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Abstract

Researchers have attempted to improve the quality of
clustering solutions through various mechanisms. A
promising new approach to improve clustering quality
is to combine data from multiple related datasets
(tasks) and apply multi-task clustering. In this paper,
we present a novel framework that can simultaneously
cluster multiple tasks through balanced Intra-Task
(within-task) and Inter-Task (between-task) knowledge
sharing. We propose an effective and flexible geometric
affine transformation (contraction or expansion) of the
distances between Inter-Task and Intra-Task instances.
This transformation allows for an improved Intra-Task
clustering without overwhelming the individual tasks
with the bias accumulated from other tasks. A con-
strained low-rank decomposition of this multi-task
transformation will allow us to maintain the class
distribution of the clusters within each individual task.
We impose an Intra-Task soft orthogonality constraint
to a Symmetric Non-Negative Matrix Factorization
(NMF) based formulation to generate basis vectors
that are near orthogonal within each task. Inducing
orthogonal basis vectors within each task imposes the
prior knowledge that a task should have orthogonal
(independent) clusters. Using several real-world exper-
iments, we demonstrate that the proposed framework
produces improves clustering quality compared to the
state-of-the-art methods proposed in literature.

Keywords: Multi-Task Learning, Clustering, Non-
Negative Matrix Factorization, Affinity Matrix.

1 Introduction

Several techniques have been proposed to improve the
quality of a clustering solution [1]. A prominent new
method to improve clustering quality is to simulta-
neously apply a clustering algorithm to a set of re-
lated datasets (tasks) in a multi-task clustering setting.
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Multi-task clustering aims to improve the clustering so-
lution of each individual dataset using the knowledge
gained from other related datasets in what is defined as
Inter-Task knowledge sharing. While knowledge gained
from related datasets can be a helpful source of auxil-
iary knowledge, this knowledge transfer can overwhelm
each individual dataset and alter its distribution. For
example, assuming we have 4 tasks with 200 samples
within each task, each individual task will leverage 200
of its own samples and 600 samples from the related
tasks and thus its distribution would be skewed by the
overwhelming number of samples in the related tasks.
An “Affinity Matrix” is a symmetric non-negative sim-
ilarity matrix that describes the distance (weight) be-
tween a set of instances. In this paper, we develop a
novel framework for multi-task clustering where several
tasks are clustered simultaneously with a mechanism to
control the contribution of Intra-Task vs. Inter-Task
knowledge within an affinity matrix. Controlling the
bias between tasks can improve the clustering quality
without overwhelming the individual tasks. Figure 1
shows a simple example to demonstrate the decompo-
sition of an affinity matrix, with multiple tasks, into
Intra-Task and Inter-Task components. We plot the
affinity matrix for a four-task (200 samples per task)
clustering problem where each task represents a differ-
ent university and the instances represent different types
of websites (personal or project) collected from each uni-
versity. Figure 1(a) shows the full affinity matrix where
all of the distances are treated equally and all tasks are
combined into a single affinity matrix. The matrix in
Figure 1(b) presents the Intra-Task components while
Figure 1(c) present the Inter-Task components.
To incorporate a controlled bias into multi-task cluster-
ing, the Affinity Matrix is transformed to a Multi-Task
Affinity Matrix where the weight, w, between two in-
stances i and k can be biased (compressed or stretched)
for an optimal clustering solution. Controlling this bias
will be performed using general multi-task coefficients
(λ) as follows:

wik =

{
λintra · wik if ⟨Intra− Task⟩
λinter · wik if ⟨Inter− Task⟩(1.1)



(a) Full Task (b) Intra-Task (c) Inter-Task

Figure 1: Decomposition of a Multi-Task Affinity
Matrix (with four tasks).

where 0 ≤ λ ≤ 1 is a multi-task coefficient (or maybe
a matrix of coefficients for exact tailoring) that can be
modified for different clustering solutions.
Diminishing the Inter-Task connections can diminish
the bias induced by other tasks but as the tasks become
loosely connected, standard clustering methods will
cut the weakly connected tasks into different clusters.
For example, in the four-task example in Figure 1(b),
standard clustering might group the first two tasks as
one cluster and the last two tasks as another (or some
other combination where each task belongs to only one
class). To prevent this phenomenon, we obtain a low-
rank decomposition that contains near orthogonal basis
vectors within each task. Imposing orthogonal basis
vectors within each task is analogous to forcing the basis
vectors to contain two different clusters within each task
and thus the cut is not between the tasks but rather
within individual tasks. The main contributions of this
paper are:

1. Introduce a novel Muti-Task Affinity Transforma-
tion that allows more flexibility in controlling (com-
press or stretch) the Inter-Task distances.

2. Develop a constrained symmetric non-negative ma-
trix factorization to constrain the clustering solu-
tion of a multi-task affinity matrix to an Intra-Task
solution.

3. Demonstrate the performance of the proposed
framework using several real-world datasets and
compare it with the state-of-the-art methods for
standard and multi-task clustering.

The rest of the paper is organized as follows: Section 3
proposes a flexible and efficient construction method for
a “Multi-Task Affinity Matrix” and section 4 presents
an algorithm for generating relevant multi-task cluster-
ing solutions from the affinity transformation. Section 5
demonstrates our experimental results on several real-
world datasets while section 6 concludes our work.

2 Related Work

We will primarily describe two groups of works that are
related to our paper. The first one is in the area of
multi-task clustering and the second one is in the area
of Non-negative Matrix Factorization. Combining all
tasks into one single clustering problem generally yields
inferior results since multiple tasks, with different dis-
tributions, bias and distort each individual task’s distri-
bution. Multi-Task clustering methods aim to control
the effect of the Inter-Task knowledge via regulariza-
tion of the clustering objective or by finding a mapping
(or view) where the multiple distributions share a com-
mon distribution in the mapped space. The multi-task
clustering method proposed in [13] used Bregman di-
vergence for task regularization to require the learned
local mixture densities for all tasks to be similar. In [9],
different tasks are mapped to a shared distribution in a
Reproducing Kernel Hilbert Space (RKHS) where stan-
dard clustering can be performed in the common RKHS.
Information theoretic clustering methods minimize the
difference in mutual information between the original
data matrix and that of the clustered random vari-
ables [5]. Self-Taught clustering [4] used the information
theoretic approach for unsupervised transfer learning
while the loss in mutual information was added for Inter-
Task regularization for multi-task co-clustering in [11].
Multi-Task clustering was also applied via domain adap-
tation in [14]. Existing multi-task methods do not di-
rectly control the effect of the Inter-Task knowledge bias
on individual tasks. Combining multiple tasks can over-
whelm the Intra-Task distribution.
Non-negative Matrix Factorization (NMF) [8] is a ma-
trix factorization technique with a non-negativity con-
straint that is beneficial for a parts representation of the
data where the basis vectors are distributed and form
sparse combinations that can generate expressiveness in
the reconstructions. Given a non-negative data matrix
X, non-negative matrix factorization is a linear, non-
negative approximate data representation that aims to
find two non-negative matrices U and V whose product
can approximate the original matrix: X ≈ UV T . Var-
ious objective functions have been proposed [10] and
the most widely used are the sum of squared error, Eu-
clidean distance functions:

(2.2) min
U,V>0

∥∥X − UV T
∥∥2

Symmetric NMF is a special case of NMF decompo-
sition where the basis U is replaced with V and the
NMF optimization approximates a symmetric matrix
W as: W ≈ V V T . Symmetric NMF can improve over
standard NMF as it can discover clusters with a non-
linear underlying structure [7]. There are several for-
mulations for solving a Symmetric NMF problem [7, 6].



Symmetric NMF is also useful for clustering as it can
be constrained to morph into several popular clustering
methods. For example, for a square symmetric affinity
matrix, W , Symmetric NMF can be equivalent to ker-
nel k-means clustering with the additional constraints
of orthogonality on V as follows:

(2.3) argmin
V≥0

∥∥W − V V T
∥∥2 s.t.

(
V TV = I

)
NMF can also be transformed to Normalized-Cut spec-
tral clustering as:
(2.4)

W̃ = D− 1
2WD− 1

2 , D = diag (d1, . . . , dm) , di =
∑
j

wj

In this paper, we will be using a constrained version
of symmetric NMF to solve our multi-task clustering
formulation.

3 Multi-Task Affinity Transformation

3.1 Multi-Task Transformation Example Fig-
ure 2 illustrates how a multi-task affinity transforma-
tion translates to different clustering solutions where
we present the simplest variations of λintra and λinter

as we set (λintra = 1) and (λinter = λ). The goal is
to cluster documents as either sports or science docu-
ments and each individual task has samples that belong
to a branch of science (Chemistry, Biology) or sports
(Basketball, Football). Intra-Task connections link doc-
uments via task-dependent (NBA, Avogadro) features
and task-independent (Score, Celsius) features. On the
other hand, Inter-Task instances only connect via task
independent features. Following the multi-task defini-
tion in Equation (1.1), different λ values generate dif-
ferent clustering solutions as:

Figure 2: Multi-Task Affinity Transformation.

• Intra-Task Clustering (λ = 0): This coefficient re-
moves all Inter-Task connections and thus a task
cannot share or get knowledge (or bias) from the
other task. It should be noted that at (λ = 0),
standard clustering will generate two clusters where
all the documents that belong to task one (Bi-
ology/Basketball) will form one cluster while all
the documents the belong to task two (Foot-
ball/Chemistry) will form the second cluster. For

standard clustering, the tasks can be split into two
affinity matrices and form two independent solu-
tions.

• Global-Task Clustering (λ = 1): All weights are
biased equally as the multi-task coefficients are
equal and the two tasks will combine into one global
clustering solution.

• Multi-Task Clustering (0 < λ < 1): This is the
general definition of multi-task clustering where the
clustering is an Intra-Task solution with an Inter-
Task bias (or knowledge sharing).

A Multi-Task Affinity Matrix transformation can
stretch the distance between tasks reducing the
weighted connections between them. This is beneficial
since Inter-Task knowledge should only contribute com-
plementary (auxiliary) knowledge and not overwhelm
the Intra-Task knowledge. The drawback of diminishing
the connection between tasks is that standard cluster-
ing does not distinguish if the “cut” is between tasks or
within tasks and given that a Multi-Task Affinity Ma-
trix stretches the distance between tasks, clustering will
“cut” between tasks and thus designate a task as a clus-
ter (versus the correct solution where there is the prior
knowledge that each task has more than one cluster).
To prevent the Inter-Task “cut”, a Non-negative Ma-
trix Factorization method is proposed in section 4 where
orthogonality in each task’s basis vectors is promoted.
Enforcing orthogonal basis vectors, within each task, is
equivalent to forcing a solution with two different clus-
ters within each task and thus the clustering “cut” is
within each task and not between different tasks.

3.2 Objectives of Multi-Task Affinity Transfor-
mation To improve clustering we propose a general
framework for multi-task clustering and aim to solve
three problems:

1. Efficiency : Multi-task problems can grow rapidly
in size as a result of the concatenation of features
that form the combined set of all tasks. We aim to
produce an efficient transformation from a standard
Affinity Matrix to a Multi-Task Affinity Matrix.

2. Flexibility : In Section 3.1, it was demonstrated that
modifying the multi-task coefficient (λ) generates
different feature sets and clustering solutions. With
variable feature sets, a general framework should be
flexible to meet different clustering solutions and
dataset feature variants.

3. Relevance: Modifying the task connections requires
a special formulation to produce the desired clus-
tering outcome. More details will be presented in
Section 4.



3.3 Multi-Task Graph For a single formulation to
meet the requirements outlined in Section 3.2, a star
structured network will be constructed accommodating
a variable number of tasks, exploiting the symmetry of
the affinity matrix and allowing for heterogeneous (and
different) set of features. Table 1 presents a summary
of the notations used to create a “Multi-Task Affinity
Matrix” that starts from a star structured network that
is constructed with tasks t = {1, . . . , T}.
Starting with an Input Data Matrix (Dn×z) with n
samples and z features, a network is constructed where:

1. Instances (samples) form nodes in an “Instance

Task”: In×1 = {Xt}Tt=1 and each task (t) has nt

samples for a total of n =
T∑

t=1
nt nodes.

2. Features form nodes in the “Feature Task” or the
Zeroth task: Z1×z = {Xt}t=0 for a total of z feature
nodes.

With all instances and features mapped as nodes, an
information graph G = ⟨M,E,W ⟩ is constructed where
the union of the “Instance Tasks” and the “Feature
Task” forms the Multi-Task Graph, M :

(3.5) M = {I ∪ Z} = {Xt}Tt=0

The binary relation between any two nodes i and j
within this network is:

(3.6) eij ∈ E ∈ {0, 1}

This network is weighted with the non-negative weights
mapping feature nodes to instance nodes with w ∈ ℜ+

such that:

(3.7) ∀eij =
⟨
xj

t
, xi

t

⟩
,
{
xj

t
∈ Xt=0 ∧ xi

t
∈ Xt ̸=0

}
Equation (3.7) states that instance nodes only connect
to feature nodes to form a bipartite graph. This graph is
considered to be a bipartite graph since instance nodes
and feature nodes can be divided into two disjoint sets
(t = 0 and t ̸= 0) such that every edge connects one
vertex in (t = 0) to another vertex in (t ̸= 0). This
bipartite graph will be transformed into a Weighted
Multi-Task Affinity Matrix (W ).

3.4 Sub-Graph Matrices For a flexible mapping of
the bipartite graph for the multi-task transformation,
two types of sub-graphs will be constructed:

1. Intra-Task sub-graphs: Each sub-graph is a
weighted graph connecting the Intra-Task instance
nodes. For T tasks, a total of T sub-graphs are
constructed.

Table 1: Summary of the notations used.
Description

D Input Data Matrix: Dn×z with n samples
and z features

I Instance Tasks: I = {Xt}Tt=1

Z Feature Task (Zeroth Task): Z = {Xt}t=0

M Multi-Task Graph: M = {I ∪ Z}
T Total Number of Tasks
t Task Index: t = {1, . . . , T}
nt Number of Instances in the tth Instance

Task
nf Number of Features in the Feature Task
f i ith feature
eij Binary Relation between any two nodes i

and j: eij ∈ {0, 1}
wij Weighted Relation between any two nodes

i and j: wij ∈ {+}
E Binary Relation Set
W Weighted Multi-Task Affinity Matrix
xi
t Node i in Task t (Instance or Feature)

N Total Number of Instances
l Number of Labels
V N×2 NMF Basis Vectors
HT×N Task-Indicator Function
K2×T Class-Indicator Function

2. Inter-Task sub-graphs: Each sub-graph is a
weighted graph connecting instance nodes from two
different tasks using the feature nodes that are com-

mon to both tasks. A total of TC2 = T (T−1)
2 sub-

graphs are constructed.

A sub-graph is defined as Gtt∗ , where t is the index of
the first task and t∗ is the index of the second task.
t ̸= t∗ for an Inter-Task graph while t = t∗ for an Intra-
Task sub-graph.
Let us define exi

t
zj as the binary relation between the

jth feature node (zj) and the ith instance node (xi) of
task t. Let exi

t
zj indicate if the jth feature node (zj) is

connected to the ith instance node (xi) of task t as:

exi
t
zj ≡

(
zj ∈ xi

t

)
=

{
1 wxi

t
zj ̸= 0

0 otherwise
(3.8)

To check if a feature node (zj) belongs to any instance
node (xt) in task t, it has to connect to at least one of
the task’s instance nodes and thus we define the binary
indicator f t

zj to designate if the jth feature node zj

belongs to task t as:

f t
zj ≡

(
zj ∈ t

)
=

 1
nt∑
i=1

exi
t
zj ̸= 0

0 otherwise

(3.9)



Now that the preliminaries have been defined, a sub-
graph Gtt∗

[
xi

t
xk
t∗
]
is constructed as follows:

(3.10)
z∑

j=1

(
sxi

t
xk
t∗

)(
f t
zjf t∗

zj

)(
exi

t
zjexk

t∗z
j

)(
wxi

t
zj + wxk

t∗z
j

)
Equation (3.10) is divided into four components where
the first 3 components are Kronecker’s Delta “checks” to
generate weighted connections between instance nodes:

1.
(
sxi

t
xk
t∗

)
is optional to prevent self-loops and is

defined as:[
sxi

t
xk
t∗

]
=

{
1 xi

t
̸= xk

t∗

0 otherwise
(3.11)

2.
(
f t
zjf t∗

zj

)
: This section is an Inter-Task check and

by definition of f t
zj , we will get a value of one if a

feature node belongs to both tasks. It is included
for efficiency as it eliminates all feature nodes that
are not shared by the two tasks. For example, if
two tasks only share 10% of the feature nodes, this
check can eliminate 90% of the feature nodes for a
reduced sub-graph. It is defined as:[

f t
zjf t∗

zj

]
=

{
1
(
zj ∈ t

)
∧
(
zj ∈ t∗

)
0 otherwise

(3.12)

3. (extziext∗zi): This section checks if a feature node
(zi) belongs to both instance nodes (xt∗) and (xt).
The outcome is a value of one if that feature node
belongs to both instance nodes.

[extziext∗zi ] =

{
1
(
zj ∈ xi

t

)
∧
(
zj ∈ xi

t∗
)

0 otherwise
(3.13)

4.
(
wxi

t
zj + wxk

t∗z
j

)
: If a feature node belongs to both

tasks and is connected to instance nodes (xt and
xt∗), the weight of the path connecting these two
instance nodes through the feature node (zi) would
be combined in the sub-graph.

3.5 Multi-Task Weighted Affinity Matrix For T
tasks, a total of TC2 + T weighted sub-graphs are con-
structed and are combined to form a single Multi-Task
Weighted Affinity Matrix with it’s weight calculated as:
(3.14)

wxi
t
xk
t∗

= [(δtt∗)λintra + (δ′tt∗)λinter]Gtt∗
[
xi

t
xk
t∗
]

where (δ′tt∗) is the inverse of the Kronecker’s delta (δtt∗)
which is defined as:

δtt∗ = δ [tt∗] =

{
1 t = t∗

0 t ̸= t∗
(3.15)

Equation (3.14) can be broken down to:

wxi
t
xk
t∗

=

 λintraGtt∗
[
xi

t
xk
t∗
]

t = t∗

λinterGtt∗
[
xi

t
xk
t∗
]

t ̸= t∗
(3.16)

This is the original definition of multi-task clustering
given in Equation (1.1).

4 Symmetric Multi-Task NMF

4.1 Symmetric Multi-Task Non-Negative Ma-
trix Factorization In this section, we modify a sym-
metric NMF objective function so that the clustering
on a symmetric non-negative multi-task affinity matrix
can generate local “Intra-Task” solutions while simulta-
neously incorporating the knowledge from all the tasks.
Mathematically, given a Symmetric Multi-Task Affinity
Matrix W , we want to find the basis vectors V such
that:
(4.17)

argmin
V≥0

[J (V )] = argmin
V≥0

[
1

2

∥∥W − V V T
∥∥2 + αTr

(
ϕϕT

)]
We add a multi-task sparsity/orthogonality constraint,
ϕ, to the standard Symmetric-NMF formulation and
define it as:

(4.18) ϕ = HVK

where HT×N ∈ {0, 1} is a task-indicator function.
Within the trace penalty constraint, this matrix limits
the orthogonality constraint to Intra-Task basis while
excluding Inter-Task basis. It is defined as:

H (t, i) =

{
1 i ∈ t
0 i /∈ t

(4.19)

K2×T ∈ {−1,+1} is the class-indicator function and
sums the basis (if normalized) to zero when an Intra-
Task solution is orthogonal. For a binary, two class,
problem it is defined as:

K (i, t) =

{
+1 i = 1
−1 i = 2

(4.20)

This penalty encourages Intra-Task orthogonality which
is analogous to enforcing that each task should have
two independent basis. The penalty Tr

(
ϕϕT

)
equals

zero for a fully orthogonal within-task solution and is
strictly increasing otherwise.

4.2 Multiplicative Update Rule To derive the up-
dating rule for Equation (4.17) with non-negative con-
straints on Vij , we introduce the Lagrangian multi-
pliers λ to minimize the Lagrangian function: L =



J +
∑
ij

λijVij .

The first order KKT condition for local minima is:

(4.21)
∂L

∂Vij
= 0 and λijVij = 0, ∀i, j

Expanding the Lagrangian function L:
(4.22)

L = 1
2

∥∥W − V V T
∥∥2 + αTr

(
ϕϕT

)
+ Tr

(
λV T

)
= Tr

(
1
2

(
WTW − 2WV V T + V V TV V T

))
+Tr

(
αHVKKTV THT + λV T

)
The gradient of Equation (4.22) is:

(4.23)
∂L

∂V
= −2WV +2V V TV +2αHTHVKKT + λ

The KKT complementarity condition for the non-
negativity of Vik gives:
(4.24)(

−2WV + 2V V TV + 2αHTHVKKT
)
ik
Vik = 0

This is the fixed point relation that the local minima
for V must satisfy. To minimize Equation (4.17), we
use the gradient descent method:

(4.25) Vij ← Vij − εij
∂J

∂Vij

Setting εij =
Vij

4V V TV
, we derive the proposed updating

rules of Equation (4.26).
(4.26)

Vij =
1

2

[
Vij

(
1 +

(
WV − αHTHVKKT

)
ij

(V V TV )ij

)]
A value of α has to be set such that non-negativity is
enforced ∀ij :

(4.27)
[
WV − α

(
HTHVKKT

)]
ij
≥ 0

Since KKT ∈ {R<0,R>0}, Equation (4.27) can be
decomposed into its negative and positive components
as:
(4.28)[
WV − α

(
HTHVKKT

)+ − α
(
HTHVKKT

)−]
ij
≥ 0

The term α
(
HTHVKKT

)−
can be dropped from Equa-

tion (4.28) since ∀ij :

(4.29)
[
−α
(
HTHVKKT

)−]
ij
≥ 0

Thus α has to be set to any value such that ∀ij :

(4.30) α ≤

(
WV

(HTHVKKT )
+

)
ij

Simply stated, non-negativity is preserved if α is set to
any positive value less than the minimum of the matrix
calculated in Equation (4.30).

(4.31) 0 ≤ α ≤ min

(
WV

(HTHVKKT )
+

)
In our implementation, we preserved non-negativity and
minimized Tr

(
ϕϕT

)
by setting α to:

(4.32) α = min

(
WV

(HTHVKKT )
+

)

4.3 Symmetric Multi-Task NMF Clustering
Algorithm In this section, we present our Multi-Task
clustering algorithm “Symmetric Multi-Task NMF”.
The first two steps generate a Multi-Task Affinity Ma-
trix where the Inter-Task connection have their weights
reduced by the Multi-Task coefficients λ1. We iterate
to get the basis vectors and set the class membership to
the basis vector with highest value.

Algorithm 1 Symmetric Multi-Task NMF (SMT-
NMF)

Input: Input Data Matrix (Dn×z). Multi-Task Coeffi-
cients λ

1: Construct Sub-Graph Matrices using equation
(3.10).

2: Construct Weighted Multi-Task Affinity Matrix W
using equation (3.14).

3: Set H using equation (4.19) and K using equation
(4.20).

4: Initialize V with random non-negative values
5: repeat

6: α = min
(

WV
(HTHVKKT )+

)
7: Vij =

1
2

[
Vij

(
1 +

(WV−αHTHVKKT )
ij

(V V TV )ij

)]
8: until Convergence

Output: Assign i to cluster j = argmax
j

(Vij) , ∀i.

5 Real-World Experimental Results

5.1 Experiment Setup In this section, we compare
the proposed Symmetric Multi-Task NMF (SMT-NMF)
clustering algorithm with single-task and all-task clus-
tering methods including K-means, Normalized Cut (N-
Cut) and standard Symmetric NMF (α = 0). Addition-
ally, we also compare with the recently proposed multi-
task clustering algorithm “LNKMTC” [9].

1For simplicity we set: λintra = 1.



For N-Cut, we search for the best distance kernel and
for LNKMTC we follow the setup described in [9] where
the neighborhood size for the LNKMTC’s lambda was
uniform for all labels, the k-NN graph is set to k = 10,
the regularization parameter C is set by searching the
grid {0.1, 1, 10, 100, 500, 1000} and b is set to 30. For
SMT-NMF, we set λinter = 1 and search the multi-task
coefficient λintra = {0, . . . , 1}.
Since single task algorithms performed poorly when the
number of samples is small, we varied the number of
samples and compiled the results at four different sam-
ple sizes. Instances were picked randomly where the
number of samples and the number of feature are out-
lined in Table 2. As the number of samples increased,
so did the number of features (processed into TF-IDF
representations [2]). At each sample size, we calculated
the average clustering accuracy [12] of 30 runs and tab-
ulated the total average from 120 runs.

5.2 Dataset Description The details of the
datasets used in our experiments are summarized in
Table 2.

• 20 Newsgroups: The 20 Newsgroups2 dataset is a
collection of newsgroup documents. We generated
six multi-task learning problems where each task
is drawn from different sub-categories as outlined
in [3]. For example, if the classes are from the
top two categories: “Rec vs. Talk”, the first
task is from sub-categories \rec.sport.hockey and
\talk.religions.misc whereas the second task is from
\rec.sport.baseball and \talk.politics.mideast.

• Reuters-21758: The Reuters-217583 corpus con-
tains Reuters news articles from 1987. Three multi-
task problems with 2 tasks per problem were gen-
erated where the subcategory splits are analogous
to the split in [3].

• WebKB4: The WebKB44 dataset contains web
pages from four different universities (Cornell,
Texas, Washington, Wisconsin) and thus 4 tasks
were generated. Websites belong to either Personal
(student/faculty) or Project (course/project).

5.3 Experimental Results on Real-World
Multi-Task Datasets Different sets of experiments,
(4-tasks, 2-classes) and (2-tasks, 2-classes), tested the
ability of SMT-NMF to improve learning in a multi-
task learning setting. We generated six 20newsgroups
(4-tasks, 2-classes)4, one WebKB4 (4-tasks, 2-classes)

2http://people.csail.mit.edu/jrennie/20Newsgroups/
3http://kdd.ics.uci.edu/databases/reuters21578/
4http://archive.ics.uci.edu/ml/

Table 2: Description of the datasets.

Dataset Task Tasks Samples Features

20News

rec-tlk 4 40-160 636-1963
rec-sci 4 40-160 448-1876

rec-comp 4 40-160 405-1468
tlk-sci 4 40-160 631-2388

tlk-comp 4 40-160 504-2066
sci-comp 4 40-160 634-1939

WebKB proj-pers 4 80-320 141-760

Reuters
orgs-ppl 2 40-160 1514-2552
orgs-plcs 2 40-160 1501-2583
ppl-plcs 2 40-160 1281-2610

and three Reuters (2-tasks, 2-classes) experiments.
The comparisons of clustering accuracy are presented
in Tables (3-5) and they demonstrate that SMT-NMF
consistently outperforms other algorithms. For the
(4-tasks, 2-classes) datasets, the second best algorithms
were (Single-Task NMF for 80% of the experiments)
and (All-Task NMF for 20% of the experiments). For
the (2-tasks, 2-classes) Reuters dataset, the second best
algorithms were evenly split between All-Task NMF,
Single-Task NMF, and Single-Task N-cut. “LNKMTC”
did not perform well as the k-NN graph construction
method creates sparse affinity matrices where a disjoint
(or very weakly connected) set is formed when a set of
instances in any one task only connects to the instances
within their own task and does not connect with the
remainder of the graph.

5.4 Clustering with Different Number of Sam-
ples Figure 3 depicts the clustering performance across
a variable number of instances. The WebKB4 and
Reuters datasets are not plotted because SMT-NMF
performed significantly better across all the sample
sizes. For clarity, we plot the 20newsgroups dataset and
only compare against the two most competitive algo-
rithms (Single-Task NMF and Single-Task N-Cut). The
sub-figures demonstrate that SMT-NMF improved the
clustering accuracy where each individual task benefited
from the additional sources of information. The perfor-
mance of Single-Task algorithms eventually improved
with increased availability of data with each individual
task where each task eventually acquired a “sufficient”
number of samples for Single-Task clustering to perform
well without the need for Multi-Task learning.

6 Conclusion

We presented a novel multi-task clustering framework
where the distances within and between tasks can be



Table 3: Performance comparison of Clustering Accuracy (20Newsgroups(1-3)).

Four-Tasks, Two-Classes. (20 Newsgroups)

DataSet Rec vs Talk Rec vs Sci Rec vs Comp

Method T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4

S-Ncut 82.5 91.9 81.0 85.8 81.4 89.1 86.0 82.2 86.0 92.4 79.4 83.8
S-NMF 84.9 93.8 86.1 89.0 86.6 91.6 91.4 82.9 90.9 94.5 86.1 89.3
S-Kmeans 76.4 88.5 79.6 78.9 80.1 86.8 86.1 74.3 83.2 90.1 79.7 83.4

A-Ncut 82.4 86.0 61.3 64.0 81.0 81.3 60.5 60.7 84.8 86.5 72.4 75.1
A-NMF 83.7 91.9 74.9 76.1 84.3 85.2 75.6 70.2 90.7 94.9 80.7 83.3
A-Kmeans 81.8 89.1 64.3 64.7 81.5 87.7 55.4 54.3 87.2 94.0 71.3 71.0

LNKMTC 53.1 80.8 52.0 55.3 60.0 63.7 56.9 56.1 58.8 77.3 51.4 52.7
SMT-NMF 93.2 96.7 89.6 91.2 91.2 94.9 91.8 88.7 95.7 97.5 92.0 92.8

stretched (or compressed) to increase (or diminish)
the knowledge-sharing and bias between tasks. The
effectiveness of the framework was demonstrated and
it was illustrated that it can address several multi-
task clustering problems. A Symmetric Multi-Task
Non-Negative Matrix Factorization method is developed
where the NMF basis vectors are orthogonal within
each task thus producing a clustering solution where
the knowledge-sharing does not overwhelm or bias the
individual tasks. The superiority of this new multi-task
formulation was demonstrated with an extensive set of
real-world multi-task clustering datasets.
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Table 4: Performance comparison of Clustering Accuracy (20Newsgroups(4-6)).

Four-Tasks, Two-Classes. (20 Newsgroups)

DataSet Talk vs Sci Talk vs Comp Sci vs Comp

Method T1 T2 T23 T4 T1 T2 T3 T4 T1 T2 T3 T4

S-Ncut 75.7 84.5 83.9 77.2 84.3 81.8 94.0 89.3 70.1 84.4 84.9 82.8
S-NMF 80.6 88.4 87.5 81.0 85.4 90.1 92.2 92.0 75.8 88.4 89.6 82.0
S-Kmeans 71.6 80.4 78.2 70.6 79.3 81.7 88.6 85.9 68.7 80.8 82.8 73.4

A-Ncut 71.9 68.6 72.3 66.1 86.3 87.2 91.4 89.2 66.1 80.2 79.0 72.4
A-NMF 76.3 76.7 80.7 71.7 91.6 92.5 95.9 94.1 65.9 82.7 84.7 78.7
A-Kmeans 70.3 73.1 78.2 66.9 91.5 91.2 96.0 93.6 65.0 79.5 81.1 74.7

LNKMTC 54.5 54.1 68.1 56.8 51.8 54.5 80.1 55.0 52.4 62.2 60.5 61.8
SMT-NMF 89.3 88.5 91.9 84.7 97.0 97.2 97.9 97.4 78.2 91.8 93.6 91.0

Table 5: Performance comparison of Clustering Accuracy (WebKB4, Reuters).

Four-Tasks,Two-Classes(WebKB4). Two-Tasks,Two-Classes(Reuters)

WebKB4 Reuters

DataSet Project vs Personal ppl-orgs plcs-orgs ppl-plcs

Method T1 T2 T3 T24 T1 T2 T1 T12 T1 T2

S-Ncut 77.3 72.5 78.1 65.8 70.9 74.0 74.3 69.1 66.7 69.7
S-NMF 84.6 83.0 84.9 86.6 72.3 65.3 62.1 71.4 69.8 61.1
S-Kmeans 76.2 72.1 80.0 60.5 55.6 57.0 59.2 58.8 57.0 57.5

A-Ncut 69.8 67.9 67.2 70.4 71.6 73.9 72.9 66.5 61.7 65.6
A-NMF 85.9 82.9 81.3 86.5 73.1 75.4 74.0 68.8 63.4 69.3
A-Kmeans 67.8 67.1 67.1 67.0 57.6 57.3 54.6 58.1 59.5 56.5

LNKMTC 61.7 52.9 52.0 63.3 59.4 62.8 62.8 59.1 56.7 60.0
SMT-NMF 92.1 88.3 88.0 92.6 81.0 84.6 81.3 77.6 73.7 75.1

(a) Rec vs. Talk (b) Rec vs. Sci (c) Rec vs. Comp

(d) Talk vs. Sci (e) Talk vs. Comp (f) Sci vs. Comp

Figure 3: Performance comparison against best competing algorithms across varying number of instances.


