goutis, 1993; and Forster and Skene, 1994) proposed
using a multivariate normal prior distribution for multino-
mial logits.

To conclude this section, when a new patient enters the
system (there is no personal history), the initial estimate

Fig. 3. Tilted time framing using (a modified version of) the gen-
eralized logistic function.

using multinomial logistic regression will be used as the
prediction of no-show, cancellation and attendance. Also,
if there is a patient with only one or two appointments,
the initial estimate from multinomial logistic regression is
updated based on the available appointment/s information.

3.2.1. Example 2
For better understanding of how the Bayesian update can
be applied to multinomial regression results, we recon-
sider the attendance records of the sample patient in Ex-
ample 1. Table 4 presents the attendance record of the
patient during 10/1/2009 to 12/23/2009. Note that no-
shows are represented by 1 while cancellation and at-
tendance are represented by 2 and 3, respectively. Using
the result of multinomial logistic regression model in Ex-
ample 1 as the prior parameters of the Dirichlet distri-
bution

(
α pri = (0.14, 0.09, 0.77)

)
, the posterior distribu-

tion of no-show, cancellation and attendance after each
appointment are illustrated in the last three columns of
Table 4. In the proposed Bayesian update mechanism, if a
patient has multiple appointments on the same day with
similar outcomes, e.g., no-show, (there have been no such
cases in the database of this study), one of the reviewers
suggested to count that outcome (no-show, cancellation,
attendance) only once.

Figure 2 also illustrates the changes in the estimated
probabilities of no-show, cancellation and attendance (solid
lines) after observing each new record of attendance (the es-
timated trend of each type (dashed lines) is also calculated
and shown using polynomials of order three). From Fig-
ure 2, that Bayesian update reacts quickly to each new data
record can be checked; however, as the number of atten-
dance records increases, the estimates tend to converge to
certain probabilities. In other words, in Bayesian updating
when the number of updates (records) gets very large, the ef-
fect of the new records gets marginal. As a result, the model
may not be able to respond effectively to changes in the pa-
tients’ attendance behavior (it requires many new records).
In the next section, we describe another component of
the proposed method, which works together with Bayesian
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22 Alaeddini et al.

Table 5. Data structure and optimal value of the weighting factors

Appointment Recency (w̃1) (parameters of the
generalized logistic function) Preceding non-workday (w̃2) Clinic Cluster (w̃3)

B M Not-before holiday Before holiday 1 2 3

0.01 138.5469 0.6863 0.3648 0.5728 0.3831 0.6921

update mechanism to adjust the weight of appointments
based on a number of appointment-related factors includ-
ing: appointment recency, occurrence on non-working days
and clinic type to improve the performance of the proposed
method.

3.3. Appointment weighting: Effect of appointment recency,
occurrence on non-working days and clinic type

The proposed weighting mechanism, which is interlaced
with Bayesian update mechanism, will increase the infor-
mation content of data to improve the prediction ability
of no-show and cancellation. For this purpose, a set of
weighting factors W= [w̃1, . . . , w̃ω] is designed and weights
the appointments in (7) before being applied to Bayesian
update. Our weighting scheme includes three weighting
factors(ω = 3): (i) Recency of the appointment: weights
each no-show, cancellation and attendance record based
on how recently it occurred. The more recent the appoint-
ment the higher the weight; see Figure 3; (ii) occurrence
on non-working days: weight the appointments based on
whether they occurred on non-working days to adjust the
lower rate of no-show and cancellation on those days; (iii)
Clinic type: weight each appointment in the dataset with
respect to the hosting clinic to adjust different rates of no-
show and cancellation in different clinics. Depending on
the medical center where the no-show/cancellation predic-
tion model is being applied, one may think of other types
of weighting factors as well.

For the first weighting factor (w̃1), appointment recency,
reasonably no-show and cancellation records that occurred
a long time ago do not carry the same weight as recent ones.
This factor is based on the fact that patients may gradually
or abruptly change their behavior and should be reflected
in the model. For this purpose, a tilted time framing mech-
anism is developed and is closely related to exponentially
weighted moving average (EWMA) smoothing, Figure 3. A
weighting factor of w̃1 is defined based on a modified ver-
sion of the generalized logistic function (Richards, 1959):

w̃1 = 1− 1
1+ exp (−B (t −M))

(8)

where t is the date of appointment, M is the current date,
and B is the growth rate of the logistic function.

For the second weighting factor (w̃2), occurrence on non-
working days, our preliminary study of the data revealed
strong negative correlations between no-show and cancel-

lation rates and appointment occurred on non-working
days. To adjust the influence of different week days on
the probability of disruption, the following two sub-weights

w̃2 =
{

w21 Monday through Friday
w22 Weekend and holidays are designed.

For the third weighting factor (w̃3), a strong correla-
tion has also been observed among the rate of no-show
and cancellation, and some clinics. Three sub-weights
(w̃3 = {w31, w32, w33}) are defined to consider the effect of
the hosting clinic on the chance of no-show and cancella-
tion.

The parameters B and M of the first weighting factor
(w̃1), along with the optimal values of the sub-weights of
the other two weighting factors, namely w̃2 = {w21, w22}
and w̃3 = {w31, w32, w33}, can be determined by minimizing
the mean square difference (MSE) of the estimated prob-
abilities of no-show, cancellation and attendance, and the
respective empirical probabilities (in the training dataset).
The general formulation for the objective function, which
should be minimized with respect to the weights, can be
represented as follows:

Min MSC = �n
i=1�

K
k=1

(
p̂Model

i ( j∈T)k − p̂Emp
i ( j∈T)k

)2 /
n

S.T.

0 ≤ Wω ≤ 1, ω = 1, 2, 3

(9)

where i = 1, . . . , n, is the index of the patient, j ∈ T is the
index of appointments in training dataset (T = {1, . . . , t}),
k = 1, 2, (K = 3) is the index of attendance outcome; no-
show, cancellation and show- up, and ω is the index of
weighting factors (ω = 1, . . . 3).

In objective function (9), we compare the estimate from

the training dataset
(

p̂Model
i ( j∈T)k

)
, which is calculated by ap-

plying the Bayesian update mechanism to the weighted ap-
pointments in that dataset, with the empirical probability of

disruptions
(

p̂Emp
i ( j∈T)k

)
. Since p̂Model

i ( j∈T)k and p̂Emp
i ( j∈T)kare provid-

ing the estimates of no-show, cancellation, and attendance
probabilities of same patients, they are comparable. p̂Emp

i ( j∈T)k,
the empirical probability of disruption of type k, for per-
son i after his last appointment in the (training) dataset is
calculated as follows:

p̂Emp
i ( j∈T)k =

∑t
j=1 Yi jk

t
(10)
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24 Alaeddini et al.

Fig. 4. Changing parameters of Dirichlet distribution based on weighted appointments for the sample patient during Bayesian update.

with Yi jk as a multinomial (random) variable representing
attendance record of type k for patient i in the appointment
j
(
Yi jk = (0, 1)

)
. Also, p̂Model

i ( j∈T)k, the estimated probability of
disruption of type kfor person i is calculated based on the
weighted appointments in the training dataset using the
proposed model as follows:

p̂Model
i j∈T)k =

α
pos
i ( j∈T)k∑K

k=1 α
pos
i ( j∈T)k

(11)

where α
pos
i ( j∈T)k is the vector of posterior parameters of the

Dirichlet distribution (no-show, cancellation and atten-
dance estimates) calculated based on (5) but using weighted
appointments as:

α
pos
i ( j∈T)k = α

pri
ik +

t∑
j=1

(∏
ϕ∈ω

w̃i jϕ

)
Yi jk (12)

where w̃i jϕ is the ϕth weight (ω = 1, 2, 3)related to the j th

appointment of patient i , and α
pri
ik is the prior estimate of

disruption of type k for patient i resulted from the regres-
sion analysis. Substituting p̂Emp

i ( j∈T)k and p̂Model
i ( j∈T)k with their

equivalent formulations in (10–12), the optimization model
in (9) can be rewritten as:
Min MSE

= �n
i=1�

K
k=1

⎛
⎝ α

pri
ik +�t

j=1

(
�ϕ∈ωw̃i jϕ

)
Yi jk

�K
k=1

(
α

pri
ik +�t

j=1

(
�ϕ∈ωw̃i jϕ

)
Yi jk

) − �t
j=1Yi jk

t

⎞
⎠

2

/n

S.T : (13)

0 ≤ w̃i jϕ ≤ 1

The above model can be solved by most of the nonlin-
ear programming methods. To ensure having large enough
dataset for personalization of the estimated for each pa-
tient, we suggest using two-third of data for training and
one–third of that for testing. We also suggest using the
data in the order they occurred to consider the possible
changes in the patient behavior. Table 5 shows the opti-
mal weights from applying optimization model 13 to the
training dataset.

3.3.1. Example 3
For better understanding of the application of the optimiza-
tion model, we reconsider Example 2 based on weighted
appointments. Incorporating the appointment weights to
the Bayesian update mechanism in Example 2 results in the
posterior Dirichlet probabilities shown in Table 6. Figure 4
also illustrates the changes in the estimated probabilities
of no-show, cancellation and attendance after each new
weighted appointment record of attendance (solid lines)
as well as the estimated trend (using order three poly-
nomials). Comparing Figure 4 to Figure 2 reveals the
changes in the posterior Dirichlet distribution parameters
estimates. As shown in Figure 4, weighting the appoint-
ments generally decreases the fluctuations of the posterior
estimates for the early appointments and increases the re-
sponsiveness of the updating mechanism to recent records,
which means the quicker response to changes in patient
behavior.

In addition, comparison of Tables 4 and 6 reveals that
the weighting mechanism moderates the amount of changes
(increase/decrease) in the probability of no-show, cancel-
lation, and attendance after each update. For instance in
Table 4, the amount of change in the probability of atten-
dance from the first to the second appointment is 0.39. This
amount is only 0.02 for appointment 4 to 5. In the mean-
time, in Table 6 the amount of change from appointment 1
to 2 and appointment 4 to 5 is 0.07.

4. The proposed algorithm

The main idea of the proposed method is to first provide
an initial estimate of no-show, cancellation and attendance
based on the demographic information of all patients in the
(training) dataset, and then improve the initial estimates
based on the individuals’ no-show, cancellation and atten-
dance behavior using a Bayesian updating mechanism on
weighted appointments. Algorithm 1 describes the proposed
algorithm, which comprises the three components, namely,
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A hybrid prediction model 25

multinomial logistic regression, Bayesian update mecha-
nism, and the optimization procedure that is explained in
the previous section.

Algorithm 1: No-show and Cancellation Prediction Algorithm

Input: Training dataset
(
Xi j , Yi j

)
, Threshold parameter T

Output: Estimated no-show and cancellation probabilities

p̂Model , the Dirichlet distribution posterior parameters
(
α

pos
i j

)
,

Multinomial logistic regression estimated parameters B̂k
Procedure:
1: /∗ Logistic regression∗/
2: B̂k← Estimate the parameters of multinomial logistic

regression in (3)
3: p̂0

ik

(
Yi = 1, 2, 3|Xi j

)← F
(

Xi j , B̂k

)
4: α

pri
ik ← p̂0

ik
5: /∗Weight optimization∗/

6: p̂Emp
i ( j∈T)k =

∑t
j=1 Yi jk

t
7: w̃i jϕ ← MinMSE =

n∑
i=1

K∑
k=1

(
α

pri
ik +

∑t
j=1(

∏
ϕ∈ω w̃i jϕ)Yi jk∑K

k=1(α pri
ik +

∑t
j=1(

∏
ϕ∈ω w̃i jϕ)Yi jk)

−
∑t

j=v1+1 Yi jk

t

)2

/n Subjectto0 ≤ w̃i jϕ ≤ 1
8: /∗Bayesian update ∗/

9: α
pos
i ( j∈T)k = α

pri
ik +

t∑
j=1

(∏
ϕ∈ω

w̃i jϕ

)
Yi jk

10: p̂Model
i ( j∈T)k =

α
pos
i ( j∈T)k∑K

k=1 α
pos
i ( j∈T)k

11: Return p̂Model

In the first component (lines 1 to 3), based on
the training dataset consisting of individuals’ personal
information(DG I ), (such as gender, marital status, etc.) and
their sequence of appointment information (e.g. previous
attendance records (DNR)), a multinomial logistic regres-

sion model F
(

Xi j , B̂
)

is formulated (line 2). Then, using

logistic regression, an initial estimate of no-show, cancella-
tion and attendance probabilities are calculated, given by
p̂0

ik

(
Yi = 1, 2, 3|Xi j

)
(line 3). This estimate

(
p̂0

ik

)
is used as

the prior of Bayesian update procedure
(
α

pri
ik

)
in the second

and third components (line 4). As discussed in Section 2,
logistic regression bundles the information of the complete
population together and finds a reliable initial estimate of
no-show ( p̂0

ik).
In the second component (lines 5 to 7), which is interlaced

with the third component, the empirical rate of no-show,
cancellation and attendance is calculated (Line 6). Then,
an optimization model is used to find the optimal value of
a set of weighting factors (related to appointment recency,
occurrence on non-working days and clinic type), which
minimizes the sum of squared differences in the predictions
form model (using weighted appointments) and empirical
estimates of no-show, cancellation and attendance in (Line
7). As discussed in Section 3.3, the main purpose of weight-

ing the appointments (in Bayesian update) is to increase the
information content of data to improve the prediction abil-
ity of no-show and cancellation.

In the third component, using the weighted attendance
record of each person (

∏
ϕ∈ω

w̃i jϕ)Yi jk, the posterior param-

eters αPos
i jk and posterior probability of attendance p̂Model

i jk
is calculated (lines 9 and 10). As discussed in Section 2,
the reason that Bayesian update procedure is applied to
the output of logistic regression is that, typically, regres-
sion models cannot consider individual patient’s behavior.
Also, updating the regression parameters based on new
data records is both difficult and only marginally effective
(especially when the model is already constructed on a huge
dataset) in comparison to the Bayesian update.

In practice, when the database of patient’s information
is large, once Algorithm 1 is built and executed, only line
9 and 10 of the algorithm is required to be executed again
upon receiving new data for a subset of patients. The reason
is because the logistic regression and weight optimization
parts are already built based on large amount of data and
the estimates are confident. Nonetheless, at the individual
patient level, the number of records may not be enough,
or the patient may change her/his behavior. Therefore, the
Bayesian update (Line 0 to 10) based on weighted appoint-
ments is used to further personalize the estimates. If the
size of the database is not large, the clinic may need to
run the whole algorithm whenever the size of newly added
data is comparable to the size of original dataset, e.g., every
month.

5. Experimental results

In this section, we compare the performance of the
proposed model with different population-based and
individual-based algorithms based on the dataset collected
at the Veteran Affairs (VA) Medical Center in Detroit us-
ing time-wise analysis. For this purpose, the training and
testing data are constructed as follows: appointments that
occurred before 2/1/2010 have been used for training and
appointments after 2/1/2010 have been considered for test-
ing. The main reason for selecting the above dates is to have
approximately two-third of data records for training and
the rest of the data for testing.

5.1. Time-wise analysis

In this section, we compare the performance of the
proposed model with a number of population-based,
individual-based and adaptation algorithms using time-
wise analysis. The methods used in our comparison along
with their information are presented in Table 7.

Figure 5 illustrates the mean squared error (MSE) of
the comparing methods. Based on the MSE measure, the
proposed model outperforms other methods, while Box
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26 Alaeddini et al.

Fig. 5. Mean Squared Error (MSE) of the comparing methods for time-wise analysis.

Fig. 6. ROC curves of the comparing methods for no-show prediction: (a) proposed method, (b) pure logistic regression, and (c) pure
Bayesian update.

Fig. 7. ROC curves of the comparing methods for cancellation prediction: (a) proposed method, (b) pure logistic regression, and (c)
pure Bayesian update.
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A hybrid prediction model 27

Fig. 8. Estimated versus empirical probability of appointment disruptions from the proposed approach over different patients: (a)
no-show estimation, and (b) cancellation estimation.

Fig. 9. Estimated versus empirical probability of appointment disruptions from the pure multinomial logistic regression over different
patients: (a) no-show estimation, and (b) cancellation estimation.
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28 Alaeddini et al.

Table 7. Comparing methods information

Row Method Parameters (estimated) Reference Note

1 Proposed method Sig. level of vars.: ≤0.25 • Data splitting strategy: (2/3
training, 1/3 test)

Prior par.: logistic
regression output

•Model selection: backward and
forward

2 locally weighted scatter
plot (LOESS)

Moving window size: 5 Simonoff [1996] • Range of parameter evaluated:
(1,7)
• Data splitting strategy: (2/3

training, 1/3 test)
3 Box smoothing Moving window size: 5 Simonoff [1996] •Range of parameter evaluated: (1,7)

• Data splitting strategy: (2/3
training, 1/3 test)

4 Savitzky-Golay smoothing Polynomial order: 3 Simonoff [1996] • Data splitting strategy: (2/3
training, 1/3 test)

5 Gaussian smoothing Std. parameter: 0.65 Simonoff [1996] • Range of parameter evaluated:
(0.2,1)
• Data splitting strategy: (2/3

training, 1/3 test)
6 Decision tree (DT) Confidence factor: 0.25 Quinlan [1986] • Algorithm: J48

• Data splitting strategy: (1/3
training, 1/3 validation, 1/3 test)

7 Multinomial logistic
regression

Sig. level of vars.: ≤0.25 Allison [1999] • Same predictors as used in the
proposed model regression part
• Data splitting strategy: (2/3

training, 1/3 test)
•Model selection: backward and

forward
8 Multinomial Bayesian

update
Prior par.: (0.33, 0.33, 0.33) Bolstad [2007] • Prior choice: Jeffery’s prior

• Data splitting strategy: (2/3
training, 1/3 test)

9 Bayesian Net Estimator: Simple (α = .5) Jensen [1996] • Data splitting strategy: (1/3
training, 1/3 validation, 1/3 test)
• Search algorithm: hill climbing

10 Multilayer Perceptron
Neural Net (MLP)

Hidden layers: a
Learning rate: .3
Momentum: 0.2

Koskela et al.
[1996]

• Data splitting strategy: (1/3
training, 1/3 validation, 1/3 test)

11 Multi Class Support
Vector Machine (SVM)

Kernel fun.: MLP
Cache limit: 1000
Method: least square

Weston and
Watkins [1998]

• Data splitting strategy: (1/3
training, 1/3 validation, 1/3 test)

12 Boosting Classifier: Decision Stump Viola and Jones
[2002]

• Algorithm: ADABOOST M1
PART

Weight threshold: 100 • Data splitting strategy: (1/3
training, 1/3 validation, 1/3 test)

13 Universal Background
Model (UBM)

Model selection criterion:
AIC

Reynolds et al.
[2000]

• Data splitting strategy: (1/3
training, 1/3 validation, 1/3 test)

and Gaussian smoothing has the worst performance. As a
complement, Figures 6 and 7 show the receiver operating
characteristic (ROC) curve of the proposed method along
with pure multinomial logistic regression and Bayesian
update for no-show and cancellation prediction. Such re-
sult can demonstrate that bundling population-based and
individual-based methods together (as in our proposed
method) can improves the overall performance.

Figures 8 to 10 compare the empirical and estimated
probability of no-show and cancellation for the proposed
method along with pure multinomial logistic regression
and pure multinomial Bayesian update over various pa-
tients (the results from other methods along with the source
code is available upon request). As shown in Figure 8, the
proposed approach often predicts the real pattern correctly
with small variance.
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Fig. 10. Estimated versus empirical probability of appointment disruptions from the pure Bayesian updating mechanism over different
patients: (a) no-show estimation, and (b) cancellation estimation.

Figure 9 illustrates the estimates from multinomial logis-
tic regression, a population-based method. The estimates
tend to have small fluctuations around an approximately
fixed mean however, in general the estimates somehow re-
sembles the true pattern of the real no-show and cancella-
tion. In addition, the difference between the estimated and
real estimates significantly increases for patients with the
tendency of not cancelling their appointments (those could
be either patients with good records of showing-up or those
with high rate of no-show).

Finally, Figure 10 shows the results from the pure
Bayesian update method, which is a popular individual-
based method. The pure Bayesian update can basically de-

tect the fluctuations in the real series correctly; however, the
estimates are far from the real ones in considerable number
of cases. Further analysis revealed that such cases contain
a few numbers of attendance records, which means that
the pure Bayesian parameters update could not neutral-
ize the effect of prior especially if that is far from the real
case.

Such a result was expected because, as discussed in Sec-
tion 2, Bayesian update (as an individual based method)
can effectively learn the (attendance) behaviors of each pa-
tient. However, as discussed in Section 2, Bayesian updat-
ing (as an individual based method) typically uses non-
informative prior, which assign equal chance (0.3333) to

Table 8. Result of clustering the clinics based on their no-show and cancellation probabilities (show-up probability is the complement
of no-show and cancellation probabilities)

Parameter Attribute Cluster 1 Cluster 2 Cluster 3

μ No-show 0.1300 0.2154 0.3866
Cancellation 0.3290 0.0877 0.2563

Show-up 0.5410 0.6969 0.3571
� No-show 0.0036 0.0258 0.0258 0.0039 0.0320 −0.0264

Cancellation −0.0001 0.0039 0.0039 0.0074 −0.0264 0.0219
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Fig. 11. The contour plot of the mixture of distributions for
no-show and cancellation probabilities resulted from applying
GMM.

each of no-show, cancellation and attendance,and non-
informative prior may not be an appropriate choice in many
cases as shown in Figure 10.

In summary, the results from Figures 5 to 10 and their
follow up discussions show applying Bayesian update (as
an individual-based method) to the initial estimate resulted
from multinomial logistic regression (as a population-based
method) works superior to Bayesian update and multi-
nomial logistic regression applied individually, and com-
pares favorably with population-based, individual-based
and adaptation algorithms.

6. Conclusion and future work

Efficacy of any scheduling system primarily depends on its
ability to forecast and manage different types of disruptions
and uncertainties. In this paper, we developed a proba-
bilistic model based on multinomial logistic regression and
Bayesian inference to estimate individuals’ probabilities of
no-show, cancellation and attendance in real-time. Based
on real patient data collected from a Veterans Affairs med-
ical hospital, we evaluated and showed the effectiveness of
the approach. We also modeled the effect of the appoint-
ment date and clinic on the proposed method. Our ap-
proach is computationally effective and easy to implement.
Unlike population-based methods, it takes into account
the individual behavior of patients. Also, in contrast to the
individual-based methods, it can utilize some valuable in-
formation from the complete patient database to provide
reliable probabilistic estimates. The result of the proposed
method can be used to develop more effective appointment
scheduling systems and more precise overbooking strate-
gies to reduce the negative effect of no-shows and fill in
appointment slots while maintaining short waiting times.
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Appendix: Clinics Clustering

Due to the variety of clinics (more than 270 in our case),
the accuracy of the logistic regression would be severely
affected if this explanatory variable is directly used in the
model. This problem is solved by clustering similar clin-
ics with respect to their no-show, cancellation and atten-

dance rates. The clinics are originally different in type;
hence, grouping them into a set of clusters will result in
clusters with different density and dispersion. Such char-
acteristics can be effectively modeled using Gaussian Mix-
ture Models (GMM); when clusters have different sizes and
correlation within them, like the clinic data in this paper,
GMM can be more appropriate than many of other cluster-
ing algorithms as k-means. (Alpaydin [2010], Reddy et al.
[2008]).

GMM employs Expectation Maximization (EM) algo-
rithm to fit data, which assigns posterior probabilities
to each component (clusters of clinics) density with re-
spect to each observation. Choosing a suitable number
of components is essential for creating a useful GMM
model. Here, we use Bayes Information Criterion (BIC)
to determine an appropriate number of components for
the model. To address the (potential) problem of clin-
ics with very few appointment records, e.g., 1 or 2 ap-
pointments, that may cause formation of clusters with no-
show/cancellation/attendance probability of zero or one,
clinics have been filtered based on their number of ap-
pointments first, and only clinics with more than 6 records
have been considered for clustering with GMM (The filter
threshold value of 6 has been chosen based on evaluating
different (threshold) values and their effect on the size of
clusters and robustness of the estimated parameters of the
model).

Table 8 shows the result of clustering the clinics based on
their probability of no-show and cancellation using GMM
(see also Fig. 11). Since the probability of attendance is
the complement of other two no-show and cancellation
probabilities (dependent variable) and does not contain
additional information to the GMM model, it hasn’t been
considered for the clustering procedure, and its respected
value for different clusters has been calculated based on
no-show and cancellation. The final result has been verified
by a team of experts and clusters represented meaningful
groupings.
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