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Abstract: While analyzing some of the complex real-world datasets, it is vital to identify local correlations in the subspaces.
Some of the critical limitations of the subspace clustering techniques in identifying order revealing subspace correlation patterns
motivate the need for more advanced subspace techniques. We formalize the problem of identifying local nonlinear correlations
in high-dimensional data and build subspace models to capture such correlations. In this paper, we propose a new method for
computing subspace principal curve models which can effectively capture these local patterns in the data. We demonstrate the
results of the proposed method using several real-world datasets and highlight the advantages of our model compared to the
other state-of-the-art techniques proposed in the literature. We also show the improved performance of the proposed algorithm
in related problems such as missing data imputation and regression analysis compared to some of the state-of-the-art methods.
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1. INTRODUCTION

Many practical applications produce data that contain
thousands of records and several hundreds of features. Sev-
eral high-dimensional data analysis techniques proposed
in the literature do not reveal locally relevant correlations
with respect to features and subsets of data points. In such
high-dimensional feature spaces, it is critical to identify the
subsets of data (and features) which form locally relevant
subspace patterns and obtain local correlation information.
This would enable the researchers to focus their attention on
these local subsets and make it easy to identify the impor-
tant and most informative aspects of the data. One of the
many objectives of data exploration is to find correlations
in the data, uncovering hidden patterns and trends in the
data distribution, thus providing additional insights about
the data [1,2]. However, it is a tedious task to identify the
continuous structural patterns that capture the local corre-
lations in the data within only a relevant set of features.

Though being successful in identifying local group-
ings, subspace clustering algorithms do not provide any
continuous representation of local latent patterns in these
subspaces. Two major drawbacks of subspace cluster-
ing algorithms that motivated the need for the proposed
methodology are that the subspace algorithms do the
following:
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• simultaneously optimize the data and features to
obtain localized clusterings and in this process, they
tend to provide local dense clusters and do not
preserve patterns (or correlations) in the data.

• yield a discrete set of clusterings which are hard to
interpret. Especially when the end-user is looking
for certain correlation patterns, it is important to
extend the representation of these subspace clusters
to continuous correlations in the data.

In this paper, we extend the notion of subspace clusters
to ‘subspace trends’ and develop a novel subspace prin-
cipal curve method that captures local trends in feature
subspaces. We extract subspace trends that represent the
ordering and continuity information of the data points and
have the potential to explain the linear or nonlinear cor-
relations in the subspaces. These local correlation models
developed here do not suffer from the above-mentioned
problems of subspace clusters. They can be further analyzed
with respect to their inherent properties such as coverage,
continuity, length, ordering, and overlap. Analyzing indi-
vidual trends can yield more information about the local
structural arrangement of the data points along with some
continuity information.

Let us consider a simple three-dimensional (3-D) dataset
shown in Fig. 1. This dataset is generated as follows:
Feature 2 value is a sine function of Feature 1 and some ran-
dom noise is added to it. Feature 3 is randomly generated.
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Fig. 1 (a) No correlation in the original 3-D space. (b) An interesting correlation in only one of the 2-D subspaces. (c and d) No
correlation in the other two 2-D subspaces.

Finally, ten noise points are included, where all the feature
values are generated randomly in the range of −4 to 4.
There is no prominent correlation that can characterize
the data and reveal meaningful ordering in the original
3-D space. However, one of its subspaces (subspace which
comprised of Features 1 and 2) contain a continuous cor-
relation pattern which can be effectively represented using
a subspace principal curve. Such local nonlinear correla-
tions arise in many real-world datasets (as discussed in
Section 5) and algorithms for extracting such complex sub-
space trends in the data have not been studied in the
literature.

We propose an Apriori-based Subspace Principal Curve
(SuPriC) algorithm to identify local subspace trends in the
data. To the best of our knowledge, no work in the literature
aims at computing the principal curves for the subspaces.
The rest of this paper is organized as follows: Section 2
explains different methods proposed in the literature along
with their shortcomings. Section 3 gives notations and some
definitions required to comprehend the problem formula-
tion. Section 4 describes the proposed SuPriC algorithm
for building subspace principal curve models along with
its computational complexity. Section 5 shows the exper-
imental results of the proposed algorithm on several real-
world datasets and compares the results with some of the

state-of-the-art methods proposed in the literature. Finally,
Section 6 concludes our discussion.

2. RELATED WORK

Our objective is to find a possible nonlinear correlation
in the feature subspaces containing a sufficient number of
datapoints in the dataset. Since the main objective here is
to identify relevant and correlated subspaces, we discuss
some of the dimensionality reduction, subspace clustering,
principal curve and other approaches whose main goal is
to compute an interesting subspace.

2.1. Dimensionality Reduction

Classical methods used for linear dimensionality reduc-
tion used in many practical applications are Principal Com-
ponent Analysis (PCA) [3] and Multidimensional Scaling
(MDS) [4]. Both these methods, though used widely in
many applications, can only produce a linear mapping from
a high-dimensional space into a low-dimensional space.
Other methods such as Independent Component Analysis
(ICA) [5] generate new feature spaces in which the data
can be explained well. However, all these methods fail
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to find low-dimensional nonlinear correlations in the data
since they always consider all the features and try to opti-
mize a global objective measure that take into account all
the features.

For many real-world problems, the underlying variability
of the features creates a highly nonlinear inherent structure.
For such datasets, nonlinear dimensionality reduction meth-
ods such as Locally Linear Embedding (LLE) [6], Laplacian
Eigenmap (LE) [7], Isometric Mapping (Isomap) [8] and
other manifold learning algorithms focus on preserving the
inherent structural geometry of the data with respect to an
intrinsic manifold. All these methods are geometry pre-
serving dimensionality reduction methods which are able
to identify the hidden structure of the entire dataset and
preserve it in low-dimensional space. These are dimension-
ality reduction methods for linear and nonlinear embedding
of the data points, but they can only interpret the hidden
geometry of the data in a global sense. Although these
methods succeed in identifying the global structure, they
are essentially dimensionality reduction methods and are
unable to extract the locally correlated structures that are
present in the subspaces of the data. They only provide a
guideline to generate a basis for some preliminary investi-
gation about any positive correlations and cannot give any
information about some of the subspace correlation pat-
terns hidden in these datasets. To avoid the problems with
high-dimensional feature spaces, some researchers use var-
ious feature selection methods that allow us to extract those
informative features and separate them out from the redun-
dant, repetitive, and noisy features [9]. These algorithms
can only extract the relevant features, but they are not
capable of selecting a subset of data points or provide any
information about some of the local correlation structures
of the data points within those feature sets.

2.2. Subspace Clustering

Given a set of data points in a multidimensional space,
clustering [10] finds the most optimal partition of these
points into groups such that the intracluster distance between
the points is minimized and the intercluster distance is
maximized. In many real-world problems, clusters may
exist in different subspaces, comprised of different com-
binations of features [11]. Some of the data is correlated
with respect to a particular subset of dimensions, and oth-
ers are correlated with respect to a different subset of
dimensions. In such cases, clustering is done in the sub-
spaces rather than in the original spaces where cluster of
points can possibly be found. The basic idea of the sub-
space clustering methods is to group the data into different
partitions according to their connectedness or their corre-
lation. Several subspace clustering algorithms have been
proposed in the literature [12,13,14,15]. In order to avoid

suboptimal cluster formation in high-dimensional feature
spaces, subspace clustering algorithms find locally relevant
clusters in a low-dimensional feature space. The subspace
clustering is motivated by the fact that in high-dimensional
space, the distance becomes meaningless and there is vir-
tually no other point nearby. For obtaining the subspace
principal curves, our method uses the Apriori principle
[16]. We model the subspace trends in a bottom-up man-
ner starting from two-dimensional (2-D) principal curves
and extending them to higher-dimensional curves. There are
some similarities between our approach and the CLIQUE
algorithm [12] since both these methods use the Apriori
principle. The key differences between the two algorithms
are the following:

• The CLIQUE algorithm uses the concept of ‘density
of a grid cell’ to make a k-dimensional cell desirable
for further processing. Our algorithm uses the princi-
pal curve based objective measure for achieving this
desirability (explained in Section 4). We claim that
this measure is more suitable when the main goal is to
identify the subspace trends (not subspace clusters).

• The result of the CLIQUE algorithm is a set of
subspace clusters reported by a set of inequalities
that describe the attribute ranges of the cells. On
the other hand, our algorithm provides a continuous
representation of the subspace trends that reveal bet-
ter correlation information compared to the cluster
representation.

We can compare these key differences to the methods
proposed in the supervised learning literature. A rule-based
classifier (such as RIPPER algorithm [17]) obtains a set of
rules that make the distinction between different classes and
a regression function models a set of continuous response
values. Similarly, CLIQUE provides a set of rules to model
the subspace clusters (in a discrete setting) whereas the
subspace principal curves provide an optimal model for the
correlation patterns in a continuous setting. In essence, most
of subspace clustering algorithms (including the popular
partitional approaches) optimize a criterion (such as cen-
troid based distances or density based connectivity) which
are not suitable to build subspace trends. For instance,
the SUBCLU [18] algorithm looks for arbitrarily oriented
subspace clusters and uses the monotonicity of the den-
sity connectivity whereas our algorithm finds the subspace
principal curves and uses the antimonotonicity of a projec-
tion distance based objective criterion. SUBCLU can get
more than one cluster in a subspace where as our goal is
to characterize the data in terms of a continuous subspace
correlations.

Bottom-up approaches [12,13,14] (such as CLIQUE)
generally perform better [11] than the top-down approaches
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[15,19,20] such as the PROCLUS method. PROCLUS [15]
is a top-down subspace clustering algorithm that uses the
medoid technique to find the appropriate sets of clusters and
performs a locality analysis in order to find the set of dimen-
sions associated with each medoid. In high-dimensional
datasets, the bottom-up approaches converge much faster in
the presence of low-dimensional clusters. In our framework,
we used the bottom-up approach and incorporated the con-
cept of Apriori principle since the goal here is also to find
low-dimensional local correlations in a high-dimensional
space.

2.3. Biclustering

Biclustering is a popular technique which allows simul-
taneous clustering of the rows and columns of a matrix.
Given a set of m rows and n columns (i.e., an m × n

matrix), biclustering algorithms find a subset of rows which
exhibit similar behavior across a subset of columns, or vice
versa. All of the biclustering methods strictly model lin-
ear correlations, but they fail to capture even negative or
other complex correlations. Different models proposed in
the literature [21,22,23,24] could not capture the subspace
trends in the data, which is the main objective of this work.
The proposed SuPriC algorithm can capture both linear
and nonlinear (positive as well as negative) correlations
present in subspaces. It can capture the correlated features
using most data objects and is able to get trends that are
present in the subspaces even when they are nonlinear and
complex. The biclustering algorithms tend to unnecessar-
ily split the data by following rigid constraints, whereas
our method develops a single model to capture the sub-
space trend thus revealing an interesting correlation in a
subspace.

2.4. Correlation Clustering

Correlation clustering [19,25,26] is a special type of clus-
tering which defines the similarity between objects in terms
of correlation between features, that is, it is a clustering
approach which assigns two data points to the same cluster
(no matter how far they are in the feature space) if they
share the same correlation in the feature subspace. Most
of these methods use eigendecomposition techniques and
hence reveal a global linear fit of the data in the subspace.
Some of these methods such as ORCLUS [19], 4C [25] use
the density based clustering approach and assume that they
are locally linearly but arbitrarily oriented. All these meth-
ods work in full-dimensional space to generate the initial
orientation/cluster membership, whereas our method starts
with a feature pair(subspace with only two features) and
uses the Apriori principle to get feature subsets with more
features.

2.5. Principal Curves

Principal curves are nonlinear summarizations of
multidimensional data points represented by a smooth,
one-dimensional curve. They are the one-dimensional rep-
resentation of the data that are defined by a curve that
passes through the most dense regions of the dataset, thus
taking shape according to the distributions of the dataset.
One of the pioneering works on principal curves was based
on ‘self-consistency’ [27], that is, the curve should coincide
at each position with the expected value of the data project-
ing to that position. Kegl et al. [28] improved the algorithm
to achieve the minimum expected squared distance from
points to their projection on the curve, which eliminates
the estimation bias. A more probabilistic approach [29]
defines principal curves as those minimizing a penalized
log-likelihood measure. Although there have been several
studies on improving the quality of the principal curves
[30], none of them deal with fitting principal curves to
the subspaces of features. Though principal surfaces which
are multidimensional extensions to principal curves have
been proposed in the literature, their poor interpretability in
real-world problems pose a serious concern [31,32]. In this
paper, we extended the concept of fitting principal curves to
subspace principal curves, which can model the nonlinear
subspace correlations in the data. For our work, we used
the definition (and implementation) of the principal curves
proposed by Verbeek et al. in [33] due to its simplicity and
effectiveness in practice. To make this paper self-contained,
we briefly describe the principal curve algorithm in the
Appendix.

3. PRELIMINARIES

In this section, we will present the necessary notations
and definitions that are required to comprehend our algo-
rithm (Table 1).

DEFINITION 1: (Softly Monotonic): Let, X be a finite
subset of �, f : X → � and g1:X × X → {0,1} where,

g1(xi, xj ) =
{

1 if xi ≤ xj and f (xi) > f (xj )

0 otherwise.

and let g2:X × X → {0,1} where,

g2(xi, xj ) =
{

1 if xi ≤ xj and f (xi) < f (xj )

0 otherwise.

Then function f is softly monotonic, if either
∑

xi ,xj ∈X g1(xi, xj ) < κ |X| or∑
xi ,xj ∈X g2(xi, xj ) < κ |X|.
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Table 1. Notations used in this paper.

Notation Description

n Number of datapoints
m Number of features
Data The whole data matrix
F Feature set F = {F1, . . . , Fm}
t A candidate feature subset t ⊆ F

Data(t) Data(t) ⊆ Data, where Data(t) consists
of data point associated with candidate
feature set t

DP Data Points DP = {DP1, . . . ,DPn}
X Input dataset X = (F,DP )
Fi(DPk) ith feature value of kth data point
fi Subset of features

fi = (Fk, . . . , F∗, . . . , Fl) ⊂ F

dpi Subset of data points
dpi = (DPk, . . . ,DP∗, . . . ,DPr) ⊂ DP

f ∗ A curve representing principal or subspace
principal curve

I Indicator function

If the number of datapoints that violate the monotonicity
is less than a threshold, then the function is called softly
monotonic. Here, κ is a parameter that represents the lower
bound on the fraction of datapoints to be considered and is
less than 1. Note that we can consider the mapping function
as the functional presentation of the corresponding subspace
principal curve. In such a case, the antimonotonicity prin-
ciple (which is needed to reduce the search space) holds, if
that function (subspace principal curve) is softly monotonic.

DEFINITION 2: (Monotonic Pair): Let, Fi(DP)

denotes the set of values for feature Fi in dataset DP.

A feature pair P = (Fi, Fj ) for a dataset (DP) is said to
be a monotonic pair, if and only if, Fi(DP) = f (Fj (DP))

is softly monotonic where f is the mapping function
from feature Fj (DP) to Fi(DP) for the data points in the
dataset {DP}.

A monotonic pair is the basic component of a monotonic
set. Any set of features is a monotonic set if all its proper
subsets with cardinality ≥2 are also monotonic set. The
objective of our algorithm is to identify all such monotonic
sets in which there is a desired subspace principal curve.
Later in this section, we prove that antimonotonicity holds
for the monotonic sets, which will be used as the basis of
our algorithm.

DEFINITION 3: (Principal curve): A curve f ∗ is called
a principal curve of length L for X if f ∗ minimizes �(f )

over all curves of length less than and equal to L where,
�(f ) = E[inf |X − f (t)|2] = E[|X − f (tf (X))|].

Here, tf (x) denotes the parameter value of t for which
the distance between x and f (t) is minimized [28]. We will

use a k-segments algorithm [33] to compute the principal
curve in different subspaces. Here, k is the number of
segments that are joined to obtain the continuous nonlinear
principal curve. If the nonlinearity of the principal curve
is not high, then a small value of k is sufficient, but if the
principal curve is highly nonlinear, k should be increased
to reflect the nonlinearity.

DEFINITION 4: (Desirable Principal curve): A desir-
able principal curve is a principal curve for X1 ⊆ X if and
only if ‖X1‖>δ‖X‖ and �(f ) = E[inf |X1 − f (t)|2] =
E[|X1 − f (tf (X1))|] ≤ τ .

Here, τ is a parameter describing the upper bound of
the objective function, and δ is a parameter describing the
lower bound on the fraction of the dataset to be considered.
A subspace principal curve is a principal curve when only
a subset of features is considered.

DEFINITION 5: (Subspace Principal curve): A curve
f ∗ is called a subspace principal curve of length L for
X if f ∗ minimizes �(f ) over all curves of length less
than and equal to L where �(f ) = E[inf |X − f (t)|2] =
E[|X − f (tf (X))|] calculated over feature subset M⊂ F .

DEFINITION 6: (Desirable Subspace Principal curve):
A desirable subspace principal curve is a subspace principal
curve if and only if X1 ⊆ X and ‖X1‖ > δ‖X‖ �(f ) =
E[inf |X1 − f (t)|2] = E[‖X1 − f (tf (X1))|]≤ τ .

For a curve f ∗ to be a desirable subspace principal curve,
it must obey the constraint for both the subspace principal
curve and the desirable principal curve. Immaterial of the
scattering or orientation of the data in the subspaces, we will
get a principal curve in every possible subspace. However,
most of them will be noisy curves which do not convey
any information unless there is a strongly correlated trend
present in the subspace. We defined a desired subspace as a
subspace where our objective function for a desirable sub-
space principal curve is lower than a certain threshold. We
also show that the desired subspace follows antimonotonic-
ity, which significantly reduces the complexity of comput-
ing these subspace principal curves. Theorem 1 indicates
that the desired subspaces follow the Apriori principle. This
is a vital component of our algorithm since antimonotonic-
ity can significantly reduce the search space.

Apriori principle for desired subspace. If a feature set
M ⊂ F contains a desired subspace principal curve, then all
of its subsets M ′ ⊂ M must also contain a desired subspace
principal curve.

THEOREM 1: Desired subspaces follow the Apriori
principle, that is, M is a desired subspace if and only if
all subsets of M are also desired subspaces.
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Proof: As the feature space considered here is a metric
space, �(f ) = E[inf |X1 − f (t)|2] = E[|X1 − f (tf (X1))|]
in feature space M must be greater than �(f ) =E[inf |X1 −
f (t)|2] = E[|X1 − f (tf (X1))|] in feature space Mi ⊂ M .
So if �(f ) = E[inf |X1 − f (t)|2] = E[|X1 − f (tf (X1))|]
≤ threshold in feature space M , then �(f ) = E[inf |X1 −
f (t)|2] =E[|X1 − f (tf (X1))|] ≤ threshold in feature space
Mi ∈ M , that is, if in any feature space the principal
curve has a lower expected value than a certain thresh-
old, then in all of its subspaces, the principal curve must
have an expected value less than the threshold, thus hold-
ing the Apriori principle. In other words, it monotonically
decreases with the increase in dimensions. �

3.1. The Objective Function

The optimal principal curve for a given subspace is
computed using �(f ). However, it is not possible to deter-
mine a threshold based on which we can conclude whether
the subspace principal curve is optimal for characterizing
the subset of the data. To obtain a desirable subspace prin-
cipal curve, we propose the following objective measure
which is impartial to the number of dimensions and the
number of data points:

p = w × ssd + (1 − w) × len√
nd × nr

(1)

where ssd refers to the sum squared projection distances,
len indicates the length of the principal curve, nd represents
the number of dimensions and nr represents the number
of data points. For each data point xi,j , let p(xi,j ) be its
projection point on the principal curve. The L2 norm based
sum squared projection distance (ssd) is defined as follows:

ssd =
m′∑
i=1

n′∑
j=1

(xi,j − p(xi,j ))
2 (2)

where m′ and n′ are the number of data points and the num-
ber of features in the subspace that is being considered for
fitting the principal curve. When �(f ) is optimized, we get
a principal curve that is described by the sequential projec-
tion points in the given subspace. Thus, len is calculated
by the summation of the distance between two consecu-
tive points. Since more number of data points will result in
greater values for ssd and len, the result must be normalized
by the number of data points (nr). The weight parameter w

determines the trade-off between the importance given to
ssd and len values. Here w is the parameter that signifies
importance of the length of the principal curve and the
projection distance. In our experiments, we fixed w = 0.8,
thus giving more emphasis on the projection distances. This

is due to the fact that len has less discriminatory power
compared to ssd in terms of estimating a good subspace
principal curve.

The numerator value of p also shows the Apriori prin-
ciple since it is a combination of distance and length in a
metric space where the length is calculated as the sum of
distances between consecutive points in the curve. These
two measures always increase with the increase in dimen-
sionality. In a given space, if an optimal principal curve is
generated using the weighted combination of ssd and len,
then the distance of the points from the principal curve
should be greater than the distance of those points from a
curve in any of its subspace, even if the curve is just the pro-
jection of the mentioned principal curve in that subspace.
Since the threshold for the optimal curve for a multidi-
mensional space is fixed to be a constant value, we used√

nd in the denominator to nullify the effect of ‘the den-
sity divergence problem’. The density divergence problem
[34] indicates that it is difficult to set a global threshold
when the dimensionality varies because the data are nat-
urally far apart in high-dimensional spaces. With higher
dimensions, the distance between data points tends to get
higher, which will affect the objective function and the cor-
responding threshold values. In order to nullify this effect,
the square root of the number of features is used, which will
reasonably reflect the increased distance in higher dimen-
sionality. We used the fact that, with the same distance in
every dimension, a d-dimensional distance is

√
nd times

the one-dimensional distance.
It should be noted that the use of the Apriori principle

will significantly reduce the search space. In many real-
world applications, the feature correlations of interest are
typically low-dimensional and hence, there is no need to
traverse the entire feature combination lattice and only a
small portion of the entire lattice will be explored.

4. MODELING NONLINEAR SUBSPACE
CORRELATIONS

In this section, we will describe the details of the pro-
posed SuPriC algorithm. We will also analyze the effect of
parameters and the computational complexity of the pro-
posed method.

4.1. SuPriC Algorithm

SuPriC is a bottom-up approach which uses each feature
pair as a building block for computing higher-dimensional
subspaces. First, subspace principal curves for each feature
pair are generated and the corresponding objective func-
tion values are calculated. From these objective function
values of all the base cases, a threshold for eliminating
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some of the base cases is determined. For the feature
pairs which are selected as good candidates, the algo-
rithm removes the data points that are significantly distant
from the corresponding subspace principal curve. Conse-
quently, two-dimensional candidates are combined to gen-
erate higher-dimensional subspaces. If the Apriori criterion
is satisfied, a principal curve is generated in that subspace
with only those data points that are in both the candidate
cases. If the objective function from the newly generated
higher-dimensional subspace is less than the threshold, the
new subspace is included in the final solution. For every
subspace thus generated, distant data points are removed,
and the remaining points are associated with that subspace
in the final output. In this bottom-up approach, the higher-
dimensional subspace principal curves are thus computed
starting with the basic 2-D ones. Algorithm 1 describes our
Apriori-based approach for identifying subspace principal
curves.

4.1.1. SuPriC first calculates principal curves
in 2-D subspaces

For each of the feature pairs, the optimal subspace
principal curve is generated. This is the most critical and
computationally intensive part of our algorithm. These base
cases will provide an estimate of acceptability threshold
FT . At this point, the objective function value p for each
feature pair is computed. There is no such ideal threshold
value since it depends on the particular dataset as well as
the range of the feature values. Hence, the threshold value
is set as FT = mean(P ) − 2 × stdev(P ), where P is an
array of p values. This threshold value can identify feature
pairs that are significantly better than the other feature pairs.
If the data are really scattered in all the feature spaces, then
we will not have any feature pair which satisfies p < FT .
However, if some feature pair has a good subspace principal
curves then the value of its p will be lower than FT . In
this manner, FT is automatically calculated from the data
and is not a user-defined parameter.

4.1.2. Finding the desirable feature pairs
and corresponding data points

A subspace principal curve is desirable when the
objective function value is lower than the threshold FT .
We select all the feature sets with cardinality 2 based on
the acceptability criteria p < FT and, correspondingly, the
data points for the corresponding feature pairs that form the
subspace principal curve in that feature subspace.

Algorithm 1 SuPriC(Data, w, DT )
1: Input: Data matrix (Data)

Weight parameter for objective function(w)
Weight parameter for Data Threshold (DT )

2: Output: Set of Subspace Principal curves (PC List)
3: Procedure:
4: F← features(Data),P ← ∅
5: c←2
6: for each {u,v} ⊆ F do
7: [sqd , len]← PrincipalCurve(Data,(u,v))
8: ssd←sum(sqd)

9: p[(u,v)]←(w × ssd + (1 − w) × len)/(
√

2 × |Data|)
10: P ← P ∪ p[(u, v)]
11: end for
12: FT ← mean (P )-2× std(P )
13: for each pair of features (u, v) do
14: if p[(u,v)]≤ FT then
15: t ← {u, v}
16: Data(t) ← remove Outlier(Data, sqd,DT )
17: PC List (c) ← PC List (c) ∪ (Data(t), t)
18: end if
19: end for
20: repeat
21: c←c+1
22: generate candidate set C by including all t such that

t = ti ∪ tj and Data(t) = Data(ti) ∩ Data(tj ) where
ti , tj ∈ PC List (c − 1) and

∥∥ti ∩ tj
∥∥ =c−2 and (t − ti )

×(t − tj ) ⊂ PC List (2)
23: for each t ∈ C do
24: [sqd , len]← PrincipalCurve(Data(t),t)
25: ssd←sum(sqd)

26: p[t]←(w × ssd + (1 − w) × len)/
√

c × |Data(t)|
27: if p[t] > FT then
28: Remove t from C
29: end if
30: end for
31: for each desirable c-feature combination (F∗) do
32: Data(F∗) ← remove Outlier(Data(F∗), sqd, DT )
33: PC List (c) ← PC List (c) ∪ (Data(F∗), {F∗})
34: end for
35: PC List=PC List ∪ PC List (c)
36: until PC List (c) = ∅
37: Return PC List

4.1.3. Finding the desirable feature sets
of higher-dimensional subspaces

Using the desired feature space of cardinality 2, we
use the Apriori principle to find the desired subspace
principal curves for the subspace of cardinality 3. A 3-D
subspace will be considered for generating subspace prin-
cipal curve only if all of its lower-dimensional subspaces
contain desirable subspace principal curves. In this new
subspace, only the points that are not removed while select-
ing its subspaces are considered for further processing. In
this manner, c-dimensional subspaces are iteratively gener-
ated from c − 1 dimensional subspaces. Note that, when
a c-dimensional candidate is generated from two c − 1
dimensional candidates, c − 2 features must be common
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amongst them (line 22). Note that Data refers to the com-
plete data matrix, Data(t) refers to the data points that
belong to the principal curve in feature subset t . When
two feature subsets of c − 1 dimensions are joined to gen-
erate a candidate feature subset of dimensionality c, the
associated datapoints of the new feature subset will be the
intersection of the data points associated with both the par-
ticipating feature subsets (line 22). PClist (c) will contain
all the selected subspaces of cardinality c. When we cannot
generate any new subspace of cardinality c from the c − 1
subspaces, the new PCList (c) remains empty, and we will
output the PCList which is the union of all the PCList (i)

where i varies from 2 to c − 1 (lines 20–36). At each stage,
whenever we select a feature subset as a desirable subspace,
we remove the data points that are significantly distant from
the curve, thus, the associated datapoints for that desirable
subspace is reduced and relevant.

4.2. A Note on Parameters

The parameters used in our algorithm have predefined
values which work well on a wide variety of datasets thus
keeping the user involvement minimal. The parameter w

was set to 0.8 for all our experiments, indicating that the
length of the curve does not play a vital role in determining
the quality of the curve in these datasets. The weight
parameter DT for specifying a threshold value is required
for removing outliers in the subspaces. Since there is no
standard definition for a subspace outlier, we will remove
the points that are distant from the principal curve. The
parameter DT helps us to quantify the ‘significantly distant’
points and is calculated as mean + 2× standard deviation
of the distances from the data points to the principal curve.

4.3. Computational Complexity

The running time of the SuPriC algorithm mainly depends
on the principal curve algorithm whose complexity is
O(kn2). Since there are m(m − 1)/2 possible feature pair
combinations and each evaluation needs O(kn2) time, the
for loop (lines 6–11) has a complexity of O(kn2m2) where
n is the number of data point and m is the number of fea-
tures. Line 12 will take O(m2) time since O(m2) objective
functions are to be computed. Since the principal curve
generation step already computed all the distances from the
data points to the curve, the removal of outliers will con-
sist of calculating the average and standard deviation of
those distance values and therefore costs O(n) processing
time in total. Therefore, the for loop (lines 13–19) iterates
O(m2) times in which the removal outliers (line 16) needs
O(n) time in every iteration, thus taking O(m2n) time. The
complexity of the next loop (lines 20–36) is motivated by
the fact that in most cases, the number of desirable feature

pair combinations reduces dramatically. If the total number
of acceptable combinations is l and the number of new
combinations with k + 1 features is reduced by a factor of
w (i.e., the branching factor is w), then the total number
of acceptable feature sets of all levels is (lw − 1)/(w − 1).
Since l is not too large compared to w, this is a relatively
small number. The removing outlier part has the complex-
ity of O(kn′ 2) where n′ is the number of acceptable data
points. As the feature subset grows, the n′ becomes smaller.
Therefore, the overall complexity of the SuPriC algorithm
is O(kn2m2) seems to be high since this is both quadratic
in terms of the number of data points and the number of
features. However, it is important to note that no other algo-
rithm addresses the issue of modeling nonlinear correlations
in the subspaces. The main reason for this quadratic com-
plexity is that we must check every possible feature pair
combination, and there is no other way to get around this
issue. However, for achieving scalability, we propose a sim-
ple approximation scheme which makes the algorithm work
much faster. While calculating the objective function value
of all the feature pairs, we can bypass the k-segments algo-
rithm (which uses PCA). Rather, we can partition the data
based on one feature value into k partitions (assuming k

segments) and then use a linear regression in those k parti-
tions. The objective function is the sum of those residuals.
We can use the k-segments procedure in the subsequent
stages. Thus, the complexity for finding the objective value
for each pair becomes O(knm2) which will also be the
overall complexity of the algorithm. This will be scalable
to large-scale datasets since it is only linear in terms of the
number of data points.

5. EXPERIMENTAL RESULTS

The proposed method was used to identify significant
subspace principal curves in several real-world datasets.
Since there is no prior work for computing nonlinear corre-
lations in subspaces, we compared our work with different
subspace clustering and feature correlation techniques. The
code for the SuPriC algorithm was written in MATLAB
Version 6.5 and the experiments were run on Pentium Dual
Core 2.8 GHz machine.

5.1. Synthetic Datasets

Our algorithm was tested successfully on various syn-
thetic datasets that inherently contain embedded subspace
trends. Several datasets were created with various embed-
ded patterns hidden in the original global data space, and the
algorithm was successfully able to fit the subspace principal
curves. We chose to demonstrate the results on a represen-
tative synthetic dataset. We generated a synthetic dataset
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with 1050 × 58 dimensions. The first 1000 data points were
generated in such a way that their first five features have
the desired correlation. This is done by a parameter t which
was randomly generated between 0 and 1. The five features
were generated by the following components: [t t2 sin(7t)

5t 3t]. Three more features were generated using a second
parameter t ′ with the component [t ′ 5t ′ t ′ 2]. The other 50
features are randomly generated noise. Fifty random noise
points were also added. We expected ten subspace principal
curves with two features and three features each, five sub-
space principal curves with four features, and one subspace
principal curve with five features, a total of 26 subspace
principal curves. We can also see four subspace principal
curves (with the additional three correlated features) will
make the number of possible subspace principal curves
to 30. Our algorithm was able to identify all the desired
principal curves that expressed the underlying correlation.
We used the subspace clustering algorithms to investigate
whether they can identify those subspaces. We found that
they often miss the desired subspaces (see Table 2). This

is mainly due to the fact that the goal of the subspace
clustering algorithms is to partition the data points using
some sort of distance (or density) criterion in the subspace.
However, in our case, data is continuous along a nonlinear
curve in a number of subspaces and do not necessarily form
a dense cluster within a subset of data points. We can also
see that, in such cases, subspace clustering tends to parti-
tion the data points and for each partition it reports some
of the correlated features along with a few noisy features
which aided to partition the data.

In panels (d)–(f) of Fig. 2, we can see that the embedded
correlation in this data is not revealed by the tradi-
tional methods for dimensionality reduction such as Princi-
pal Component Analysis (PCA), Multidimensional Scaling
(MDS), or other subspace clustering method (PROCLUS)
[15] since they try to preserve as much information as
possible (in terms of correlation) considering all the noisy
features as well. Our method successfully extracted all the
nonlinear subspace correlations present in the data, some
of which are shown in panels (a)–(c) of Fig. 2.

Table 2. Comparison of Precision-Recall Statistics for synthetic dataset shown in Fig. 2.

CLIQUE [12] SUBCLU [18] PROCLUS [15] SuPriC

Precision 50% 20% 40% 93.75%
Recall 30% 25% 23.33% 100%
F -measure 0.375 0.2222 0.2947 0.9677

(a) (b) (c)

(d) (e) (f)

Fig. 2 Subspace nonlinear correlations in the synthetic data successfully extracted by the SuPriC method. (a) Features 1 and 2, (b) first
five features, (c) Features 6–8. Results from other methods (d) PCA, (e) MDS, (f) PROCLUS do not highlight the presence of any
subspace correlation.
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(a) Wages vs Experience (b) Age vs Experience

(c) Age vs Wages (d) Wages vs Age vs Experience

Fig. 3 Results on the Wages dataset. (a–c) 2-D feature combinations obtained by the SuPriC algorithm, (d) 3-D subspace principal curve
that captures the correlation of the three attributes.

5.2. Real-World Datasets

Experiments were conducted using three machine learn-
ing datasets and several biological datasets.

(1) Wages dataset: The wages dataset contains the statis-
tics of the determinants of Wages from the 1985
Current Population Survey. It contains 534 obser-
vations on 11 features sampled from the original
Current Population Survey of 1985 and can be down-
loaded from the StatLib Data archive.1 Out of these
11 features, four are numerical [EDUCATION: Num-
ber of years of education, EXPERIENCE: Number of
years of work experience, WAGE: Wage (dollars per
hour), and AGE: Age (years)]. The other seven fea-
tures are categorical, which are then converted to the
corresponding numerical values. We found that AGE
and EXPERIENCE are the most correlated features
based on our objective function value. Only 44 data
points were eliminated from the principal trend. We

1 http://lib.stat.cmu.edu/datasets/CPS 85 Wages.

also obtained a subspace principal trend with EXPE-
RIENCE versus WAGES and with WAGES versus
AGE. Since all of its subsets contain principal trends,
we combined all the three features and identified a
subspace trend with WAGES, EXPERIENCE, and
AGE, containing 367 data points (see Fig. 3). This
result is interesting because it gives some evidence
that the pattern that SuPriC finds is meaningful and
not just a spurious correlation.

(2) Breast Cancer Dataset: The Wisconsin Diagnos-
tic Breast Cancer (WDBC) dataset2 from the UCI
Machine Learning Repository contains 32 features
computed from a digitized image describing the char-
acteristics of the cell nuclei present in the image
with 569 data points. Excluding patient ID and diag-
nosis (class label) columns, we used only 30 fea-
tures for our analysis. The 30 features contain three
sets of attributes in which statistical values of some

2 http://archive.ics.uci.edu/ml/datasets.

Statistical Analysis and Data Mining DOI:10.1002/sam



Reddy and Aziz: Modeling Local Nonlinear Correlations

(a) (b)

(c) (d)

Fig. 4 Results on WDBC dataset. (a) A nonlinear correlation between mean perimeter, mean radius, and mean surface, (b) a nonlinear
correlation between SEperimeter, SEradius, and SEsurface, (c) a nonlinear correlation between Max radius, Max perimeter and Max
surface (d) a 9-D nonlinear correlation between all the features described in (a–c) projected onto a 3-D space using MDS.

tumor cell properties are stored. The first 10 features
correspond to the mean values, the next 10 fea-
tures correspond to the standard error values and
the last 10 features correspond to the maximum val-
ues of the tumor properties such as radius, texture,
perimeter, surface smoothness, etc. In this dataset,
we see that mean radius and mean perimeter are
the highly correlated features. Here, our algorithm
obtained meaningful patterns, and the plots of the
most significant 3-D subspace trends are shown in
panels (a) and (b) of Fig. 4. We also found that there
is a nine-dimensional (9-D) subspace trend obtained
by combining the feature sets (1, 3, 4) (11, 13, 14)

and (21, 23, 24), indicating that the mean, standard
error and maximum values of all these features are
highly correlated compared to other sets of features.
In panel (c) of Fig. 4, we show the result of multi-
dimensional scaling (MDS) to reduce the dimensions
of a 9-D subspace trend onto a 3-D plot. This partic-
ular result provides more insight about the nonlinear

subspace correlations present in the data which are
not revealed by any of the current techniques.

(3) NBA dataset: The NBA dataset3 contains 28 features
about 231 players from various teams playing in the
NBA. There are many correlations among these fea-
tures. Our method was able to find several subspace
correlations. A few of them are listed below:

• The number of games played is correlated with
the number of minutes the player gets per game,
which means that dependable players play most
matches and also get more time compared to
others.

• The number of points accumulated is directly
correlated with the two point scores, which
means that two points are the bulk of all the
points that are being scored.

3 http://sports.espn.go.com/nba/teams.

Statistical Analysis and Data Mining DOI:10.1002/sam



Statistical Analysis and Data Mining, Vol. (In press)

(a) (b)

Fig. 5 Two subspace principal curves sharing a common feature ‘number of games’ and almost 70% of the data.

• In fact, we obtained a set of features that
are strongly correlated: ‘total points scored’,
‘two points attempted’, ‘two points scored’,
‘two points percentage’, ‘points per shot’, and
‘adjusted field goal percentage’ were strongly
correlated. Hence, any of the subsets of this
feature set are also strongly correlated.

• The total minutes played per game tends to get
higher turnover (the amount of occurrence a
player loses the possession of the ball to the
opponent) per game, which means that, irre-
spective of the player, time of stay in the game
gives a higher probability of losing the ball.

• The number of games played is directly corre-
lated with the percentage of field goals scored.

It should be noted that our method can also obtain sub-
space principal curves which might have some common
features as well as data points. As shown in Fig. 5, the two
subspace principal curves obtained share the attribute ‘num-
ber of games’ and 70% of the data. There was no desired
subspace principal curve with all the three attributes.
Hence, we can only describe the 2-D ‘maximally desirable
subspace principal curve’ that does not become desirable
when any other feature is added to the resulting feature
combinations.

(4) Mouse Gene Expression Dataset: The mouse gene
expression dataset [35] contains gene expression lev-
els of 147 genes expressed in six different conditions,
as shown in Fig. 6. We found a subspace trend with
M1 and M2 (removing seven outlier points). Relax-
ing the threshold, we also obtained subspace principal

curves with M1, M2, and M3 and with NC1, NC2,
and NC3. In the next section, we show that the gene
orderings belonging to the subspace trend reveal bio-
logically more coherent groupings compared to the
gene orderings obtained by fitting the principal curve
directly.

(5) Ecoli Gene Expression Dataset: The Ecoli gene expres-
sion dataset [36] contains 102 genes expressed in
eight different conditions. The best subspace trend
is obtained in 90-1 and 150-1 condition by removing
six outlier genes. Fig. 7 shows that the removal of the
six data points with the highest projection distances
from the principal curve can significantly improve the
quality of the subspace trend.

(6) Drosophila Gene Expression Dataset: This dataset4

contains the gene expression of the Drosophila
melanogaster during its life cycle with the expression
levels of 3944 genes that are evaluated for 57 sequen-
tial time periods [37]. Missing values (less than 1%)
were replaced by zeros. We were able to extract sub-
space trends for the three sets of feature combina-
tions (1, 2, 3, 54, 55, 56, and 57), (5, 54, 55, 56, 57)

and (9, 10, 11). It should be noted that the Features 1,
2, and 5 do not form any desired subspace, hence the
feature combination with (1, 2, 3, 5, 54, 55, 56, 57)

features does not create a desired subspace princi-
pal curve. The SuPriC algorithm gave the ‘maximally
desirable subspace principal curves’.

4 http://genome-www5.stanford.edu.
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(a) M1 vs M3 (b)

Fig. 6 Results on Mouse gene expression data. (a) The two highly correlated conditions (M1 and M3) that provide a good gene ordering
that yield coherent groupings, (b) 3-D visualization of all the six nonlinearly correlated dimensions after reducing the dimensionality using
MDS.

(a) (b)

Fig. 7 Results on Ecoli gene expression data. (a) The subspace trend obtained before removing the outliers, (b) the subspace trend
obtained after removing few outlier data points.

(7) Gasch Gene Expression Dataset: The Gasch gene
expression dataset with 4532 samples and 250 fea-
tures corresponding to model organism Yeast [38]
was generated by merging the experiments of Spell-
man (gene expression measures relative to 77 condi-
tions) [39] with the transcriptional responses of yeast
to environmental stress (173 conditions).

(8) SWSequence Dataset: The SWSequence Data is a
pair-wise similarity data with 3527 samples (rows)
and 6349 features (columns) from the Smith–
Waterman algorithm [40]. This data represents the
homological functional relations that exist between
genes belonging to the same functional classes. Each
data value was computed from the Smith–Waterman
logE values between a pair of yeast sequences that
express the pair-wise similarities between the genes.

5.3. Comparison with Other Methods

5.3.1. Feature correlation methods [1,41]

The CARE algorithm proposed in [1] primarily finds the
linear subspace correlations in the data and cannot identify
the nonlinear correlations in the subspaces. In the presence
of nonlinear correlations, it either breaks it into smaller
segments or completely misses to identify such relations.
In fact, the CARE algorithm found the most prominent (or
trivial) correlations but missed some interesting linear cor-
relations that are present in the global space with a relatively
high percentage of data. The SuPriC algorithm was able to
extract all the subspace correlations presented in [1] as well
as others (see Fig. 8) except for the one which says that the
total rebound is equal to the sum of the offensive rebound
and the defensive rebound. This is because of the absence
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(a) (b)

(d)(c)

Fig. 8 (a–c) 2-D correlations present in different subspaces of the NBA dataset, (d) the nonlinear correlation between four features is
visualized in 3-D after reducing the dimensionality using MDS.

of any correlation between the defensive rebound with the
offensive rebound for a large number of data points. How-
ever, finding such an obvious relation is not the goal of
our algorithm. Rather, we are looking for a correlation that
represents a significant amount of data points which is not
evident otherwise, that is, the total rebound is not a true fea-
ture and can be calculated by summing the other two feature
values. The REDUS algorithm [41] was recently proposed
to find nonlinear correlations present in the data. In the
WDBC dataset, REDUS was able to find only one non-
linear correlation (between mean radius, maximum radius
and the mean of texture), whereas our method, was able
to find much stronger correlations (between mean radius,
mean surface, mean perimeter, maximum radius, maximum
surface, maximum perimeter, standard error in radius, stan-
dard error in surface and standard error in perimeter) with
these nine features in addition to the previously reported
result (see Fig. 4). Also, one of the main drawbacks of the
REDUS algorithm is its inability to capture overlapping
correlations which are readily captured using our approach.

5.3.2. Biclustering algorithms [42]

We performed comparisons with a state-of-the-art biclus-
tering method, namely, the Bivisu algorithm [42]. We used
this biclustering algorithm on the wages dataset on the four

continuous attributes and obtained three biclusters that are
significant. One can clearly see that these biclusters do not
convey the essential concept of a subspace correlation since
they optimize the criteria of an additive model as shown in
Fig. 9. Our algorithm groups the relevant data points in the
subspace together indicating a stronger correlation pattern.
This is the main advantage of the subspace trend compared
to subspace clusters.

5.3.3. Principal curves [33]

For the mouse gene expression data, we also obtained the
ordering of the genes by projecting them onto the subspace
trend obtained by M1 and M3 and compared the ordering
of the genes by projecting them onto the original principal
curve fitted on the entire data (see Fig. 6). We can evalu-
ate the biological validity of the gene orderings provided
by normal and subspace trends by examining the biologi-
cal homogeneity of neighboring genes in the trend. A good
trend should arrange genes into contiguous clusters of func-
tionally related genes. Therefore, if we divide trends into
segments, better trends should exhibit a higher similarity
between functions of genes in the segments. We divided the
normal and subspace trends on the mouse dataset into the
seven most natural segments using the change point anal-
ysis technique [43]. We then evaluated the segments using
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(a) Age vs Experience (b) Age vs Experience

Fig. 9 Comparison results on the Wages dataset. (a) Our method was able to capture the correlation between the AGE and EXPERIENCE
attributes, (b) Fewer data points (compared to the number obtained using SuPriC) broke into three different biclusters for the AGE and
EXPERIENCE attributes.

Table 3. Comparison of NRMSE values for missing value imputation in different real-world datasets.

KNNImpute [45] Local Least Squares [46] Principal Curves [33] SuPriC

Wages 0.415 (0.0212) 0.35 (0.0213) 0.33 (0.0217) 0.278 (0.0191)
WDBC 0.422 (0.0237) 0.367 (0.0215) 0.349 (0.0195) 0.285 (0.0185)
Ecoli 0.46 (0.0233) 0.427 (0.0204) 0.415 (0.0202) 0.35 (0.0178)
Mouse 0.409 (0.0221) 0.39 (0.0197) 0.349 (0.0188) 0.332 (0.0182)
Gasch 0.41 (0.023) 0.38 (0.0221) 0.35 (0.0203) 0.33 (0.017)
SWSeq 0.49 (0.0242) 0.48 (0.021) 0.465 (0.0213) 0.455 (0.019)

the Biological Homogeneity Index (BHI) proposed by [44],
an external validation measure based on functional annota-
tions ranging from 0 to 100 with higher values being better.
We obtained functional annotations for the mouse dataset
from the original authors containing nine functional groups.
The functional groups were not necessarily disjoint, and
many genes belonged to more than one functional group.
The subspace trends obtained better BHI than the normal
trends. The BHI for the subspace trend was 15.034, and
for the normal trend was 14.014. Note that a single point
increase in BHI is statistically significant since the effec-
tive ceiling for the BHI with the functional annotations used
was approximately 20.

5.3.4. Missing data imputation [45,46]

Our method was also used to improve the quality of miss-
ing data imputation. We tested our algorithm on both syn-
thetic and real-world datasets. The SuPriC algorithm was
compared against the principal curve in the full-dimensional
space along with two well-studied missing data imputation
methods, namely, KNN imputation (KNNImpute) [45] and
the Least Squares method [46]. First, some of the values at

random locations in the data were intentionally left out and
will be considered as the missing data. When the principal
curves and SuPriC were used, the data points, containing
entry missing, was filled using the average value of the cor-
responding features to begin with. We estimated the value
for the missing feature using the other feature values on
the principal curve. While using SuPriC some data points
do not fall into any of the subspace principal curves. In
such cases, we took the result from the full-dimensional
principal curves. In all these cases, the Normalized Root
Mean Square Error (NRMSE) between the result obtained,
and the actual entry in those missing positions was calcu-
lated [45]. We performed the comparison using six real-
world datasets with 3% missing values and observed that
SuPriC performs better imputation compared to the other
methods for missing value imputation (see Table 3). Here it
is relevant to note that the missing values were real values;
hence, we calculated NRMSE between the actual values in
the missing positions and the corresponding imputed val-
ues. We performed the same experiments ten times using
random missingness and reported the average NRMSE
values.
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Table 4. Comparison of RMSE values for regression in various real-world datasets.

Isotonic regression Lasso regression SuPriC

Wages 0.059 (0.003) 0.061 (0.006) 0.053 (0.0013)
WDBC 0.056 (0.002) 0.058 (0.007) 0.049 (0.0035)
Ecoli 0.075 (0.002) 0.073 (0.005) 0.069 (0.0023)
Mouse 0.042 (0.003) 0.051 (0.008) 0.042 (0.0031)
Gasch 0.051 (0.002) 0.053 (0.01) 0.047 (0.0026)
SWseq 0.091 (0.006) 0.079 (0.06) 0.088 (0.0025)

5.3.5. Regression [47,48]

We also demonstrated the performance of the proposed
algorithm in solving regression problems. After normaliz-
ing the data, we intentionally left out some of the features,
individually estimated them using the SuPriC algorithm and
compared the estimation with two standard regression tech-
niques: Isotonic regression [48] and lasso regression [47].
For each of the features, the average of the Root Mean
Square Error (RMSE) between the estimated value and the
actual value is computed. tenfold cross validation was per-
formed to reduce the bias in the test data selection. When
the SuPriC algorithm was used, we examined if the data
point belongs to any of the subspace principal curves. If
so, the unknown feature value is calculated using other fea-
ture values in the corresponding subspace principal curve
(if the unknown feature is a part of that subspace). In all the
other cases, we took the value using the full-dimensional
principal curve and the known feature values. This is espe-
cially useful because there is no general nonlinear regres-
sion model that one can specify directly. However, in the
case of the principal curve and the subspace principal
curve, we did not have to specify the model beforehand.
We used our method for six real-world biological datasets,
and the performance comparison of the SuPriC algorithm
along with other methods in terms of the RMSE values is
reported in Table 4. Our method, in general, outperformed
both the methods since it exploits the correlated features
and eliminates the noisy features and outliers where ever
applicable.

6. CONCLUSION

This paper extends the notion of subspace clusters to sub-
space trends that can effectively model both linear and non-
linear local subspace correlations that often occur in com-
plex real-world datasets. Many works proposed in the liter-
ature fail to effectively extract nonlinear subspace correla-
tion patterns. In most of the real-world problems, one can
rarely interpret the usefulness of principal curves in high-
dimensional data. In this paper, we formalized the problem
of modeling subspace principal trends for high-dimensional
datasets and proposed SuPriC algorithm for identifying

subspace principal curves that optimally represent these
subspace trends in high-dimensional feature spaces. The
SuPriC algorithm models the principal curves for subspaces
rather than the complete feature space and provides a better
exploratory analysis of high-dimensional data. The experi-
mental results demonstrate the superiority of the proposed
approach compared to other methods developed in the
literature. We also demonstrate the improved performance
of the proposed algorithm in problems such as missing data
imputation and regression analysis compared to some of the
standard approaches.
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APPENDIX

PRINCIPAL CURVES

The function Prin Curve takes the subset of data points and returns
the best fit principal curve with respect to a subset of the data. To achieve
this, one can potentially use any efficient principal curve generating
method proposed in the literature. To make this paper self-contained,
we provide a high-level description of the k-segments algorithm (see
Algorithm 2) used to generate principal curves [33] in our work. This
function generates a principal curve for the given data in an incremental
manner. First, it computes the principal component of the data covariance
matrix and obtains the principal eigenvector corresponding to the largest
eigenvalue. From this eigenvector, a segment that covers the projection of
all the data points is taken. Then, it iteratively adds new line segments by
taking out some of the data points corresponding to the existing segments.
For adding a new segment, it first considers all the data points as potential
zero length segment and assigns those data points for which this new
segment is the closest. The data points assigned to the optimal new
zero length segment are used to compute the principal component and
eventually the new segment. In this iterative manner, one can add more
and more segments and bring more nonlinearity to the curve. A polygonal
line is formed by tailoring these segments using the Hamiltonian path
algorithm (function call Connect Segments). Finally, it smoothens the
polygonal line and generates the principal curve. After the principal curve
is obtained, the projection distances of all the data points onto the curve
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and the length of the curve are returned by this procedure. It should be
noted that the number of segments k is a user-defined parameter and
for obtaining linear correlation patterns, k must be set to 1. The higher
values of k will obtain higher degree nonlinear correlation. Since a suitable
value of k is unknown we modified the algorithm so that k is not a user
parameter. In our approach, we start with a number of partitions to be 1
and incrementally improve the objective function value by adding more
partitions. In most of the cases we tested on, we found that the number
of segments is around 3. For datasets having more degree of subspace
nonlinearity, it may go beyond three.

Algorithm 2 Prin Curve(Data, F )
Input: Data matrix (Data)

Feature set (F )
Output: Optimal Principal curve (S)

Projection distances of the data (sqd)
Length of the principal curve (len)

Pseudocode:
c ← |F |
v ← find principal component(Data)
v′ ← define segment part(v)
i←1
V ← {v′}
p ← ∞
while True do

x← find Optimum Datapoint(Data,V)
PART ← partition Data(Data,V,x)
V← ∅
for each part ∈ PART do

v ← find principal component(p)
v′ ← define segment part(v)
V← V ∪ v′

end for
i←i+1
S ← Smooth Polygon(PL, Data)
sqd ← Project (Data, S)
ssd←sum(sqd)
len ← Length(S)
q ← (w × ssd + (1 − w) × len)/

√
c × |Data|

if q < p then
p ← q

else
exit while

end if
end while
PL ← Connect Segments(V)
S ← Smooth Polygon(PL, Data)
sqd ← Project (Data, S)
len ← Length(S)
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