
Exploiting Label Dependency for Hierarchical
Multi-label Classification

Noor Alaydie, Chandan K. Reddy, and Farshad Fotouhi

Department of Computer Science
Wayne State University, Detroit, MI, USA

alaydie@wayne.edu, reddy@cs.wayne.edu, fotouhi@wayne.edu

Abstract. Hierarchical multi-label classification is a variant of traditional clas-
sification in which the instances can belong to several labels, that are in turn
organized in a hierarchy. Existing hierarchical multi-label classification algo-
rithms ignore possible correlations between the labels. Moreover, most of the
current methods predict instance labels in a “flat” fashion without employing the
ontological structures among the classes. In this paper, we propose HiBLADE
(Hierarchical multi-label Boosting with LAbel DEpendency), a novel algorithm
that takes advantage of not only the pre-established hierarchical taxonomy of the
classes, but also effectively exploits the hidden correlation among the classes that
is not shown through the class hierarchy, thereby improving the quality of the pre-
dictions. According to our approach, first, the pre-defined hierarchical taxonomy
of the labels is used to decide upon the training set for each classifier. Second,
the dependencies of the children for each label in the hierarchy are captured and
analyzed using Bayes method and instance-based similarity. Our experimental re-
sults on several real-world biomolecular datasets show that the proposed method
can improve the performance of hierarchical multi-label classification.

Keywords: Hierarchical multi-label classification, correlation, boosting.

1 Introduction

Traditional classification tasks deal with assigning instances to a single label. In multi-
label classification, the task is to find the set of labels that an instance can belong to
rather than assigning a single label to a given instance. Hierarchical multi-label classi-
fication is a variant of traditional classification where the task is to assign instances to a
set of labels where the labels are related through a hierarchical classification scheme. In
other words, when an instance is labeled with a certain class, it should also be labeled
with all of its superclasses, this is known as the hierarchy constraint.

Hierarchical multi-label classification is a widely studied problem in many domains
such as functional genomics, text categorization, image annotation and object recogni-
tion. In functional genomics (which is the application that we focus on in this paper)
the problem is the prediction of gene/protein functions. Biologists have a hierarchical
organization of the functions that the genes can be assigned to. An individual gene or
protein may be involved in more than one biological activity, and hence, there is a need
for a prediction algorithm that is able to identify all the possible functions of a particular

2

(a) Flat (b) Hierarchical

Fig. 1. Flat versus Hierarchical classification. (a) Flat representation of the labels (b) Hierarchical
representation of the same set of labels.

gene. There are two types of class hierarchy structures: a rooted tree structure, such as
the MIPS’s FunCat taxonomy [17], and a directed acyclic graph (DAG) structure, such
as the Gene Ontology (GO) [7]. In this paper, we use the FunCat scheme.

Most of the existing research focuses on a “flat” classification approach, that oper-
ates on non-hierarchical classification schemes, where a binary classifier is constructed
for each label separately as shown in Figure 1(a). This approach ignores the hierarchi-
cal structure of the classes shown in Figure 1(b). Reducing a hierarchical multi-label
classification problem to a conventional classification problem allows the possibility
of applying the existing methods. However, since the prediction of the class labels has
to be performed independently, such transformations are not capable of exploiting the
interdependencies and correlations between the labels [6]. Moreover, the flat classifica-
tion algorithm fails to take advantage of the information inherent in the class hierarchy,
and hence may be suboptimal in terms of efficiency and effectiveness [9].

1.1 Our Contributions

In this paper, we propose, HiBLADE, a hierarchical multi-label classification frame-
work for modeling the pre-defined hierarchical taxonomy of the labels as well as for
exploiting the existing correlations between different labels, that are not given by the
taxonomical classification of the labels, to facilitate the learning process.

To the best of our knowledge, there is no work related to the hierarchical multi-
label classification setting that exploits the correlations between different labels other
than the domain-based pre-established taxonomical classification of the classes. Our
intuition is that the domain-based taxonomical classification of the classes should be
used as additional features while label dependencies are inferred from the data. Specif-
ically, a novel approach to learn the label dependencies using a Bayesian framework
and instance-based similarity is proposed. Bayesian framework is used to characterize
the dependency relations among the labels represented by the directed acyclic graph
(DAG) structure of the Bayesian network. As opposed to other hierarchical multi-label
classification algorithms, our algorithm has the following advantages:

1. The underlying pre-defined taxonomy of the labels is explicitly expressed which
allows us to gain further insights into the learning problem.

3

2. It is capable of addressing correlations and interdependencies among the children
of a particular label using the Bayesian framework and instance-based similarity.

3. The use of a shared boosting model for the child labels for each label in the hierar-
chy using the obtained correlations leads to efficient and effective results.

The rest of the paper is organized as follows: related work is discussed in Section 2.
Our proposed method, HiBLADE, is presented in Section 3. In Section 4, we report our
experimental results on several biomolecular datasets. Then, we conclude and discuss
further research directions in Section 5.

2 Related Work

Since conventional classification methods, such as binary classification and multi-class
classification, were not designed to directly tackle the hierarchical classification prob-
lems, such algorithms are referred to as flat classification algorithms [18]. It is important
to mention that flat classification and other similar approaches are not considered to be
a hierarchical classification approach, as they create new (meta) classes instead of using
pre-established taxonomies.

Different approaches have been proposed in the literature to tackle the hierarchi-
cal multi-label classification problem [4, 21, 16]. Generally, these approaches can be
grouped into two categories: the local classifier methods and the global classifier meth-
ods. Moreover, most of the existing methods use a top-down class prediction strategy
in the testing phase [3, 16, 18]. The local strategy treats any label independently, and
thus ignores any possible correlation or interdependency between the labels. There-
fore, some methods perform an additional step to correct inconsistent predictions. For
example, in [3], a Bayesian framework is developed for correcting class-membership
inconsistency for the separate class-wise models approach. In [1], a hierarchical multi-
label boosting algorithm, named HML-Boosting, was proposed to exploit the hierarchi-
cal dependencies among the labels. HML-Boosting algorithm relies on the hierarchical
information and utilizes the hierarchy to improve the prediction accuracy.

True path rule (TPR) is a rule that governs the annotation of GO and FunCat tax-
onomies. According to this rule, annotating a gene to a given class is automatically
transferred to all of its ancestors to maintain the hierarchy constraint [12]. In [20], a
true path ensemble method was proposed. In this method, a classifier is built for each
functional class in the training phase. A bottom-up approach is followed in the test-
ing phase to correct the class-membership inconsistency. In a modified version of TPR
(TPR − w), a parent weight is introduced. The weight is used to explicitly modulate
the contribution of the local predictions with the positive predictions coming from the
descendant nodes. In [5], a hierarchical bottom-up Bayesian cost-sensitive ensemble
(HBAYES-CS), is proposed. Basically, a calibrated classifier is trained at each node in
the taxonomy. H-loss is used in the evaluation phase to predict the labels for a given
node. In a recent work [2], we proposed a novel Hierarchical Bayesian iNtegration
algorithm HiBiN, a general framework that uses Bayesian reasoning to integrate het-
erogeneous data sources for accurate gene function prediction. On the other hand, sev-
eral research groups have studied the effective exploitation of correlation information
among different labels in the context of multi-label learning. However, these approaches

4

do not assume the existence of any pre-defined taxonomical structure of the classes [6,
11, 14, 23, 24].

3 HiBLADE Algorithm

Let X = ℜd be the d-dimensional input space and Y = {y1, y2, ..., yL} be the finite set
of L possible labels. The hierarchical relationships among classes in Y are defined as
follows: Given y1, y2 ∈ Y, y1 is the ancestor of y2, denoted by (↑ y2) = y1, if and only
if y1 is a superclass of y2.

Let a hierarchical multi-label training set D = {< x1,Y1 >, ..., < xN ,YN >},
where xi ∈ X is a feature vector for instance i and Yi ⊆ Y is the set of labels associated
with xi, such that yi ∈ Yi ⇒ y′i ∈ Yi, ∀(↑ yi) = y′i. Having Q as the quality criterion
for evaluating the model based on the prediction accuracy, the objective function is
defined as follows: a function f : D → 2y . Here, 2y is the power set of Y , such that Q
is maximized, and y′ ∈ f(x) ⇒ y ∈ f, ∀(↑ y′) = y. The function f is represented here
by the HiBLADE algorithm.

Hierarchical multi-label learning aims to model and predict p(child class | parent
class). Our goal is to make use of hierarchical dependencies as well as the extracted
dependencies among the labels yk where 1 ≤ k ≤ L and (↑ yk) = ym such that
for each example we can better predict its labels. The problem then becomes how to
identify and make use of such dependencies in an efficient way.

3.1 Training Scheme

The training of each classifier is performed locally. During classification, the classifier
at each class will only be presented with examples that are positive at the parent class
of the current class. Hence, the reached examples are positive examples to the current
class and/or to the siblings of that class. In other words, the training for each classifier is
performed by feeding as negative training examples, the positive examples at the parent
of the current class that are not positive examples at the current class.

3.2 Extending the Features

The feature vector for each example is extended to include the class labels of the levels
higher in the hierarchy than the current level as given in line 9 of Algorithm 1. More
formally, the feature vector for each instance j that belongs to a class i will have the
following form: fi,j =< xj,1, ..., xj,d, x̄j,d+1, ..., x̄j,d+k >, where < xj,1, ..., xj,d > is
the original feature vector and < x̄j,d+1, ..., x̄j,d+k > are the additional features.

3.3 Label Correlation

The other type of dependencies is modeled using Bayesian structure and instance-based
similarity as shown in line 10 of Algorithm 1. For each class i, we get the children
classes of class i and sharedModels algorithm (shown in Algorithm 2) is invoked.
In each boosting iteration t, the entire pool is searched for the best fitted model other

5

Algorithm 1 HiBLADE

1: Input: A pair < Y,L > where Y is a tree-structured set of classes and L is the total number
of classes of Y .

2: Output: For each class yl ∈ Y , the final composite classifier yl = sign[Fl(x)].
3: Algorithm:
4: for i = 1, ...,L do
5: if class i is a leaf class then
6: Do nothing
7: else
8: Let children(i) = y1i, ..., yki be the k children classes of i
9: Form the new feature vectors by adding the labels of the classes at the higher levels to

the current feature vectors.
10: Learn classifiers for children(i) using the shared models Algorithm
11: end if
12: end for

than the model that was built directly for that label and its corresponding combination
weights, the best fitted model is called ht

l . We refer to the best fitted model as the
candidate model. The chosen model ht

c is then updated based on the following formula:

γij =
ϵii

ϵii + ϵji
∗ βij (1)

where ϵji is the error results from applying model ht
j on the examples in class i and ϵii

is the error results from applying the model ht
i on the examples in class i. βij controls

the proportional contribution of Bayesian-based and instance-based similarities. βij is
computed as follows:

βij = ϕ ∗ bij + (1− ϕ) ∗ sij (2)

where bij is the Bayesian correlation between class i and class j, and it is estimated
as bij = |i ∩ j|/|j|, where |i ∩ j| is the number of positive examples in class i and
class j and |j| is the number of positive examples in class j. sij is the instance-based
similarity between class i and class j. Each instance from one class is compared to each
other instance from the other class. In HiBLADE, sij is computed using the Euclidean
distance between the positive examples in both classes that has the following formula:

sij =

√∑
l

(il − jl)
2 (3)

where l is the corresponding feature in the two vectors. sij is normalized to be in the
range of [0, 1]. ϕ is a threshold parameter that has a value in the range [0, 1]. Setting ϕ
to 0 means that only instance-based similarity is taken into consideration in the learning
process. While setting it to 1 means that only Bayesian-based correlation is taken into
consideration. On the other hand, any value of ϕ between 0 and 1 combines both types
of correlation. It is important to emphasize that these computations are performed only
for the class that is found to be the most useful class with respect to the current class.

6

In the general case, both classes, the current class and the candidate class, contribute
to the final prediction. In other words, any value of ϵji other than 0, indicates the level
of contribution from the candidate class. More specifically, if the error of the candidate
class, ϵji, is greater than the error of the current class, ϵii, the value of γij will be small
indicating that only a limited contribution of the candidate class is considered. In con-
trast, if the error of the current class, ϵii, is greater than the error of the candidate class,
ϵji, then γij will be high, and hence, the prediction decision will be dependable more
on the candidate class. Finally, the models for the current class and the used candidate
class are replaced by the new learned models. At the end, the composite classifiers Fc

provide the prediction results.
Algorithm 2 shows the details of the shared models algorithm. The shared mod-

els algorithm takes as input the children classes of a particular class together with the
feature vectors for the instances that are positive at the parent class. These instances
will form the positive and negative examples for each one of the children classes. The
algorithm begins by initializing a pool of M models, where M is the number of chil-
dren classes, one for each class that is learned using a boosting-type algorithm such
as ADABOOST. The number of base models to be generated is determined by T . In
each iteration t and for each label in the set of the children labels, we look for the best
fitted model, ht

l(x) and the corresponding combination weights, αt
l . The contribution

of the selected base model, ht
l(x), to the overall classifier, Fc(x), depends on the cur-

rent label. In other words, if the error, ϵji of the candidate classifier is 0, this will be a
perfect model for the current label. Hence, equation (1) will be reduced to γij = βij . In
this case, the contribution of that model depends on the level of correlation between the
candidate class and the current one. On the other hand, if the current model is a perfect
model, i.e., the error ϵii = 0, then equation 1 will be reduced to γij = 0, which means
that for the current iteration, there is no need to look at any other classifier.

Algorithm 2 SharedModels

1: Input: D = {(xi, Yi) : i = 1, ..., N}, where xi ∈ X is a feature vector for instance i and
Yi ⊂ Y is the set of labels associated with xi and M is the number of labels under study. ϕ:
a threshold parameter.

2: Output: yc = sign[Fc(x)]
3: Algorithm:
4: Set Fc(x) = 0 for each label c = 1, ..,M
5: Initialize a pool of candidate shared models: SMp = h1(.), ..., hM (.) where hi(.) is a model

learned on the label i using the boosting-type algorithm.
6: for t = 1, ..., T do
7: for c = 1, ...,M do
8: Find αt

l and ht
l ∈ SMp where c ̸= l that minimize the loss function on label c.

9: Fc(x) = Fc(x) + ht
c(x) ∗ αt

c ∗ (1− γcl) + ht
l(x) ∗ αt

l ∗ γcl
10: Replace ht

c(x) and ht
l(x) in SMp with the new learned models using the boosting-type

algorithm.
11: end for
12: end for

7

4 Experimental Details

We chose to demonstrate the performance of our algorithm for the prediction of gene
functions in yeast using four bio-molecular datasets that were used in [20]. Valentini
[20] pre-processed the datasets so that for each dataset, only genes that are annotated
with FunCat taxonomy are selected. To make this paper self-contained, we briefly ex-
plain the data collection process and the pre-processing steps performed on the data.
Uninformed features that have the same value for all of the examples are removed.
Class “99” in FunCat corresponds to an “unclassified protein”. Therefore, genes that
are annotated only with that class are excluded. Finally, in order to have a good size of
positive training examples for each class, selection has been performed to classes with
at least 20 positive examples. Dataset characteristics are summarized in Table 1.

Table 1. The characteristics of the four bio-molecular datasets used in our experiments.

Dataset Description Samples Features classes
Gene-Expr Gene expression data 4532 250 230

PPI-BG PPI data from BioGRID 4531 5367 232

Pfam-1 Protein domain binary data 3529 4950 211

PPI-VM PPI data from Von Mering experiments 2338 2559 177

The gene expression dataset, Gene-Expr, is obtained by merging the results of
two studies, gene expression measures relative to 77 conditions and transcriptional re-
sponses of yeast to environmental stress measured on 173 conditions [10]. For each
gene product in the protein-protein interaction dataset, PPI-BG, a binary vector is gener-
ated that implies the presence or absence of protein-protein interaction. Protein-protein
interaction data have been downloaded from BioGRID database [19, 20]. In Pfam-1
dataset, a binary vector is generated for every gene product that reflects the presence
or absence of 4950 protein domains obtained from Pfam (Protein families) database [8,
20]. For PPI-VM dataset, Von Mering experiments produced protein-protein data from
yeast two-hybrid assay, mass spectrometry of purified complexes, correlated mRNA
expression and genetic interactions [22].

Table 2. Per-level F1 measure for Gene-Expr dataset using Flat, HiBLADEI , HiBLADEC

with ϕ = 0.5 and HiBLADEB for boosting iterations=50.

Level Flat HiBLADEI HiBLADEC HiBLADEB

ϕ = 0.0 ϕ = 0.5 ϕ = 1.0

1 0.3537 0.2328 0.2301 0.2336
2 0.1980 0.4052 0.4427 0.4094
3 0.1000 0.3575 0.4019 0.3742
4 0.2000 0.2714 0.3598 0.2874

8

4.1 Evaluation Metrics

Classical evaluation measures such as precision, recall and F-measure are used by un-
structured classification problems and thus, they are inadequate to address the hierarchi-
cal natures of the classes. Another approach that is used for the hierarchical multi-label
learning is to use extended versions of the single label metrics (precision, recall and F-
measure). To evaluate our algorithm, we adopted both, the classical and the hierarchical
evaluation measures. F1 measure considers the joint contribution of both precision (P)
and recall (R). F1 measure is defined as follows:

F1 =
2× P ×R

P +R
=

2TP

2TP + FP + FN
(4)

where TP stands for True Positive, TN for True Negative, FP for False Positive and
FN for False Negative. When TP=FP=FN=0, we made F1 measure to equal to 1 as the
classifier has correctly classified all the examples as negative examples [9]. Hierarchical
measures are defined as follows:

hP =
1

|l(P (x))|
∑

p∈l(P (x))

|C(x)∩ ↑ p|
| ↑ p|

(5)

hR =
1

|l(C(x))|
∑

c∈l(C(x))

| ↑ c ∩ P (x)|
| ↑ c|

(6)

hF =
2× hP × hR

hP + hR
(7)

where hP, hR and hF stands for hierarchical precision, hierarchical recall and hi-
erarchical F-measure, respectively. P (x) is a subgraph formed by the predicted class
labels for the instance x while C(x) is a subgraph formed by the true class labels for
the instance x. p is one of the predicted class labels and c is one of the true labels for
instance x. l(P (x)) and l(C(x)) are the set of leaves in graphs P (x) and C(x), re-
spectively. We also computed both micro-averaged hierarchical F-measure (hFµ

1) and
macro-averaged hierarchical F-measure hFM

1 . hFµ
1 is computed by computing hP and

hR for each path in the hierarchical structure of the tree and then applying equation
(7). On the other hand, hFM

1 is computed by calculating hF1 for each path in the hi-
erarchical structure of the classes independently and then averaging them. Having high
hierarchical precision means that the predictor is capable of predicting the most general
functions of the instance, while having high hierarchical recall indicates that the pre-
dictor is able to predict the most specific classes [20]. The hierarchical F-measure takes
into account the partially correct paths in the overall taxonomy.

4.2 Experimental Results and Discussion

We analyzed the performance of the proposed framework at each level of the Fun-
Cat taxonomy, and we also compared the proposed method with four other methods
that follow the local classifier approach, namely, HBAYES-CS, HTD, TPR and TPR-w.
HBAYES-CS, TPR and TPR-w are described in the Related Work Section. HTD (Hier-
archical Top-Down) is the baseline method that belongs to the local classifier strategy

9

Table 3. Per-level F1 measure for PPI-BG dataset using Flat, HiBLADEI , HiBLADEC with
ϕ = 0.5 and HiBLADEB for boosting iterations=50.

Level Flat HiBLADEI HiBLADEC HiBLADEB

ϕ = 0.0 ϕ = 0.5 ϕ = 1.0

1 0.0808 0.2014 0.1833 0.2052
2 0.0267 0.6904 0.6984 0.6998
3 0.0001 0.6446 0.6304 0.6520
4 0.0001 0.6743 0.6454 0.6747

and performs hierarchical classification in a top-down fashion. Since HiBLADE also
belongs to the local classifier strategy, it is fair to have a comparison against a local
classifier approach that does not consider any type of correlation between the labels.
We also analyzed the effect of the proper choice of the threshold ϕ on the performance
of the algorithm. The setup for the experiments is summarized as follows:

– Flat: This is the baseline method that does not take the hierarchical taxonomy of the
classes into account and does not consider label dependencies. A classifier is built
for each class independently of the others. We used AdaBoost as the base learner
to form a baseline algorithm for the comparison with the other methods.

– HiBLADEI : The proposed algorithm that considers Instance-based similarities
only. Here ϕ is set to zero.

– HiBLADEB : The proposed algorithm that considers classes correlation based on
Bayesian probabilities only. Here ϕ is set to one.

– HiBLADEC : The proposed algorithm that considers a combination of both instance-
based similarity and classes correlation. Here ϕ is set to 0.5.

Table 4. Per-level F1 measure for Pfam − 1 dataset using Flat, HiBLADEI , HiBLADEC

with ϕ = 0.5 and HiBLADEB for boosting iterations=50.

Level Flat HiBLADEI HiBLADEC HiBLADEB

ϕ = 0.0 ϕ = 0.5 ϕ = 1.0

1 0.1133 0.0924 0.0827 0.1085
2 0.0267 0.8524 0.8702 0.7273
3 0.1000 0.7473 0.7946 0.6824
4 0.2222 0.5122 0.5135 0.5085

First, we performed a level-wise analysis of the F-measure of the FunCat classifica-
tion tree on the four datasets. In measuring the level-wise performance, level 1 reflects
the root nodes while all other classes are at depth i, where 2 ≤ i ≤ 5. We show the
results for the top four levels in the hierarchy for the proposed method and the flat
method. Moreover, we show the performance of the proposed framework with different
ϕ’s values while setting the number of boosting iterations to 50 iterations. Tables 2, 3, 4
and 5 show the results of per-level evaluation for Gene-Expr, PPI-BG, Pfam-1 and PPI-
VM datasets, respectively. The most significant measures for each level are highlighted.

10

The proposed algorithm outperforms the flat classification method in most of the cases
with significant differences in the performance measurements. The results in Tables 2,
3, 4 and 5 indicate that the deeper the level the better the performance of the proposed
algorithm compared to the flat classification method. For example, in all of the datasets,
the proposed algorithm outperformed the flat classification method in all the levels that
are higher than level 1. This result is consistent with our understanding of both of the
classification schemes. In other words, the proposed method and the flat classification
method have a similar learning procedure for the classes in the first level. However, the
proposed method achieved better results for the deeper levels in the hierarchy.

Table 5. Per-level F1 measure for PPI-VM dataset using Flat, HiBLADEI , HiBLADEC with
ϕ = 0.5 and HiBLADEB for boosting iterations=50.

Level Flat HiBLADEI HiBLADEC HiBLADEB

ϕ = 0.0 ϕ = 0.5 ϕ = 1.0
1 0.1631 0.1266 0.1029 0.1193
2 0.1786 0.6033 0.6758 0.6601
3 0.0001 0.5802 0.6822 0.6957
4 0.0001 0.6931 0.5246 0.5417

To get more insights into the best choice of ϕ threshold, we compare hierarchical
precision, hierarchical recall, hierarchical Fµ

1 measure and hierarchical FM
1 measure

for Gene-Expr, PPI-BG, Pfam-1 and PPI-VM datasets for ϕ = 0.0, 0.5 and 1.0, re-
spectively, for 50 boosting iterations. Table 6 shows the results of the comparisons.
The most significant measures are highlighted. As shown in Table 6, the combination
of Bayesian-based correlation and instance-based similarity achieved the best perfor-
mance results in most of the cases. For example, six of the highest performance values,
in general, in this table are achieved when ϕ = 0.5.

Table 6. Hierarchical precision, hierarchical recall, hierarchical FM
1 and hierarchical Fµ

1 mea-
sures of HiBLADE for all the four datasets using boosting iterations =50.

Measure
Gene-Expr PPI-BG

ϕ = 0.0 ϕ = 0.5 ϕ = 1.0 ϕ = 0.0 ϕ = 0.5 ϕ = 1.0

hP 0.820 0.808 0.826 0.878 0.924 0.875
hR 0.644 0.630 0.627 0.662 0.686 0.701
hFM

1 0.702 0.689 0.692 0.735 0.769 0.756
hFµ

1 0.722 0.708 0.712 0.755 0.787 0.778

Measure
Pfam-1 PPI-VM

ϕ = 0.0 ϕ = 0.5 ϕ = 1.0 ϕ = 0.0 ϕ = 0.5 ϕ = 1.0

hP 0.763 0.836 0.875 0.716 0.748 0.719
hR 0.625 0.663 0.637 0.542 0.551 0.557
hFM

1 0.669 0.720 0.714 0.590 0.605 0.601
hFµ

1 0.687 0.740 0.737 0.617 0.635 0.628

Furthermore, we conducted comparisons of hierarchical F-measure with HBAYES-
CS, HTD, TPR and TPR-w methods. HBAYES-CS is using Guassian SVMs as the base
learners, while HTD, TPR and TPR-w are using Linear SVMs as the base learners. Fig-
ure 2 shows the F-measure of the different methods. By exploiting the label dependen-
cies, the classifiers performance are effected positively. Our results show that the pro-
posed algorithm significantly outperforms the local learning algorithms. Although there

11

is no clear winner among the different versions of HiBLADE algorithm, HiBLADE al-
ways achieved significantly better results than the other methods.

5 Conclusion
In this paper, we proposed a hierarchical multi-label classification framework for in-
corporating information about the hierarchical relationships among the labels as well
as the label correlations. The experimental results showed that the proposed algorithm,
HiBLADE, outperforms the flat classification method and the local classifiers method
that builds independent classifier for each class. For future work, we plan to generalize
the proposed approach to general graph structures and develop more scalable solutions
using some other recent proposed boosting strategies [13, 15].

Fig. 2. Hierarchical F-measure comparison between HBAYES-CS, HTD, TPR, TPR-w,
HiBLADEI , HiBLADEC and HiBLADEB . For the HiBLADE algorithm, the number
of boosting iterations is 50 and ϕ = 0.5 for HiBLADEC .

References

1. N. Alaydie, C. K. Reddy, and F. Fotouhi. Hierarchical boosting for gene function prediction.
In Proceedings of the 9th International Conference on Computational Systems Bioinformat-
ics(CSB), pages 14–25, Stanford, CA, USA, August 2010.

2. N. Alaydie, C. K. Reddy, and F. Fotouhi. A Bayesian Integration Model of Heterogeneous
Data Sources for Improved Gene Functional Inference. In Proceedings of the ACM Confer-
ence on Bioinformatics, Computational Biology and Biomedicine (ACM-BCB), pages 376–
380, Chicago, IL, USA, August 2011.

3. Z. Barutcuoglu, R. E. Schapire, and O. G. Troyanskaya. Hierarchical multi-label prediction
of gene function. Bioinformatics, 22(7):830–836, Jan 2006.

4. Wei Bi and James Kwok. Multi-label classification on tree- and dag-structured hierarchies. In
Lise Getoor and Tobias Scheffer, editors, Proceedings of the 28th International Conference
on Machine Learning (ICML-11), ICML ’11, pages 17–24, New York, NY, USA, June 2011.
ACM.

5. N. Cesa-Bianchi and G. Valentini. Hierarchical cost-sensitive algorithms for genome-wide
gene function prediction. In Machine Learning in Systems Biology, Proceedings of the Third
international workshop, pages 25–34, Ljubljana, Slovenia, 2009.

12

6. Weiwei Cheng and Eyke Hüllermeier. Combining instance-based learning and logistic re-
gression for multilabel classification. Machine Learning, 76(2–3):211–225, 2009.

7. The Gene Ontology Consortium. Gene ontology: tool for the unification of biology. Nature
Genetics, 25(1):25–29, May 2000.

8. M. Deng, T. Chen, and F. Sun. An integrated probabilistic model for functional prediction
of proteins. In in Proc 7th Int Conf Comp Mol Biol, pages 95–103, 2003.

9. A. Esuli, T. Fagni, and F. Sebastiani. Boosting multi-label hierarchical text categorization.
Information Retrieval, 11:287–313, 2008.

10. A P Gasch, P T Spellman, C M Kao, O Carmel-Harel, M B Eisen, G Storz, D Botstein, and
P O Brown. Genomic expression programs in the response of yeast cells to environmental
changes. Mol. Biol. Cell, 11:4241–4257, 2000.

11. G. Jun and J. Ghosh. Multi-class Boosting with Class Hierarchies. In Multiple Classifier
Systems, pages 32–41, 2009.

12. S. Mostafavi and Q. Morris. Using the gene ontology hierarchy when predicting gene func-
tion. In Conference on Uncertainty in Artificial Intelligence (UAI), pages 22–26, Montreal,
Canada, September 2009.

13. Indranil Palit and Chandan K. Reddy. Scalable and Parallel Boosting with Map-Reduce.
IEEE Transactions on Knowledge and Data Engineering (TKDE), 2012. In press.

14. Jesse Read, Bernhard Pfahringer, Geoff Holmes, and Eibe Frank. Classifier Chains for Multi-
label Classification. In Proceedings of the 20th European Conference on Machine Learning
(ECML 2009), Bled, Slovenia, 2009.

15. Chandan K. Reddy and Jin-Hyeong Park. Multi-resolution Boosting for Classification and
Regression Problems. Knowledge and Information Systems (KAIS), 29(2):435–456, Novem-
ber 2011.

16. J. Rousu, C. Saunders, S. Szedmak, and J. Shawe-Taylor. Kernel-Based Learning of Hi-
erarchical Multilabel Classification Models. The Journal of Machine Learning Research,
7:1601–1626, 2006.

17. A Ruepp, A Zollner, D Maier, K Albermann, J Hani, M Mokrejs, I Tetko, U Güldener,
G Mannhaupt, M Münsterktter, and HW Mewes. The FunCat, a functional annotation
scheme for systematic classification of proteins from whole genomes. Nucleic Acids Re-
search, 32(18):5539–5545, Oct 2004.

18. Carlos N. Silla, Jr. and Alex A. Freitas. A survey of hierarchical classification across different
application domains. Data Mining and Knowledge Discovery, 22:31–72, January 2011.

19. C. Stark, B. Breitkreutz, T. Reguly, L. Boucher, A. Breitkreutz, and M. Tyers. BioGRID: a
general repository for interaction datasets. Nucleic Acids Research, 34:D535–D539, 2006.

20. Giorgio Valentini. True path rule hierarchical ensembles for genome-wide gene function pre-
diction. IEEE ACM Transactions on Computational Biology and Bioinformatics, 8(3):832–
847, 2011.

21. C. Vens, J. Struyf, L. Schietgat, S. Dz̃eroski, and H. Blockeel. Decision trees for hierarchical
multi-label classification. Machine Learning, 73:185–214, 2008.

22. C. Von Mering, R. Krause, B. Snel, M. Cornell, S. Oliver, S. Fields, and P. Bork. Comparative
assessment of large-scale data sets of protein-protein interactions. Nature, 417:399–403,
2002.

23. Rong Yan, Jelena Tesic, and John R. Smith. Model-Shared Subspace Boosting for Multi-
label Classification. In 13th ACM SIGKDD international conference on Knowledge discov-
ery and data mining (KDD), pages 834–843, New York, NY, USA, 2007.

24. M.-L. Zhang and K. Zhang. Multi-label learning by exploiting label dependency. In Pro-
ceedings of the 16th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD’10), pages 999–1007, Washington D. C., USA, 2010.

