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Abstract

One of the most widely-used nonlinear data embed-
ding methods is ISOMAP. Based on a manifold learning
framework, ISOMAP has a parameter k or ǫ that con-
trols how many edges a neighborhood graph has. How-
ever, a suitable parameter value is often difficult to de-
termine because of a time-consuming optimization pro-
cess based on certain criteria, which may not be clearly
justified. When ISOMAP is used to visualize data, users
might want to test different parameter values in order
to gain various insights about data, but such interac-
tion between humans and such visualizations requires
reasonably efficient updating, even for large-scale data.
To tackle these problems, we propose an efficient up-
dating algorithm for ISOMAP with parameter changes,
called p-ISOMAP. We present not only a complexity
analysis but also an empirical running time comparison,
which show the advantage of p-ISOMAP. We also show
interesting visualization applications of p-ISOMAP and
demonstrate how to discover various characteristics of
data through visualizations using different parameter
values.

1 Motivation

One of the most widely-used data mining techniques
that reduce noise in data and improve efficiency in terms
of computation time and memory usage is dimension re-
duction. Recently, nonlinear dimension reduction tech-
niques, which have been actively investigated, revealed
the underlying nonlinear structure in data. Such non-
linearity is often considered as a curvilinear manifold
with a much lower dimension than that in the original
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high-dimensional space. Among the most recent non-
linear dimension reduction methods, isometric feature
mapping (ISOMAP) has shown its effectiveness in cap-
turing the underlying manifold structure in the reduced
dimensional space by being successfully applied to syn-
thetic data such as “Swiss roll” data and real-world data
such as facial image data [16].

ISOMAP shares the basic idea with a traditional
technique, classical multidimensional scaling (MDS).
Classical MDS first constructs the pairwise similarity
matrix, which is usually measured by the Euclidean dis-
tance, and computes the reduced dimensional mapping
that maximally preserves such a similarity matrix in a
given reduced dimension. ISOMAP differs from clas-
sical MDS in that it constructs the pairwise similarity
matrix based on the geodesic distance estimated by the
shortest path in the neighborhood graph of data. The
neighborhood graph is formed by having vertices as data
points and setting each edge weight between the nodes
as their Euclidean distance only if at least one node is
one of the k-nearest neighbors (k-NN) of the other node
(k-ISOMAP) or if their Euclidean distance is smaller
than ǫ (ǫ-ISOMAP). Hence, ISOMAP has an either pa-
rameter k or ǫ to construct the neighborhood graph.
This paper focuses on the algorithm and applications of
the dynamic updating of ISOMAP when the value of k
or ǫ varies.

It is generally known that in ISOMAP, if k or ǫ
is too small, the graph becomes sparse, resulting in
infinite geodesic distances between some pairs of data
points, and if k or ǫ is too large, it is prone to “short
circuit” the true geometry of the manifold. However, it
is not always easy to figure out which value of k or ǫ is
appropriate for the data at hand. One way of optimizing
these parameters is using certain quantitative measures
such as residual variance [2, 16, 15] and finding the
“elbow” point at which the residual variance curve stops
decreasing significantly as the parameter value changes.
However, running ISOMAP repeatedly using different
parameter values for k or ǫ may be time-consuming
since it involves computationally intensive processes
such as the all-pairs shortest path computation and the
eigendecomposition, whose complexity is usually O(n3)
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(a) The “Swiss roll” data set
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(b) ISOMAP with k = 8
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(d) ISOMAP with k = 100
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(e) The toroidal helix data set
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(f) ISOMAP with k = 8
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(h) ISOMAP with k = 100

Figure 1: ISOMAP examples with different k values. The first and second rows of figures correspond to the “Swiss
roll” and the toroidal data sets, respectively.

in which n is the number of data points.1

Also in practice, there is often no guarantee of
the existence of the underlying well-defined manifold
structure in data, and thus, one may not be sure
if manifold learning methods such as ISOMAP are
suitable for the data at hand. Even so, one may still
want to try ISOMAP or another manifold learning
method in order to see if it serves one’s purpose. In
this case, however, it may not be a good idea to rely
on a particular value of k or ǫ to achieve a reasonable
dimension reduction since the optimal value tends to be
indistinct in terms of a certain measure.

When it comes to the visualization of high-
dimensional data in two- or three-dimensional space, we
can acquire different insights on the data by using vari-
ous dimension reduction techniques [6]. This statement
also holds true even when we use just a single dimen-
sion reduction method, e.g., ISOMAP, while we test its
various parameter values. In short, visualizations using
ISOMAP with different parameter values for k or ǫ can
provide us with various aspects of our data. In instances
of the “Swiss roll” and toroidal helix data sets shown
in Figure 1, one may want to visualize them based on
the unfolded version of its manifold, as shown in Fig-
ures 1(b) and 1(f), but sometimes one may also want to
see how the underlying manifold is curved in the orig-
inal space, i.e., the curvature of the manifold itself, as

1The complexity of the (all-pairs) shortest path computation
depends on the algorithm. Floyd-Warshall algorithm requires

O(n3) computations while Dijkstra’s algorithm does O(|e|n log n)
computations [3] in which |e| is the number of edges.

shown in Figures 1(d) and 1(h).2 It is also possible that
visualizations of the transition between these two cases,
shown in Figures 1(c) and 1(g), imply different insight
about data. In this sense, it is worthwhile for users to
test different parameter values in ISOMAP to visual-
ize data in various ways. Such visualizations, however,
should provide users with smooth and prompt interac-
tion that requires fast and efficient computations of the
results. In other words, when users change the param-
eter value, if they have to wait for a significant amount
of time, then such interaction would not be practical.

Motivated by the above mentioned cases, we pro-
pose p-ISOMAP, an efficient dynamic updating algo-
rithm for ISOMAP when the parameter value changes.
Given the ISOMAP result from a particular parame-
ter value, our proposed algorithm updates the previous
result to obtain another ISOMAP result of the same
data with a new parameter value instead of recomputing
ISOMAP for different parameter values from scratch.
We present the complexity analysis of our algorithms as
well as the experimental comparison of their computa-
tion times. In addition, we demonstrate several visual-
ization examples by varying the parameters in ISOMAP,
which not only show the interesting aspects of the tested
data but also help us thoroughly understand the behav-
ior of ISOMAP in terms of parameter values.

The rest of this paper is organized as follows. Sec-
tion 2 briefly introduces ISOMAP and its algorithm,

2It may not be possible to visualize the manifold curvature
perfectly without using the original dimension, but at least we

can obtain some insights about it from a lower dimensional
visualization.



and Section 3 discusses previous work related to p-
ISOMAP. Section 4 describes the algorithmic details
and the complexity analysis of p-ISOMAP, and Section
5 presents not only the experimental results that com-
pare the computation times of ISOMAP and p-ISOMAP
but also interesting visualization examples of real-world
data using p-ISOMAP. Finally, Section 6 concludes our
work.

2 ISOMAP

Given a set of data points represented as M -dimensional
vectors xi ∈ R

M for i = 1, . . . , n, ISOMAP assumes a
lower dimensional manifold structure in which the data
are embedded. It yields the m-dimensional representa-
tion of xi as yi ∈ R

m (m≪M) such that the Euclidean
distance between yi and yj approximates their geodesic
distance along the underlying manifold as much as pos-
sible. Such an approximation builds on the classical
MDS framework, but unlike MDS, ISOMAP has the
capability of handling nonlinearity existing in the origi-
nal space since a geodesic distance reflects an arbitrary
curvilinear shape of the manifold.

On input, ISOMAP takes a data matrix X =
[

x1 x2 · · · xn

]

∈ R
M×n, a reduced dimension m,

and a parameter k or ǫ. The algorithm is composed of
three steps:

1. Neighborhood graph construction. ISOMAP first
computes the pairwise Euclidean distance matrix,
DX ∈ R

n×n, in which DX(i, j) is the Euclidean
distance between xi and xj . Then it determines the
set of neighbors for each point either by k-nearest
neighbors or by those within a fixed radius ǫ.
Between a point xi and each of its neighbors xj , an
edge e(i, j) is assigned with a weight equivalent to
their Euclidean distance, and in this way, ISOMAP
forms a weighted undirected neighborhood graph
G = (V, E), where the vertices in V correspond to
the data points xi’s.

2. Geodesic distance estimation. In the second step,
ISOMAP estimates the pairwise geodesic distance
based on the shortest path length for every vertex
pair along the neighborhood graph G, which is
represented as a matrix DG ∈ R

n×n in which
DG(i, j) is the shortest path length between xi and
xj in G.

3. Lower dimensional embedding. The fi-
nal step performs classical MDS on DG,
producing m-dimensional data embedding,
Y =

[

y1 y2 · · · yn

]

∈ R
m×n. First, the

pairwise geodesic distance matrix DG is converted

Table 1: Notations used in this paper

Notation Description

n Number of data points
M Original dimension
m Reduced dimension
xi Input data vector, i = 1, . . . , n
yi Reduced dimensional vector of xi

DX Euclidean distance matrix of xi’s−→
G Directed neighborhood graph
G (Undirected) neighborhood graph
q Maximum degree of the vertices in G

DG Shortest path length matrix in G
BG Inner product matrix obtained from DG

A Set of edges to be inserted in G
D Set of edges to be removed in G

∆ei Set of inserted/removed edges of xi

F Set of affected vertex pairs by A or D
P Predecessor matrix
H Hop number matrix

k and knew Previous and new parameter values

to an inner product matrix BG as
(2.1)

BG = −
(

I − 1

n
11T

)

DG.2
(

I − 1

n
11T

)

/2,

in which I ∈ R
n×n is an identity matrix, 1 ∈ R

n×1

is a vector whose elements are all 1’s, and DG.2

is an element-wise squared DG. Classical MDS
solves Y such that it minimizes E = ‖BG−Y T Y ‖,
where the matrix norm ‖ ·‖ is either a Frobenius or
Euclidean norm. Such a solution of Y is obtained
by the eigendecomposition of BG as

(2.2) Y =
[ √

λ1v1

√
λ2v2 · · ·

√
λmvm

]T
,

where λ1, . . . , λm are the m largest eigenvalues of
BG, with corresponding eigenvectors v1, . . . , vm.

3 Related Work

Based on the algorithmic details of ISOMAP described
in Section 2, if the parameter k or ǫ varies, it would
change the topology of the neighborhood graph in the
first step. Such a change can be interpreted as either
an insertion of new edges or a removal of existing edges
in the neighborhood graph. The inserted or removed
edges would in turn influence the shortest path length
matrix DG. Solving the updated DG can be viewed as
a dynamic shortest path problem in which we need to
update the existing shortest path and its corresponding
length due to graph changes. Generally, a dynamic
shortest path problem includes all the various situations
that involve not only vertex insertion/removal but also



real-valued edge weight changes rather than just edge
insertion/removal, and depending on what types of
changes in the graph are assumed in the algorithm, it
maintains a variety of additional information such as the
candidates of the future shortest paths for an efficient
shortest path update [4, 7, 9].

In the context of manifold learning methods, several
approaches have tried to dynamically update ISOMAP
embedding for incremental data input such as a data
stream [11, 12]. Similar to the parameter changes in p-
ISOMAP, incremental data cause topology changes in
the neighborhood graph, which can be fully expressed
by edge insertion/removal, so previous studies[11, 17]
have discussed the dynamic shortest path updating
algorithms that can deal with such types of graph
changes. However, the characteristic in terms of graph
changes differs greatly between p-ISOMAP and incre-
mental ISOMAP. First, each parameter change in p-
ISOMAP involves only the form of either edge insertion
or removal in p-ISOMAP while a new data point causes
both at once in incremental ISOMAP. In this sense, one
may regard the shortest path updating in p-ISOMAP
as simpler than that in incremental ISOMAP. However,
graph changes in incremental ISOMAP primarily result
from a new data item, and thus, an inserted edge in
incremental ISOMAP is always connected to the new
data point once an edge of a certain vertex is deleted.
Furthermore, when the parameter k is used, the number
of inserted or removed edges in p-ISOMAP is roughly
O(n|∆k|), where n is the number of data points and
∆k = knew − k, whereas that in incremental ISOMAP
is roughly O(k), which is much smaller than that in
p-ISOMAP. This difference implies that even a small
change in parameter values in p-IOSMAP can lead to a
significant change in the neighborhood graph and its all-
pairs shortest path results. However, the graph change
in incremental ISOMAP is still minor compared to the
entire graph size. Considering such different behaviors,
we present our own shortest path updating algorithm
that is appropriate for p-ISOMAP in Section 4.

After the shortest path update, one needs to up-
date the eigendecomposition results on a new matrix
BG, shown in Eq. (2.1). In general, the eigendecompo-
sition update is done by formulating the change in BG

in a certain form, e.g., a rank-1 update [5]. In incremen-
tal ISOMAP, [11] applied an approximation technique
called the Rayleigh-Ritz method [10, 8] based on a vari-
ant of the Krylov subspace in computing the eigende-
composition. However, this method is limited to the
case when the reduced dimension m is fairly large and
the eigendecomposition does not change significantly.
However, when p-ISOMAP is used in a visual analytics
system, which is one of our main motivations, it requires

Algorithm 1 neighborhood graph update for a new k

Input: the new value of k , the directed neighborhood

graph
−→
G , and the undirected one G

Output: the set of inserted edges A or that of removed

ones D in G, updated
−→
G and G

1: for all data point xi do
2: for all newly added/deleted neighbor xj do
3: Assign/Remove an edge e(i, j) from xi to xj in−→

G .
4: end for
5: end for
6: Initialize A := ∅ / D := ∅.
7: for all inserted/removed edge e(i, j) in

−→
G do

8: if e(i, j) is an inserted edge then
9: if e(i, j) is not in G then

10: A ← A∪ {e(min(i, j), max(i, j))}
11: Assign the edge e(i, j) in G.
12: end if
13: else {e(i, j) is a removed edge}
14: if e(j, i) is not in

−→
G then

15: D ← D ∪ {e(min(i, j), max(i, j))}
16: Remove the edge e(i, j) in G.
17: end if
18: end if
19: end for

m to be a small value such as two or three. Further-
more, such approximation methods perform poorly in
p-ISOMAP since it involves O(n) graph changes and the
corresponding large amount of the shortest path update.
Hence, we focus on the exact solution for p-ISOMAP.

In the next section, we present a novel algorithmic
framework for p-ISOMAP.

4 p-ISOMAP

p-ISOMAP assumes the original ISOMAP result is
available for a particular parameter value. Given a
new parameter value, the algorithm performs three
steps: the neighborhood graph update, the shortest
path update, and the eigenvalue/vector update.

4.1 Neighborhood Graph Update In this step, p-
ISOMAP computes the set of edges to insert or remove
from the previous neighborhood graph and update the
neighborhood graph by applying such changes. In
order to compute these edges efficiently, each data point
maintains the sorted order of the other points in terms of
its Euclidean distances to them. In this way, p-ISOMAP
identifies which neighbor points of a particular point are
to be added or deleted in O(1) time.

If a neighborhood graph is constructed by the pa-



rameter ǫ, the neighborhood relationship is symmetric,
i.e., if and only if xi is a neighbor of xj , xj is also
a neighbor of xi for a particular ǫ. Thus the added
or deleted neighborhood pairs are equivalent to the in-
serted or removed edges in a neighborhood graph, and
the algorithm is straightforward.

On the other hand, if a neighborhood graph is con-
structed by k-NN, the situation becomes complex since
it is possible that xi is a neighbor of xj , but xj is not a
neighbor of xi, which we call a one-sided neighborhood.
By considering such a one-sided relationship, a directed

neighborhood graph
−→
G is initially made, and ISOMAP

obtains its undirected one G by an OR operation, i.e.,
for xi and xj , if at least either one is a neighbor of the
other, then ISOMAP assigns an edge with the weight
equal to their Euclidean distance. In p-ISOMAP, both
directed and undirected graphs are maintained and up-
dated in an orderly manner so as to avoid ambiguity
about which changes of neighbors in a directed graph
cause actual edge changes in an undirected one in which
we have to actually compute the shortest paths. The de-
tailed procedure of the neighborhood graph update are
described in Algorithm 1. As an output, it produces
the set of effectively inserted/removed edges, which is,
in turn, used in the shortest path update stage.

4.1.1 Time Complexity In ISOMAP, the time
complexity in constructing a neighborhood graph is as
follows. It starts with a sort operation for a given data
set whose time complexity is O(n2 log n). Then obtain-

ing
−→
G and G requires O(nq), in which q is the maximum

degree of vertices in the graph G. In p-ISOMAP, the
time complexity required in the neighborhood graph up-
date is bounded by O(n ·maxi |∆ei|), in which |∆ei| is
the number of inserted/removed edges associated with
xi.

4.2 Shortest Path Update The shortest path up-
date stage, which is one of the most computationally
intensive steps in p-ISOMAP, takes the input as either
A or D and updates the shortest path length matrix DG.
In order to facilitate this process, p-ISOMAP maintains
and updates the information about the shortest path it-
self with a minimal memory requirement in the form of
a predecessor matrix P ∈ R

n×n, in which P (i, j) stores
the node index immediately preceding xj in the shortest
path from xi to xj .

3 For instance, if the shortest path
from x1 to x2 is composed of x1 → x4 → x3 → x2, then
we set P (1, 2) = 3.

For the shortest path update, p-ISOMAP performs

3Here we assume the shortest path is unique for every vertex
pair, which is almost always the case in ISOMAP.

Algorithm 2 Shortest path update for A
Input: the updated neighborhood graph G, the short-
est path length matrix DG, the predecessor matrix P ,
and the set of inserted edges A
Output: updated DG and P

1: for all inserted edge e(a, b) in A do
2: for all data point xi do
3: Unmark all the other nodes except for xi.
4: if DG(i, b) + G(a, b) < DG(i, a) then
5: DG(i, a)← DG(i, b) + G(a, b)
6: P (i, a)← b
7: DG(a, i)← DG(i, a)
8: if b = i then
9: P (a, i)← a

10: else
11: P (a, i)← P (b, i)
12: end if
13: end if

{Traverse T (i, a)}
14: Initialize an empty queue Q.
15: Q.enqueue(a)
16: while Q is not empty do
17: t := Q.pop
18: Mark xt.
19: for all unmarked node xj adjacent to xt do
20: if DG(i, t) + G(t, j) < DG(i, j) then
21: DG(i, j)← DG(i, t) + G(t, j)
22: P (i, j)← t
23: DG(j, i)← DG(i, j)
24: P (j, i)← P (t, i)
25: Q.enqueue(j)
26: else
27: Mark xj .
28: end if
29: end for
30: end while
31: end for
32: end for

two steps:

1. It identifies the set, F , of the “affected” vertex
pairs, whose shortest paths need to be recomputed
due to the inserted edges in A or the removed edges
in D.

2. Then it computes their shortest paths based on the
information of the rest of the vertex pairs and the
newly updated neighborhood graph, which usually
performs significantly faster than the original short-
est path computation from scratch.



4.2.1 Shortest Path Update with Inserted
Edges due to an Increasing Parameter The main
idea in the shortest path update due to an inserted
edge e(a, b) is that if DG(i, a) + e(a, b) + DG(b, j) or
DG(i, b) + e(a, b) + DG(a, j) is shorter than DG(i, j),
then DG(i, j) is to be replaced by the smaller one be-
tween the two new path lengths along with the corre-
sponding update of P . Performing this comparison for
all pairs of vertices would require the time complexity
of O(n2|A|), in which |A| is the number of edges in
A. Unlike incremental ISOMAP or other situations in
which |A| is relatively small and constant, p-ISOMAP
has |A| ≃ O(n) due to an increasing parameter, which
makes the complexity of the above computation roughly
equal to O(n3). Such complexity is no better than the
Floyd-Warshall algorithm used in the original ISOMAP.
Thus, the algorithm has to find the computational gain
while identifying the subset, F , of the entire vertex pair
set and applying the above comparison only in this set.
For construction of F , the shortest path can conve-
niently be interpreted as a form of a tree in which T (i) is
the shortest path tree that has xi as its root. The sub-
tree T (i; a) of T (i) can then be defined as one with a root
at xa. Using a well-known property that any subpaths
of the shortest path are also the shortest path, once a
new shortest path from a particular vertex xi to xa is
found using e(a, b), one can traverse T (i; a) in various
ways such as a breath-first-search or a depth-first-search
method and correspondingly update the shortest paths
from xi to the nodes in T (i; a). In p-ISOMAP, we have
used the breath-first-search, the detailed algorithm of
which is summarized in Algorithm 2.

In fact, such approaches using subtree traversal for
inserted edges were applied in many applications [14,
17]. However, the algorithm presented here was found
simpler and faster since it deals with both directional
paths at once when updating DG and P .

4.2.2 Shortest Path Update with Deleted
Edges due to a Decreasing Parameter When edges
are deleted, the vertex pairs in F are those whose short-
est paths include any of these deleted edges. The set F
can be identified by considering deleted edges one by
one and then by performing union operation on such
vertex pair sets. This approach is reasonable when |D|
is small and thus little overlap occurs between such ver-
tex pair sets for each deleted edge, which is the case in
incremental settings [11, 17]. In contrast, p-ISOMAP
has |D| = O(n), which possibly leads to a large amount
of overlap in the affected vertex pairs among different
deleted edges; therefore, the above approach results in
a significantly redundant computation.

For this reason, we propose a new algorithm for

Algorithm 3 Identification of F due to D
Input: the removed edge set D, the predecessor matrix
P , and the hop number matrix H
Output: the set of the affected vertex pairs F

1: α := maxi, j Hij

2: Initialize a linked list l[h] for h = 1, . . . , α
3: Unmark all vertex pairs (xi, xj) such that i < j
4: for all vertex pair (xi, xj) such that i < j do
5: Insert (xi, xj) to l[H(i, j)].
6: end for
7: for h := α to 1 do
8: for all Unmarked vertex pair (xi, xj) in l[h] do
9: Set p[k] for k = 1, , . . . , h as k-th node found

in the shortest path from xj to xi

10: for k := 1 to h do
11: m[k] := maxk≤l≤h(l) such that a vertex pair

(p[k], p[l]) is marked.
12: Mark vertex pairs (p[k], p[v]) and (p[v], p[k])

for all v such that m[k] + 1 ≤ v ≤ h
13: end for
14: q := 1
15: for k := h− 1 to 1 do
16: if (p[k], p[k + 1]) ∈ D then
17: Insert vertex pairs (p[u], p[v]), for all u

and v such that q ≤ u ≤ k and max(k +
1, m[u] + 1) ≤ k ≤ h, to F .

18: q ← k + 1
19: end if
20: end for
21: end for
22: end for

p-ISOMAP that identifies the affected vertex pairs by
handling all the deleted edges at once. The key idea is
that for the shortest path between a particular vertex
pair, we partition it into multiple subpaths separated
by any deleted edges, and then we form Cartesian
products between any two such subpaths and place
them in F . For example, when the shortest path is
x1 → x3 → x2 → x4, if e(x3, x2) is deleted, we add
{(xi, xj)|i ∈ {1, 3}, j ∈ {2, 4}} to F .

Furthermore, we enhance the efficiency in this pro-
cess in the following way. We first consider the vertex
pair whose shortest path has the largest number of hops
and check all of its subpaths, which are also the shortest
paths between their hopping nodes. Then, the checked
vertex pairs are not considered again. In other words, by
first dealing with the shortest paths that cover as many
other shortest paths as possible, we can handle the max-
imum number of vertex pairs regarding whether they
are to be added to F or not. To implement this idea,
we maintain a hop number matrix H in which H(i, j)



Algorithm 4 Recomputation of the shortest paths for
F for a decreasing parameter

Input: the updated graph G, the shortest path length
matrix DG, the predecessor matrix P , the hop number
matrix H, and the set of the affected vertex pairs F
Output: updated DG, P , and H

1: Sort vertices in terms of how frequently they appear
in F in an increasing order

2: for all xi in the above sorted order do
3: Initialize an empty heap Q
4: C := {xj |(xi, xj) ∈ F}
5: for all xj ∈ C do
6: d :=∞
7: for all adjacent node xt of xj such that xt /∈ C

do
8: if d > DG(i, t) + G(t, j) then
9: d← DG(i, t) + G(t, j)

10: P (i, j)← t
11: H(i, j)← H(i, t) + 1; H(j, i)← H(i, j)
12: end if
13: end for
14: Insert an entry (d, j) with a key d and an index

j to Q
15: end for
16: while Q is not empty do
17: (d, j) :=ExtractMin from Q
18: DG(i, j)← d; DG(j, i)← d
19: Remove (xi, xj) from C and F
20: pred := j
21: while P (i, pred) 6= i do
22: pred← P (i, pred)
23: end while
24: P (j, i)← pred
25: for all adjacent node xt of xj such that xt ∈ C

do
26: d := a key of an entry with an index t in Q
27: if d > DG(i, j) + G(j, t) then
28: DecreaseKey (DG(i, j) + G(j, t), t) in Q
29: H(i, t)← H(i, j) + 1; H(j, i)← H(i, t)
30: end if
31: end for
32: end while
33: end for

contains the number of hops in the shortest path from
vertex i to j, which enables us to prioritize the vertex
pair according to its number of hops. In addition, our
algorithm takes into account overlapping subpaths be-
tween the shortest paths of different vertex pairs. That
is, if any subpaths of the shortest path of a certain ver-
tex pair are also those of another vertex pair that has
been previously taken care of, the algorithm stops check-

ing such subpaths. In this way, we completely exclude
redundant computations in an efficient manner. The
detailed algorithm to solve for the set F is described in
Algorithm 3.

Once F is obtained, the shortest paths are recom-
puted selectively. This process can be expedited us-
ing the available information about the unaffected ver-
tex pairs whose shortest paths remain unchanged. We
choose Dijkstra’s algorithm as the main algorithm for
the shortest path computation since it is suitable for a
sparse graph. How to incorporate the above available
information in Dijkstra’s algorithm is straightforward as
described in Algorithm 4. In addition, since Dijkstra’s
algorithm is a single-source shortest path algorithm, it
needs to run n times for each source vertex. In terms
of the order of the source vertices on which to run Di-
jkstra’s algorithm, those that have the least number of
destination nodes to update are processed first, and the
updated vertex pairs are then removed from F . Algo-
rithm 4, which also includes additional functionalities
for updating P and H, summarizes the shortest path
update process based on F .

4.2.3 Time Complexity When a parameter in-
creases, Algorithm 2 requires the time complexity of
O(|A|nq ·maxi,a |T (i; a)|) in which maxi,a |T (i; a)| is the
maximum number of nodes in subtree T (i; a) over all
xi’s and inserted edge e(a, b)’s. This complexity can be
loosely bounded by O(|A|q|F |) where |F | is the number
of affected vertex pairs due to the inserted edges in A.

For a decreasing parameter, the time complexity
of Algorithm 3 requires O(n2) computations since it
visits every vertex pair exactly once. Now, let us
partition the entire vertices into two disjoint sets Vd(i)
and V c

d (i) such that Vd(i) = {xj |(xi, xj) ∈ F} for
a certain xi. Then, the complexity of Algorithm 4
is represented as O(n · maxi(|E

′

i | log |Vd(i)| + (|E′′

i |))
in which E

′

i = {e(xa, xb) ∈ G|xa, xb ∈ Vd(i)} and

E
′′

i = {e(xa, xb) ∈ G|xa ∈ Vd(i), xb /∈ Vd(i)}.
In both cases, for small changes in the neighborhood

graph, |F | is expected to be much smaller than n2,
which is the maximum possible value of |F |.

4.3 Eigenvalue/vector Update Let us denote the
updated DG after the shortest path update described in
Section 4.2 as Dnew

G . In this step, Dnew
G is first converted

into the pairwise inner product matrix Bnew
G by Eq.

(2.1). To get a lower dimensional embedding as shown
in Eq. (2.2), we need to obtain m eigenvalue/vector
pairs (λnew

1
, vnew

1
), . . . , (λnew

m , vnew
m ) for Bnew

G . In
this computation, the available information that we
can exploit is the previous m eigenvalue/vector pairs
(λ1, v1), . . . , (λm, vm) of BG. In fact, they can be good



Table 2: Computation time in seconds between ISOMAP and p-ISOMAP. In parentheses next to the data set
name, the three numbers are the number of data n, the original dimension M , and the reduced dimension m,
respectively. The number in the other parentheses next to k value changes indicates the ratio of vertex pairs
whose shortest paths need to be updated. For each case, the average computing times of 10 trials were presented.

Synthetic data Rand (3500, 5000→ 50) Swiss roll (4000, 3→ 2)

ISOMAP p-ISOMAP ISOMAP p-ISOMAP
k → knew (|F |/n2) 28 32 30→ 28 (15%) 30→ 32 (13%) 14 16 15→ 14 (77%) 15→ 16 (73%)

Neighborhood graph 1.6 1.6 0.1 0.1 1.8 1.8 0.2 0.2
Shortest path 12.3 12.6 5.1 4.7 16.4 17.1 17.3 15.6

Eigendecomposition 7.8 7.7 6.9 6.8 1.9 1.7 1.6 1.5

Real-world data Pendigits (3000, 16→ 5) Medline (2500, 22095→ 200)
ISOMAP p-ISOMAP ISOMAP p-ISOMAP

k 46 54 50→ 46 (39%) 50→ 54 (36%) 37 43 40→ 37 (21%) 40→ 43 (19%)
Neighborhood graph 1.3 1.2 0.1 0.1 1.1 1.1 0.1 0.1

Shortest path 9.3 9.8 7.1 8.3 6.8 7.0 2.8 3.3
Eigendecomposition 2.3 2.3 2.0 2.1 16.3 16.4 15.1 15.1

Table 3: Computation time in seconds to take to
determine the optimal k value by minimizing residual
variances.

Rand Swiss roll Pendigits Medline

Range of k [5, 50] [5, 50] [7, 60] [9, 70]
ISOMAP 580 635 692 776

p-ISOMAP 142 403 305 314

initial guesses for m eigenvalue/vector pairs for Bnew
G ,

assuming the two matrices BG and Bnew
G are not much

different in any sense.
The original ISOMAP uses the Lanczos algorithm

[10], which is an iterative method that is appropri-
ate for solving the first few leading eigenvalue/vector
pairs. The Lanczos algorithm iteratively refines the
solution in the Krylov subspace that grows from an
initial vector by multiplying it with the matrix, i.e.,
span(b, Bnew

G b, (Bnew
G )2b, . . . ). The performance of the

Lanczos algorithm largely depends on how quickly such
a Krylov subspace covers that spanned by the eigenvec-
tors. Another characteristic of the Lanczos algorithm is
that the least leading eigenvalue/vector pair converges
slowest within a particular tolerance. In other words,
when the Krylov subspace becomes k dimensions, the
first leading eigenvalue is refined k times, the second
one (k − 1) times, the third one (k − 2) times, and so
on.

In this sense, we suggest using an initial vec-
tor from which the Krylov subspace grows as vm,
i.e., span(vm, Bnew

G vm, (Bnew
G )2vm, . . . ), which possi-

bly best recovers (λnew
m , vnew

m ). As a result, we can ex-
pect the Lanczos algorithm to terminate in less number
of iterations than in any other cases.

5 Experiments and Applications

In this section, we present an empirical comparison
between the computation times of ISOMAP and those
of p-ISOMAP using both synthetic and real-world data
sets. In addition, we show visualization applications of
p-ISOMAP for real-world data sets.

In our experiments, we used the code of ISOMAP
provided by the original author.4 However, the original
code does not take advantage of sparse graphs, so
we compared p-ISOMAP with an improved version
of ISOMAP that runs Dijkstra’s algorithm in C++
with a sparse representation of the graph. p-ISOMAP
was implemented mainly in MATLAB except for the
shortest path update part, which runs in C++. In
both ISOMAP and p-ISOMAP, the eigendecomposition
was done by MATLAB built-in function “eigs,” which
performs the Lanczos algorithm by using Fortran library
ARPACK [13].

Throughout all experiments, we used the ISOMAP
parameter as k, where the neighborhood graph is con-
structed by k-NN, since we can easily bound |A| or |D|
by O(n∆k) in which ∆k = knew − k. All the exper-
iments were done using MATLAB 7.7.0 on Windows
Vista 64bit with 3.0GHz CPU with a 4.0GB memory.

5.1 Computation Time To compare the computa-
tion times between ISOMAP and p-ISOMAP, we tested
two synthetic data sets (Rand and Swiss roll) and two
real-world data sets (Pendigits and Medline). Rand
data set was made by sampling a uniform distribution
in a 5,000-dimensional hypercube, [0, 1]

5000
, where the

number of data is 3,500. “Swiss roll” data set has 4,000
data points in three-dimensional space. Pendigits data

4http://waldron.stanford.edu/~isomap/IsomapR1.tar

http://waldron.stanford.edu/~isomap/IsomapR1.tar
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Figure 2: Behavior of p-ISOMAP depending on the number of data, ∆k , and initial k on Rand data set. Other
than the varied one, the rest of variables were fixed in each figure.

set5 contains 10,992 handwritten digit data in a form of
pen traces in 16-dimensional space [1], but we selected
3,000 data with an equal number of data per cluster
because of memory constraints. Finally, Medline data
set6 is a document corpus related to medical science
from the National Institutes of Health, and it has 2,500
documents encoded in 22,095-dimensional space.

Table 2 compares computation times of ISOMAP
with those of p-ISOMAP for each data set. In
most cases, p-ISOMAP runs significantly faster than
ISOMAP. However, as the number of vertex pairs whose
shortest paths need to be updated increases, the compu-
tational advantage of p-ISOMAP over ISOMAP gradu-
ally vanishes. Nonetheless, except for “Swiss roll” data
set, which involves a large number of the shortest path
update even with a slight parameter change, most data
sets require only about 10-40% the shortest path update
for a reasonable parameter change, e.g., within 5.

Figure 2 shows the behaviors of p-ISOMAP depend-
ing on the number of data, ∆k, and an initial k value.
We selected Rand data since it was the most suitable
one to clearly observe its behaviors. Figure 2(a) shows
the computation time in terms of the number of data.
As we can see, p-ISOMAP scales well in terms of the
number of data compared to ISOMAP. In Figure 2(b),
as the parameter change ∆k gets bigger, the running
time of p-ISOMAP increases linearly, which tells that
|A| or |D|, which is proportional to ∆k, has a domi-
nant influence on the performance of p-ISOMAP. Fi-
nally, Figure 2(c) shows an increasing performance gap
between two methods as an initial k value grows. This
is mainly because the original Dijkstra’s algorithm used
in ISOMAP needs more computations as the graph gets
denser while p-ISOMAP depends only on |A|, |D|, or
correspondingly |F |, which probably does not increase
over different initial k values.

5http://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits
6http://www.cc.gatech.edu/~hpark/data.html

Finally, for each data set, we measured the compu-
tation times to take to determine the optimal k value
that minimizes residual variances [2]. As shown in Table
3, we could significantly reduce the computation times
by utilizing the dynamic update of p-ISOMAP.

5.2 Knowledge Discovery via Visualization us-
ing p-ISOMAP In this section, we present interesting
visualization examples of real-world data sets using p-
ISOMAP. To be specific, we show how ISOMAP with
different parameters can discover various knowledge
about data and how the information acquired through
visualization can facilitate traditional data mining prob-
lems such as a classification task. p-ISOMAP was used
to efficiently update ISOMAP results throughout all the
visualization experiments.

To begin with, we have chosen three real-world
data sets (Weizmann, Medline, and Pendigits) that
have cluster structures in order to make it easy to
analyze their visualization. Weizmann data set is a
facial image data set7 that has 28 persons’ images with
various angles, illuminations, and facial expressions. To
obtain an understandable visualization, we have chosen
three particular persons’ images with three different
viewing angles as shown in Figure 3(a), in which each
combination of a particular person and a viewing angle
contains multiple images that vary based on other
factors such as illuminations and facial expressions. In
their visualizations shown in Figures 3(b)-(d), each of
these images is represented as a letter that corresponds
to its cluster from Figure 3(a). Medline data set,
which is a document collection, has 5 topic clusters,
heart attack (‘h’), colon cancer (‘c’), diabetes (‘d’),
oral cancer (‘o’), and tooth decay (‘t’), in which the
letters in parentheses are used in its visualization in
Figure 4. Pendigits data set, which is described in
Section 5.1, has 10 clusters in terms of which digit each

7ftp://ftp.wisdom.weizmann.ac.il/pub/facebase

http://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits
http://www.cc.gatech.edu/~hpark/data.html
ftp://ftp.wisdom.weizmann.ac.il/pub/facebase
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(d) k = 49

Figure 3: Visualization of Weizmann data set using p-ISOMAP
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(c) k = 50

Figure 4: Visualization of Medline data set using p-ISOMAP

data item corresponds to, i.e., ‘0’, ‘1’, . . . , ‘9’. Several
interesting visualization examples of these data based
on p-ISOMAP are shown in Figures 3-58 where cluster
centroids and neighborhood connections are also shown
in the form of letters in rectangles and grey lines in the
background, respectively.

Among visualization examples of Weizmann data
set, Figure 3(c), which well resembles the layout of clus-
ters in Figure 3(a), successfully straightens its intrinsic
manifold defined by the two factors, a person and an an-
gle. This is mainly because of the neighborhood graph
constructed by a proper k value that forms its edges
either within a particular person or within a particular
angle, which is why we mostly see horizonal and verti-
cal neighborhood connections as well as gaps between
grid-shaped cluster centroids in Figure 3(c). Regard-
ing a comparison between Figures 3(b) and 3(d), fewer
neighbors in Figure 3(b) bring connections only within
images with the same angle, which in turn results in a
clustered form of visualization based on angles. This
indicates that even if we prefer the similarity in terms
of a person to that in terms of an angle, the actual dis-
tances in the vector space into which the images are
transformed are dominated by an angle. On the other
hand, Figure 3(d) connects almost all the data points
between each other, which would reflect the Euclidean

8These figures can be arbitrarily magnified without losing the
resolution in the electronic version of this paper

distances in the original space just like MDS does. In
addition, we can consider the layout of cluster structure
shown in Figure 3(d) as a curved version of manifold as
it appears in the original space, which is analogous to
what we discussed in Figure 1.

Medline data shown in Figure 4 is not visualized
in a well-clustered form by ISOMAP because it is
usually difficult to find a well-defined manifold structure
with few meaningful dimensions for document data.
However, by manipulating k values, we can at least
obtain various visualization results that possibly reveal
different aspects of the data. For example, when k = 30
in Figure 3(b), the topic cluster, tooth decay (‘t’), is
shown distinct from the other clusters while so does
the cluster, diabetes (‘d’), in the other cases. In this
situation, if one wants to focus on a certain cluster
separately from the others, it would be necessary to
change k values for a suitable visualization result.

Visualizations of Pendigits data set shown in Figure
5 give numerous interesting characteristics. First of all,
as the parameter k increases, the overall transition from
Figure 5(a) to 5(f) is shown similar to that of “Swiss
roll” data set from Figure 1(c) to 1(d). In other words,
a larger k value places more data in a curved shape,
which reflects the underlying curvature in the original
space, while a smaller k value does more data in a linear
shape, which corresponds to a straightened manifold.
To be specific, starting from Figure 5(b), the cluster ‘8’
gradually gets scattered and curved with an increasing
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(f) k = 50

Figure 5: Visualization of Pendigits data set using p-ISOMAP

(a) A subcluster in cluster ‘5’ (b) Another subcluster in cluster ‘5’

(c) Major data in cluster ‘7’ (d) A minor group in cluster ‘7’ (e) Another minor group in cluster ‘7’

(f) Major data in cluster ‘0’ (g) Minor data in cluster ‘0’

Figure 6: Subclusters/outliers in ‘0’, ‘5’, and ‘7’. Pen traces start from red and end at blue.

k. Similarly, the cluster ‘0’ maintains a linear shape
before k = 50, and finally it becomes scattered in Figure
5(f). In short, ISOMAP with a small parameter value
tends to unroll the curved manifold due to geodesic
paths, but that with a large parameter better shows
its curvature itself. In view of clustering, Figure 5(a)
well separates the clusters ‘2’ and ‘7’ whereas the other
visualizations gradually overlap them with increasing k
values. In addition, the clusters ‘3’ and ‘6’ appears to
overlap for a certain range of k between 9 and 11 as
shown in Figures 5(b)-(d).

Now let us discuss about subcluster/outlier discov-
ery through various visualization examples. In most
examples in Figure 5, the cluster ‘5’ is shown to have
two subclusters, one of which is near the cluster ‘8’, and
the other between the clusters ‘3’ and ‘9’. Based on this
observation, we examined some sample data from each
cluster and found out such subclusters are due to the

different way to write ‘5’.9 From the examples in these
two subclusters shown in Figures 6(a)-(b), we can see
that some people write ‘5’ starting from the hat, which
is the top horizontal line in ‘5’, while others write the
hat after finishing the bottom part. Similarly, the clus-
ter ‘7’ has a majority of data near the cluster ‘2’, but
it also has two minor groups of data near the cluster ‘1’
and the cluster ‘6’, respectively. (See, for example, the
coordinates around (−100, 50) and (50, −150) in Fig-
ure 5(c).) After looking at the actual data samples from
these groups, we found that most people write ‘7’ in a
way shown in Figure 6(c). However, some people first
write an additional small vertical line in the top-left part
but by omitting the small horizontal line in the middle

9Note that Pendigits data set we used here is not just static

image data but the traces of the pen, which is why the order
matters in the feature space.



part as shown in Figure 6(d), which corresponds to the
minor data near the cluster ‘1’, but some others just
reverse the direction to write the small horizontal line
in the middle part of ‘7’ as shown in Figure 6(e), which
corresponds to those near the cluster ‘6’. In addition,
their different traces and shapes impose similarities to
those of the clusters ‘1’ and ‘6’, respectively. Finally, in
Figure 5(d), some data in the cluster ‘0’ seems to devi-
ate from its major line-shaped data in Figures 5(a)-(c).
Figures 6(f) and 6(g) represent the latter and the for-
mer data, respectively. We can see that such deviated
ones shown in Figure 6(g) start from the top-right cor-
ner rather than from the top-middle part when writing
‘0’, which causes their connections to the cluster ‘5’ that
also starts from the top-right corner.

Finally, we have incorporated the above findings in
a handwritten digit recognition, which is a classification
problem, using Pendigits data set. Based on the infor-
mation that the cluster ‘5’ has two clear subclusters, we
modified the training data labels in the cluster ‘5’ into
two different labels and classified the test data that are
assigned either label to the cluster ‘5’. As a classification
method, we have chosen the linear discriminant analysis
combined with k-nearest neighbor classification, which
is a common setting in classification. As a result, the
classification accuracy increased from 89% to 93%. In
fact, this is a promising example of human-aided data
mining processes through visualizations with intelligent
interaction. The computational efficiency of p-ISOMAP
makes such processes smooth and prompt.

6 Conclusions

In this paper, we proposed p-ISOMAP, an efficient al-
gorithmic framework to dynamically update ISOMAP
embedding for varying parameter values. The exper-
iments using both synthetic and real-world data with
various settings validate its efficiency. This advantage
of p-ISOMAP can not only speed up the parameter opti-
mization processes but also enable users to interact with
visual analytics systems more smoothly. Such interac-
tion provides us with deep understanding about data,
which can improve even the computational data mining
problems such as classification.
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