
Regularized Parametric Regression for High-dimensional Survival Analysis

Yan Li∗ Kevin S. Xu† Chandan K. Reddy‡

Abstract

Survival analysis aims to predict the occurrence of spe-
cific events of interest at future time points. The pres-
ence of incomplete observations due to censoring brings
unique challenges in this domain and differentiates sur-
vival analysis techniques from other standard regres-
sion methods. In many applications where the distri-
bution of the survival times can be explicitly modeled,
parametric survival regression is a better alternative to
the commonly used Cox proportional hazards model for
this problem of censored regression. However, para-
metric survival regression suffers from model overfit-
ting in high-dimensional scenarios. In this paper, we
propose a unified model for regularized parametric sur-
vival regression for an arbitrary survival distribution.
We employ a generalized linear model to approximate
the negative log-likelihood and use the elastic net as a
sparsity-inducing penalty to effectively deal with high-
dimensional data. The proposed model is then formu-
lated as a penalized iteratively reweighted least squares
and solved using a cyclical coordinate descent-based
method. We demonstrate the performance of our pro-
posed model on various high-dimensional real-world mi-
croarray gene expression benchmark datasets. Our ex-
perimental results indicate that the proposed model pro-
duces more accurate estimates compared to the other
competing state-of-the-art methods.
Keywords: survival analysis; censored data; paramet-
ric regression; sparse methods; high-dimensional data.

1 Introduction

Survival analysis aims at modeling time-to-event data,
which is typically collected in longitudinal studies that
start from a particular time and last until a certain event
of interest has occurred [12]. However, the event of
interest may not always be observed during the study
period due to time limitations or losing data traces.
This phenomenon is known as censoring and makes
survival analysis different from and more challenging
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than standard regression. For the data instances where
the event of interest has been observed, the time to the
event of interest is known as the survival time, while
for the other instances (censored instances), the last
observed time is known as the censored time. The
most common form of censoring that occurs in real-
world scenarios is right censoring, where the survival
time of a censored instance is longer than or equal to
the censored time, but its precise value is unknown. In
the rest of this paper, for the sake of simplicity, we refer
to right censored data as censored data, unless otherwise
specified.

Parametric regression is one of the fundamental
tools in statistics and data analysis. In survival analysis,
both the Cox proportional hazards model and paramet-
ric censored regression models are important founda-
tional techniques for survival time prediction. Although
not as widely studied as the Cox model, parametric cen-
sored regression has several advantages compared with
the Cox model.

First, parametric censored regression models are
more easily interpreted than the Cox model. In para-
metric censored regression, the probability of occurrence
of an event of interest at a certain time is directly de-
scribed by the density function of the selected distribu-
tion, and the probability of non-occurrence of the event
of interest until a certain time is represented straight-
forwardly by a survival function (one minus the distri-
bution function). On the other hand, the Cox model
does not model the probability of occurrence directly
but learns it by maximizing the hazard ratio between
the censored instances and their corresponding risk set.

Second, parametric censored regression is more effi-
cient than the Cox model when tied observations (when
survival times of multiple instances are exactly the
same) occur during the study. Parametric censored re-
gression can be directly used without any modification,
while the Cox model has to use some approximation
methods that suffer from either inducing bias (Breslow’s
approximation and Efron’s approximation [7]) or bad
scalability (Discrete method [19]).

To enable regularized parametric censored regres-
sion to handle high-dimensional censored datasets, in
this paper, we propose the “URPCR” model, which
stands for “Unified model for Regularized Parametric



Censored Regression”. Our proposed model unifies the
learning process of regularized parametric censored re-
gression with different probability distributions; thus it
improves the efficiency of model learning on an arbitrary
probability distribution. This efficiency is important be-
cause the performance of parametric censored regression
is highly dependent on the choice of distribution.

In our proposed URPCR model, the elastic net
is employed as the regularization term because it can
both induce a sparse coefficient vector and handle
correlated features. To unify the learning process of
the proposed model with different distributions, we
use a second-order Taylor expansion to approximate
the log-likelihood; in this way, the URPCR model can
be solved as a penalized iteratively reweighted least
squares (IRLS). However, different from the standard
linear model, a bias scale parameter has to be learned
in addition to the coefficient vector in our proposed
generalized linear model. Motivated by coordinate
descent, in our learning scheme, this scale parameter
is viewed as one coordinate and is iteratively updated
based on Newton’s method. Finally, the model is
learned via a cyclical coordinate descent scheme.

In our empirical evaluation using several real-world
high-dimensional cancer gene expression survival bench-
mark datasets, our model attains very competitive C-
index values and outperforms most of the competing
methods available in the literature of survival analysis.
Additionally, we also demonstrate that our model out-
performs most of the competing methods for the task
of classifying whether or not a subject is alive at vari-
ous time points in the observed study period. This is
accomplished by our URPCR model without the need
to re-train a new classifier for each time point, which is
one of the main advantages of this work.

The rest of the paper is organized as follows. In
Section 2, related data mining approaches for survival
analysis are discussed. In Section 3, the basic concepts
of survival regression are introduced. Our proposed
approach is explained in detail in Section 4. Section 5
demonstrates our experimental results on several real-
world datasets while Section 6 concludes our work.

2 Related Work

In this section, we present some related works in survival
analysis and highlight the differences and relationships
between our proposed model and existing literature.

The Cox proportional hazards model [5] is one of the
earliest and most widely used survival analysis methods.
It has obtained significant interest from researchers in
both the statistics and data mining communities. To
deal with high-dimensional data, some regularization
methods have been integrated with it. These methods

include LASSO-COX [20], which introduces the L1

norm penalty in the Cox log-likelihood function, Elastic-
Net Cox (EN-COX) [26], which uses the elastic net
penalty term, and kernel elastic net penalized Cox
regression [22].

Parametric censored regression is another impor-
tant branch of survival analysis. Parametric censored
regression methods assume that the survival times of all
instances in a dataset follow a particular distribution,
and that there exists a linear relationship between either
the survival time or the logarithm of the survival time
and the features [6, 12]. Thus, these regression models
can be viewed as generalized linear models. The Tobit
model [21] is the earliest attempt of extending linear
regression with the Gaussian distribution for data anal-
ysis with censored observations. Then, several other dis-
tributions such as Weibull, extreme value distributions
[1], and log-logistic distribution [2, 13] have been suc-
cessfully implemented for parametric censored regres-
sion in the early 1980s. Buckley and James [3] have
proposed an algorithm, known as BJ regression, which
incorporates the Kaplan-Meier (K-M) estimator [10] as
the baseline distribution. To handle high-dimensional
survival analysis, Wang et al. applied the elastic net
penalty to the BJ regression (EN-BJ) [23], a weighted
linear regression is proposed in [14], and a L1 norm reg-
ularized accelerated failure time (AFT) model is sloved
via bootstrap approach in [9].

In this paper, we propose the URPCR model to
handle survival prediction with censored instances in
high-dimensional data. We develop a unified learning
scheme for learning a regularized parametric censored
regression of an arbitrary survival distribution. In ad-
dition, the objective function is regularized using the
elastic net penalty, which can induce the required spar-
sity and efficiently handle the challenge of high dimen-
sionality. Compared to the BJ and EN-BJ estimators,
our model does not need to use the Kaplan-Meier es-
timator to approximate the survival time of censored
instances during the training process.

3 Preliminaries

In this section, we first introduce some basic notations
and concepts of a survival regression model, and then
we briefly review the basic formulation of parametric
regression for survival analysis.

3.1 Terminologies and Notations In survival
analysis, for each data instance, we observe either a sur-
vival time (Oi) or a censored time (Ci), but not both.
The dataset is said to be right-censored if and only if
yi = min(Oi, Ci) can be observed during the study [17].
An instance in the survival data is usually represented



by a triplet (Xi, Ti, δi), whereXi is a 1×p feature vector;
δi is the censoring indicator, i.e. δi = 1 for an uncen-
sored instance, and δi = 0 for a censored instance; and
Ti denotes the observed time and is equal to the survival
time Oi for uncensored instances and Ci otherwise, i.e.

(3.1) Ti =

{
Oi if δi = 1
Ci if δi = 0

For censored instances, Oi is a latent value, and the goal
of survival analysis is to model the relationship between
Xi and Oi by using the triplets (Xi, Ti, δi) for censored
and uncensored instances.

One of the most important concepts in modeling
such censored data is the survival function S(t) =
Pr(O ≥ t), which is the probability that the time
to the event of interest is no earlier than time t [11].
In contrast, the cumulative death distribution function
F (t) is defined as F (t) = 1 − S(t) and represents the
probability that the time to the event of interest is less
than t. The death density function f(t) is defined as

f(t) = F (t+∆t)−F (t)
∆t , where ∆t is a short time interval.

3.2 Parametric Regression for Survival Anal-
ysis Parametric methods for estimating the survival
probability are efficient and accurate when survival
times follow a particular distribution. Unlike the Cox
proportional hazard model, in parametric methods, a
complete likelihood function can be solved directly,
and the parameters can be estimated using maximum-
likelihood estimation (MLE) [12]. We now discuss the
generic MLE procedure [6] used for survival data with
censored observations.

Consider a set of N instances out of which there
are c censored observations and (N − c) uncensored
observations. For convenience, we use the general
notation b = (b1, b2, · · · , bp) to represent a set of
parameters and assume that the survival times follow
a probability distribution with survival function S(t,b)
and death density function f(t,b). If the ith instance is
a censored observation, then it is not possible to obtain
the actual survival time; however, it can be concluded
that the event of interest did not happen until the
censored time Ci, so S(Ci,b) should be a probability
value that is close to 1. On the contrary, if the ith

instance is an uncensored observation with survival time
Oi, then f(Oi,b) should be a high probability value.
Thus, we can use

∏
δj=1 f(Ti,b) to represent the joint

probability of the (N − c) uncensored observations and∏
δj=0 S(Ti,b) to represent the joint probability of the

c right-censored observations. Therefore, the likelihood
function of all N instances is given by

(3.2) L(b) =
∏
δi=1

f(Ti,b)
∏
δi=0

S(Ti,b)

Note that b is not the feature coefficient vector but the
parameters of the assumed distribution.

4 Proposed Model

In this section, we will discuss the proposed URPCR
model in detail, along with an efficient optimization
approach to learn the model. The URPCR employs the
basic notion of generalized linear models (GLMs) and
the framework of cyclical coordinate descent to solve
the elastic net penalized parametric censored regression.
Thus, the URPCR enables the parametric censored
regressions to perform feature selection and handle high-
dimensional data sets in survival analysis.

4.1 Objective Function The URPCR aims at
learning the relationship between the feature vectors
and the target value in the same manner as done in
the generalized linear model, which can be formulated
as follows:

(4.3) v = Xβ + σε, ε ∼ f

for some distribution f , where β is the coefficient vector,
ε is the error term, and σ > 0 is an unknown bias scalar.
For the ith instance, vi can either be the survival time
(vi = Oi) or the logarithm of the survival time (vi =
log(Oi)). When vi = Oi, Eq.(4.3) becomes an extended
linear regression with a self-selected bias distribution;
when vi = log(Oi), then Eq.(4.3) represents an AFT
model [25], which is a commonly used prediction method
in survival analysis. Thus, the URPCR encompasses
these two models within a unified framework, which can
be solved with exactly the same learning process. This
is the primary novel aspect of the proposed work.

Under this linear hypothesis, the likelihood function
of all N instances can be represented as

(4.4) L =
∏
δi=1

f(εi/σ)
∏
δi=0

(1− F (εi))

where εi = yi−Xiβ
σ , yi = Ti for extended linear

regression, and yi = log(Ti) for AFT model. The log-
likelihood can be written in the form

(4.5) ll =
∑
δi=1

g1(εi)− log(σ) +
∑
δi=0

g2(εi)

where g1 = log(f(·)) and g2 = log(1− F (·)).
To avoid overfitting the model, it may not be

appropriate to build a prediction model that includes
all of the features. This becomes even more important
when the feature dimension (p) is either close to or
larger than the sample size (N). Sparsity-inducing
penalization is an effective method which can perform



model estimation and feature selection simultaneously.
The elastic net [27] is one of the most commonly
used penalty terms in the data mining and machine
learning communities and consists of a mixture of
the L1 (lasso) and L2 (ridge regression) penalties.
Therefore, it can obtain both sparsity in the coefficients
and handle correlated feature spaces simultaneously.
Mathematically, it is defined as follows:

(4.6) P (β) = α‖β‖1 +
1− α

2
‖β‖22

where 0 ≤ α ≤ 1 is used to adjust the weights of the L1

and L2 norm penalties. Hence, the Lagrangian of the
penalized negative log-likelihood becomes
(4.7)

min
β,σ

[
− 2

N

(∑
δi=1

g1(εi)− log(εi) +
∑
δi=0

g2(εi)

)
+ λP (β)

]
where λ ≥ 0 is the Lagrange multiplier.

4.2 Optimization To minimize the objective func-
tion proposed in Eq.(4.7), we use a second-order Tay-
lor expansion to approximate the log-likelihood and a
cyclical coordinate descent-based method, which solves
a penalized iteratively reweighted least squares (IRLS)
problem in each iteration [18], to solve the generalized
linear model.

If we treat σ as fixed and let η = Xβ, a two-term
Taylor series expansion of the log-likelihood centered at
β̃ has the following form.

ll(β) ≈ ll(β̃) + (β − β̃)T ll
′
(β̃) + (β−β̃)T ll

′′
(β̃)(β−β̃)

2

(4.8)

= ll(β̃) + (Xβ − η̃)T ll
′
(η̃) + (Xβ−η̃)T ll

′′
(η̃)(Xβ−η̃)

2

where η̃ = Xβ̃; ll
′
(β̃), ll

′′
(β̃), ll

′
(η̃), and ll

′′
(η̃) denote

the gradient and Hessian of the log-likelihood with
respect to β̃ and η̃, respectively. By some simple
algebra, we obtain

(4.9) ll(β) ≈ 1

2
(z(η̃)−Xβ)T ll

′
(η̃)(z(η̃)−Xβ)+C(η̃, β̃),

where z(η̃) = η̃− ll′(η̃)/ll
′′
(η̃) is the adjusted dependent

variable, and C(η̃, β̃) is a constant term that does
not depend on β. To speed up the algorithm, rather
than using the full N × N ll

′′
(η̃) matrix, we use the

diagonal elements of ll
′′
(η̃) in our algorithm. The

ith diagonal element is denoted as ll
′′
(η̃)i. We define

z(η̃)i = η̃i − ll
′
(η̃)i/ll

′′
(η̃)i. Therefore, Eq.(4.7) can be

simplified as a penalized IRLS:

(4.10) min
β
− 1

N

N∑
i=1

ll
′′
(η̃)i(z(η̃)i −Xiβ)2 + λP (β)

The partial derivative of the IRLS with respect to the
kth coordinate, k = 1, 2, · · · , p, can be calculated as:
(4.11)

− 1

N

N∑
i=1

ll
′′
(η̃)ixik(z(η̃)i−Xiβ)+λα·sgn(βk)+λ(1−α)βk

where sgn(·) is the signum function. Hence, the
coordinate-wise update of the penalized IRLS will take
the following form:
(4.12)

β̂k =
S(− 1

N

∑N
i=1 ll

′′
(η̃)ixik(z(η̃)i −

∑
j 6=k xijβj), λα)

− 1
N

∑N
i=1 ll

′′(η̃)ix2
ik + λ(1− α)

where S(Z, γ) = sgn(Z) · (|Z| − γ)+ is the soft-
thresholding operation, and ll

′
(η̃)i and ll

′′
(η̃)i can be

calculated as follows:

ll
′
(η̃)i =


∂g1
∂η̃i

= − 1
σ ·

f
′
(εi)

f(εi)
if δi = 1

∂g2
∂η̃i

= − 1
σ ·

−f(εi)
1−F (εi)

if δi = 0

ll
′′
(η̃)i =


∂2g1
∂η̃2i

= 1
σ2 · f

′′
(εi)

f(εi)
−
(
∂g1
∂η̃i

)2

if δi = 1

∂2g2
∂η̃2i

= 1
σ2 · −f

′
(εi)

1−F (εi)
−
(
∂g2
∂η̃i

)2

if δi = 0

where f(·) is the density function of the selected distri-
bution, F (·) is the corresponding cumulative distribu-
tion function, and f

′
(·) and f

′′
(·) denote the gradient

and Hessian of the density function [19], respectively. In
this paper, we choose the Gaussian distribution, Logis-
tic distribution, and Extreme value distribution as the
baseline distributions. It should be noted that, besides
these three distributions that are being described in this
paper, our framework is suitable for all other paramet-
ric distributions once the corresponding functions for
the distributions are calculated.

All the analysis until this point has assumed a fixed
σ. We will also vary the value of σ in our learning
scheme by making σ another coordinate that is updated
once all of the coefficient variables are updated. In
the proposed algorithm, we use the Newton-Raphson
method to update log σ, which can be written in the
following form:

log σ = log σ̃ − ll
′
(log σ̃)/ll

′′
(log σ̃)(4.13)

where σ̃ is learned in the previous iteration, ll
′
(log σ̃) =

1
N

∑
ll

′
(log σ̃)i, and ll

′′
(log σ̃) = 1

N

∑
ll

′′
(log σ̃)i. Ad-

ditionally, ll
′
(log σ̃)i and ll

′′
(log σ̃)i can be calculated as

follows:

ll
′
(log σ̃)i =


∂g1

∂ log σ̃i
= − εif

′
(εi)

f(εi)
if δi = 1

∂g2
∂ log σ̃i

= −−εif(εi)
1−F (εi)

if δi = 0



ll
′′
(log σ̃)i =
∂2g1

∂(log σ̃i)2
=

ε2i f
′′

(εi)+εif
′
(εi)

f(εi)
−
(

∂g1
∂ log σ̃i

)2

if δi = 1

∂2g2
∂(log σ̃i)2

=
−ε2i f

′
(εi)

1−F (εi)
− ∂g1

∂ log σ̃i
·
(

1 + ∂g1
∂ log σ̃i

)
if δi = 0

Good initial values of the coefficients and σ turn out
to be vital for successful optimization, especially in a
high-dimensional data set. In coordinate descent, the
coefficient vector usually starts with the zero vector be-
cause the L1 norm penalty induces lot of zero elements
in the coefficient vector. For σ, a clever starting point is
introduced in [19], where the model is fit starting with
the mean and variance of each feature. As the normal-
ization makes the values of each feature and the target
value in the data set have zero mean and unit variance,
the initial values of the iteration only depend on the
mean and variance of the selected distribution, denoted
as µ and s2, respectively. The µ and s2 of the selected
baseline distributions can be found in the Appendix.

4.3 The URPCR Algorithm Algorithm 1 outlines
the overall steps involved in the proposed model includ-
ing the main optimization method. In lines 1-5, the de-
pendent variable is calculated based on the user setting.
In line 6, the coefficient vector and σ̂ are initialized by a
zero vector and s (the standard deviation of the selected
distribution), respectively. In lines 9-14, the weight and
adjusted dependent variables of the IRLS for each train-
ing instance are calculated. In line 15, one coordinate
is updated based on coordinate descent. In lines 17-
21, the updated formulas are calculated after all the p
coefficients have been updated. Finally, in lines 22-24,
the σ is updated based on these new updated equations.
Note that, at each time, only one variable in the vector
β̃ is being updated, and hence η̃i can be updated based
on the previous iteration’s result in O(1). Thus, one
complete cycle of coordinate descent through all p vari-
ables costs O(Np) operations, and the σ can be updated
in O(N) operations. Hence the total computation cost
for each optimization step of the proposed algorithm is
O(Np).

Usually, in the learning process, the model has to
be trained based on a series of values for λ, and the
best λ is selected via cross-validation. In this paper, we
build a pathwise solution similar to the approach given
in [18]; initialize λ to a sufficiently large number, which
forces β to a zero vector, and then gradually decrease λ
in each learning iteration. For a new λ, the initial values
of β and σ are the estimated β and σ learned from the
previous λ as a warm start, so the initial values of β and
σ are not far from the optimal value, and the algorithm
can converge in few iterations. The convergence of the
Newton step in the algorithm is not guaranteed; it may

Algorithm 1: URPCR Algorithm

Input: Training data (X, T , δ), Regularization
parameter λ, Adjustment Weight α,
Selected Distribution, flag AFT

Output: β̂, σ̂

1 if AFT==TRUE then
2 y = log(T );
3 else
4 y = T ;
5 end

6 Initialize: β̂ ← 0, σ̂ ← s;
7 repeat
8 for k = 1 to p do
9 for i = 1 to N do

10 Calculate η̃i = Xiβ̃, εi = yi−η̃i
σ̃ ;

11 Calculate f(εi), F (εi), f
′
(εi), and f

′′
(εi);

12 Calculate ll
′
(η̃)i and ll

′′
(η̃)i;

13 Update z(η̃)i = η̃i − ll
′
(η̃)i/ll

′′
(η̃)i;

14 end

15 β̃k ←
S(− 1

N

∑N
i=1 ll

′′
(η̃)ixik(z(η̃)i−

∑
j 6=k xij β̃j),λα)

− 1
N

∑N
i=1 ll

′′ (η̃)ix2
ik+λ(1−α)

;

16 end
17 for i = 1 to N do

18 Calculate η̃i = Xiβ̃, εi = yi−η̃i
σ̃ ;

19 Calculate f(εi), F (εi), f
′
(εi), and f

′′
(εi);

20 Calculate ll
′
(log σ̃)i and ll

′′
(log σ̃)i;

21 end

22 Calculate ll
′
(log σ̃) and ll

′′
(log σ̃) ;

23 Update log σ based on Eq.(4.13);
24 σ̃ = exp(log σ);

25 until Convergence of β̃ and σ̃;

26 β̂ ← β̃, σ̂ ← σ̃;

become unstable if the initial parameter is far from the
optimal value. However, in a pathwise solution, the
warm start is not far from the optimal value, so it solves
the convergence problem to a large extent.

5 Experimental Results

In this section, we will first describe the datasets used in
our evaluation and then provide the performance results
along with the implementation details.

5.1 Dataset Description For our evaluation, we
used several publicly available high-dimensional gene
expression cancer survival benchmark datasets1. The
datasets we used in our experiments are as follows:
• The Norway/Stanford Breast Cancer Data (NSBCD)

contains gene expression measurements of 115 women

1http://user.it.uu.se/~liuya610/download.html



with breast cancer. The missing values are imputed
using 10-nearest neighbor imputation (which is a
common practice in the biomedical domain).

• Lung adenocarcinoma (Lung) is a dataset containing
observations of 86 early-stage lung adenocarcinoma
patients.

• The Dutch Breast Cancer Data (DBCD) contains
information on 4919 gene expression levels of a series
of 295 women with breast cancer. Measurements
were taken from the fresh-frozen-tissue bank of the
Netherlands Cancer Institute.

• Diffuse Large B-Cell Lymphoma (DLBCL) is a
dataset that contains Lymphochip DNA microarrays
from 240 biopsy samples of DLBCL tumors.

All of these datasets measure cancer survival using gene
expression levels. Table 1 provides the details of the
datasets that are being used in this paper. In this table,
the column titled “# Censored” corresponds to the
number of censored instances in each dataset. We used
5-fold cross validation when the number of instances is
greater than 150 and 3-fold cross validation otherwise.

Table 1: Details of the datasets used in this paper.

Dataset # Instances # Features # Censored
NSBCD 115 549 77
Lung 86 7129 62
DBCD 295 4919 216
DLBCL 240 7399 102

5.2 Evaluation Metrics The concordance index (C-
index), or concordance probability, is used to measure
the performance of prediction models in survival analy-
sis [8]. Let us consider a pair of bivariate observations
(y1, ŷ1) and (y2, ŷ2), where yi is the actual observation,
and ŷi is the predicted one. The concordance probabil-
ity is defined as

(5.14) c = Pr(ŷ1 > ŷ2|y1 ≥ y2).

By definition, the C-index has the same scale as the
area under the ROC (AUC) in binary classification, and
if yi is binary, then the C-index is same as the AUC. In
the hazard ratio-based regression models, the instances
with a low hazard rate should survive longer, and the
C-index is calculated as follows:

c =
1

num

∑
i∈{1···N |δi=1}

∑
yj>yi

I[Xiβ̂ > Xj β̂]

where num denotes the number of comparable pairs
and I[·] is the indicator function. The C-index in other

censored regression methods, which directly target the
survival time, should be calculated as:

c =
1

num

∑
i∈{1···N |δi=1}

∑
yj>yi

I[S(ŷj |Xj) > S(ŷi|Xi)]

where S(ŷi|Xi) is the predicted target value for Xi.
We also evaluate performance by re-formulating the

problem into a binary classification problem where we
choose a particular time point, and each patient is given
a label corresponding to whether the patient is alive at
that time point or not. For this binary classification
task, we evaluate the prediction performance using
AUC [4].

5.3 Implementation Details The proposed model
is implemented using C++ with the Eigen library2, and
in each iteration, the weight updates for all N instances
(lines 9-14 and lines 17-21 of Algorithm 1) are calculated
in parallel.

All of the methods used in our comparisons are im-
plemented in R. The Cox and unregularized paramet-
ric censored regression are obtained from the survival
package [19]. In the survival package, the coxph func-
tion is employed to train the Cox model. The Tobit
regression is trained using the survreg function. The
parametric censored regressions are trained using the
survreg function with Normal, Log-normal, Logistic,
Log-logistic, and Weibull distributions. Three sparse re-
gression methods, namely LASSO-COX, EN-COX, and
EN-BJ, which are penalized versions using lasso and
elastic net penalty terms, are also used for our com-
parisons. LASSO-COX and EN-COX are built using
the cocktail function in the fastcox package [26], while
EN-BJ is implemented using the bujar package [24].

Boosting concordance index (BoostCI) [15] for sur-
vival data is an approach where the concordance index
metric is modified to an equivalent smoothed criterion
using the sigmoid function. In addition to the above
survival methods, we also compared our methods with
ordinary least squares (OLS) because URPCR is a gen-
eralized linear model. In our experiments, the Gaussian
distribution, Logistic distribution, and Extreme value
distribution are chosen as the baseline distributions. For
each dataset, the validation data is used to select the
appropriate distribution and to decide whether the de-
pendent variable y should be the observed time T or the
logarithm of the observed time log(T ).

5.4 Results and Discussion Table 2 provides the
C-index values obtained by various regression methods
on the real-world high-dimensional micro-array cancer

2http://eigen.tuxfamily.org/



Table 2: Performance comparison of the proposed URPCR method and seven other existing related methods
using C-index values (along with their standard deviations).

DataSet COX LASSO-COX EN-COX BoostCI OLS Tobit EN-BJ URPCR

NSBCD
0.441 0.591 0.605 0.626 0.633 0.373 0.622 0.693

(0.059) (0.109) (0.100) (0.083) (0.111) (0.021) (0.092) (0.056)

Lung
0.514 0.668 0.664 0.571 0.572 0.470 0.663 0.771

(0.137) (0.087) (0.066) (0.088) (0.061) (0.132) (0.128) (0.039)

DBCD
0.529 0.685 0.719 0.705 0.560 0.487 0.718 0.735

(0.063) (0.042) (0.030) (0.038) (0.072) (0.078) (0.040) (0.027)

DLBCL
0.510 0.624 0.637 0.595 0.505 0.492 0.623 0.631

(0.029) (0.042) (0.036) (0.017) (0.089) (0.052) (0.061) (0.056)

    T1                     T2                    T3                    T4
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Figure 1: AUC values for binary classification of survival times for four different time thresholds. The URPCR is
compared to six different survival regression methods. For each plot, T1, T2, T3, and T4 are the time thresholds
corresponding to the timepoints at which 25%, 50%, 75%, and 100% of events have occurred, respectively.

datasets. The results show that our proposed URPCR
model obtains higher C-index in most of the datasets.

Figure 1 provides histogram plots of the AUC values
for the binary classification task on each dataset with
four different time splits corresponding to the time
points when 25%, 50%, 75%, and 100% of events have
occurred. The AUC values for our proposed models

are higher than those of the existing survival prediction
methods in all but one task, which further reinforces
the accuracy of our proposed model compared to the
other survival prediction methods; we exclude OLS in
the plots since it is not a survival regression method.
These results demonstrate that our proposed model is
able to predict temporal event occurrence at different



Table 3: Performance comparison of the proposed regularized censored regressions and unregularized censored
regressions with different distributions using C-index values (along with their standard deviations).

Normal Log-normal Logistic Log-logistic Weibull

original URPCR original URPCR original URPCR original URPCR original URPCR

NSBCD
0.373 0.667 0.444 0.682 0.379 0.693 0.238 0.667 0.304 0.688

(0.021) (0.065) (0.054) (0.039) (0.020) (0.056) (0.050) (0.042) (0.153) (0.074)

Lung
0.470 0.736 0.411 0.712 0.566 0.771 0.587 0.762 0.428 0.762

(0.132) (0.028) (0.075) (0.020) (0.095) (0.039) (0.066) (0.041) (0.101) (0.068)

DBCD
0.487 0.716 0.491 0.735 0.490 0.721 0.527 0.723 0.458 0.708

(0.078) (0.030) (0.057) (0.027) (0.088) (0.063) (0.025) (0.059) (0.104) (0.036)

DLBCL
0.492 0.626 0.320 0.625 0.491 0.498 0.431 0.581 0.396 0.631

(0.052) (0.057) (0.078) (0.056) (0.044) (0.279) (0.125) (0.099) (0.084) (0.056)
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Figure 2: Scalability results: Plots of the runtimes of URPCR with the extreme value distribution. The times
denote total runtimes for ten λ values averaged over five trials.

time points effectively without the need to re-train a
new classifier at each time point.

Table 3 provides the C-index values obtained from
the original censored regression and the URPCR reg-
ularized parametric censored regression methods based
on different distributions, where Log-normal and Log-
logistic denote that the logarithm of the observed time
is assumed to follow the normal distribution and lo-
gistic distribution, respectively. It should be noted
that Weibull distribution is a special case of the gen-
eralized extreme value distribution. The results show
that, with sparsity-inducing penalization, our proposed
model is able to improve the prediction performance
of the parametric censored regression on the high-
dimensional datasets for different kinds of distributions.

5.5 Scalability Experiments We also empirically
evaluate the scalability of the proposed algorithm with
respect to sample size (N) and the number of features
(p). All synthetic datasets are generated using the func-

tion “simple.surv.sim” in survsim package [16] with dif-
ferent sample size and feature dimensionality. All the
features are generated based on the uniform distribu-
tion, and each of them have a different randomly set
interval. The coefficient vector is also randomly gener-
ated and remain within [−1, 1]. The observed time is
assumed to follow a Log-logistic distribution, and time
to censorship follows a Weibull distribution. All tim-
ing calculations are carried out on an Intel Xeon 3 GHz
processor with 16 cores (32 threads). Figure 2(a) shows
runtimes for fixed N and varying p, and Figure 2(b)
shows runtimes for fixed p and varying N . These two
plots suggest that the runtime of URPCR is close to be-
ing linear in both N and p. Notice that the the lines in
Figure 2(b) increase more slowly than the lines in Figure
2(a), which indicates that our proposed URPCR model
has better scalability with respect to N than with re-
spect to p. This is because, in our implementation, the
weight updates of all N instances (lines 9-14 and lines
17-21 of Algorithm 1) are calculated in parallel.



6 Conclusion

In this paper, we developed a unified model for regular-
ized parametric censored regression that is able to ef-
ficiently handle high-dimensional (right) censored data.
The elastic net penalty is used to induce sparseness into
the resulting coefficients, thus avoiding over-fitting the
data, especially in high-dimensional scenarios. In or-
der to unify the learning scheme for various popular
distributions, we used Taylor expansion to approximate
the objective function as a generalized linear model and
solved the penalized iterative reweighted least squares
problem via a cyclical coordinate descent-based method.
We compared the performance of the proposed UR-
PCR algorithm with several state-of-the-art censored re-
gression methods using various publicly available high-
dimensional microarray gene expression survival bench-
mark datasets. We also demonstrated the linear scala-
bility of the proposed model with respect to both the
number of samples and the number of features. Our
results also show that the proposed unified regularized
model significantly outperforms original unregularized
variants of the parametric methods when the same un-
derlying distributions are used for modeling. We plan
to extend this work in the future by using other recent
structured regularization terms such as group lasso and
tree lasso in the context of survival analysis.
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