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Abstract. Various forms of boosting techniques have been popularly
used in many data mining and machine learning related applications.
Inspite of their great success, boosting algorithms still suffer from a few
open-ended problems that require closer investigation. The efficiency of
any such ensemble technique significantly relies on the choice of the weak
learners and the form of the loss function. In this paper, we propose a
novel multi-resolution approach for choosing the weak learners during
additive modeling. Our method applies insights from multi-resolution
analysis and chooses the optimal learners at multiple resolutions during
different iterations of the boosting algorithms. We demonstrate the ad-
vantages of using this novel framework for classification tasks and show
results on different real-world datasets obtained from the UCI machine
learning repository. Though demonstrated specifically in the context of
boosting algorithms, our framework can be easily accommodated in gen-
eral additive modeling techniques.

1 Introduction

In the field of data mining, ensemble methods have been proven to be very ef-
fective for not only improving the classification accuracies but also in reducing
the bias and variance of the estimated classifier. We choose to demonstrate our
multi-resolution based framework using ‘boosting’ algorithm, which is a stan-
dard additive modeling algorithm popular in data mining and machine learning
domains. The Boosting meta-algorithm is an efficient, simple, and easy to ma-
nipulate additive modeling technique that can use potentially any weak learner
available [8]. The most popular variant of boosting, namely the AdaBoost (Adap-
tive Boosting) in combination with trees has been described as the “best off-the-
shelf classifier in the world” [3]. In simple terms, boosting algorithms combine
weak learning models that are slightly better than random models. Recently,
several researchers in other domains like computer vision, medical imaging have
started using boosting algorithms extensively for real-time applications. Both
classification and regression based boosting algorithms have been successfully
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used in a wide variety of applications in the fields of computer vision [12], in-
formation retrieval [11], bioinformatics [9] etc. Inspite of their great success,
boosting algorithms still suffer from a few open-ended issues such as the choice
of the parameters for the weak learner. The framework proposed in this paper is
more generally termed as “Multi-resolution Boosting”, which can model any ar-
bitrary function using the boosting methodology at different resolutions of either
the model or the data. Here, we propose a novel boosting model that can take
advantage of using the weak learners at multiple resolutions. This method of
handling different resolutions and building effective models is similar to wavelet
decomposition methods for multi-resolution signal analysis. In this work, we
achieve this multi-resolution concept in the context of boosting algorithms by
one of the following two ways:

– Model-driven multi-resolution: This is achieved by varying the complexity
of the classification boundary. This approach will provide a systematic pro-
cedure that increases the complexity of the weak learner as the boosting
iterations progress. This framework not only obtains weak learners in a sys-
tematic manner, but also reduces the over-fitting problem as discussed in
Section 4.1 of this paper.

– Data-driven multi-resolution: This can be achieved by considering the data
(not the model) at multiple resolutions during each iteration in the boosting
algorithm. Our framework chooses the weak learners for the boosting algo-
rithm that can best fit the current resolution and as the additive modeling
iterations progress, the modeling resolution is increased. The amount of in-
crease in the resolution follows from the theory of wavelet decomposition.
Our algorithm provides the flexibility for dynamically choosing the weak
learner compared to static learners with certain pre-specified parameters.
This framework is discussed in Section 4.2 of this paper.

The main idea of the proposed framework is: the use of Multi-resolution data
(or model) driven fitting in the context of additive modeling using concepts that
are similar to wavelet decomposition techniques. The rest of the paper is orga-
nized as follows: Section 2 gives some relevant background on various boosting
techniques and scale-space kernels. Section 3 shows the problem formulation
in detail and discusses the concepts necessary to comprehend our algorithm.
Section 4 describes both the model-driven and the data-driven multi-resolution
boosting frameworks. Section 5 gives the experimental results of the proposed
methods on real-world datasets and Section 6 concludes our discussion.

2 Relevant Background

Ensemble learning [4] is one of the most powerful modeling techniques that was
found to be effective in a wide variety of applications in recent years. different
ensemble techniques have been proposed in the literature and is still a very ac-
tive area of research. Boosting is one of the most widely used algorithm that has
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caught the attention of several researchers working in the areas of pattern recog-
nition and machine learning [5]. A main advantage of boosting algorithms is that
the weak learner can be a black-box which can deliver only the result in terms of
accuracy and can potentially be any weak learner. This is a very desirable prop-
erty of the boosting algorithms that can be applied in several applications for
predictive modeling [8,6]. The additive model provides a reasonable flexibility in
choosing the optimal weak learners for a desired task. In this paper, we propose a
novel multi-resolution framework for choosing optimal weak learners during the
iterations in boosting. This approach allows for effective modeling of the dataset
at any given resolution [10]. In terms of analyzing (or modeling) a given dataset
at different resolutions, our approach closely resembles wavelet decomposition
techniques which are effective tools in the field of multi-resolution signal analy-
sis [7]. In the model-driven multi-resolution boosting framework, the models are
built by increasing the complexity during the boosting process. The data-driven
multi-resolution, on the other hand, considers the data at different resolutions
decomposition techniques which are effective tools in the field of multi-resolution
signal analysis. The main advantages of using this multiple resolution framework
in the context of boosting are that they:

– allow systematic hierarchical modeling of the final target model.
– provide more flexibility by allowing the user to stop at a reasonable resolution

and thus avoid the over-fitting problem.
– require very few pre-defined user parameters.
– avoid the use of strong learners in the beginning stages of modeling and

progressively use them towards the end.

3 Problem Formulation

Let us consider N i.i.d. training samples D = (X , Y) consisting of samples
(X , Y) = (x1, y1), (x2, y2), .., (xN , yN ) where X ∈ R

N×d and Y ∈ R
N×1. For

the case of binary classification problems, we have yi ∈ {−1, +1} and for regres-
sion problems, yi takes any arbitrary real value. In other words, the univariate
response Y is continuous for regression problems and discrete for classification
problems. Now, we will discuss boosting algorithms applied to general classifi-
cation problems. We choose to demonstrate the power of scale-space kernels in
the context of Logitboost algorithm because of its popularity and its power of
demonstrating the additive modeling nature.

Each boosting iteration performs the following three steps: (1) Computes
response and weights for every datapoint. (2) Fits a weak learner to the weighted
training samples and (3) Computes the error and updates the final model. In
this way, the final model obtained by boosting algorithm is a linear combination
of several weak learning models.

In the case of classification problems, the penalty function induced by the
error estimation is given by:

L(yi, Ft(xi)) = I(yi �= F (t)(xi)) (1)
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where I denotes an indicator function which returns value 0, when yi �= F (t)(xi)
and 1 otherwise. In other words, the penalty term is 1 if the ith sample is mis-
classified and 0 if it is correctly classified. Whether it is a classification or a
regression problem, the main challenges in the boosting framework are the fol-
lowing: (i) The choice of the weak learner and (ii) The complexity of the weak
learner. While choosing a weak learner model can be a complicated task in itself,
tuning the right complexity for such a weak learner might be even more chal-
lenging. The multi-resolution framework proposed in this paper addresses the
second issue.

The boosting framework discussed above works for classification problems
and can be easily adapted to solve regression problems. In the case of regression
problems, the penalty function is given by:

L(yi, F
(t)(xi)) = ‖yi − F (t)(xi)‖p (2)

where ‖ · ‖p indicates the Lp norm. We will consider p = 2 (namely, the Eu-
clidean norm) in this paper. We formulate this multi-resolution boosting using
the standard boosting algorithm with exponential L2 norm loss function and
demonstrate empirical results on classification problems. In our previous work
[10], we have demonstrated the use of scale-space kernels in the data-driven
boosting framework on several regression datasets.

Algorithm 1. Model-driven Multi-Resolution Boosting
Input: Data (X ), No. of samples (N), No. of iterations (T ).
Output: Final model (F )
Algorithm:
Initialize the weight vector W (1) such that w1

i = 1/N for i = 1, 2, .., N
nplits = 1
for t = 1 to T do

[f̂0, err0] = Train(X , W (t), nsplits)
[f̂1, err1] = Train(X , W (t), nsplits + 2)
if err0 < err1 then

ft = f̂0 εt = err0

else
ft = f̂1 εt = err1

nsplits = nsplits + 1
end if
Compute αt = 1

2 ln
(

1−εt
εt

)

Modify the training weight w
(t+1)
i as follows:

w
(t+1)
i =

w
(t)
i · exp(−αtyift(xi))

zt

where zt is the normalization factor (chosen so that
∑N

i=1 w
(t+1)
i = 1)

end for
Output the final model F (X ) =

∑T
t=1 αtft(X )
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4 Multi-resolution Boosting Framework

We will now describe both the model-driven and data-driven multi-resolution
boosting algorithms. To demonstrate a reasonably wide applicability of the
multi-resolution framework, we implement our framework using both the ad-
aboost and logitboost algorithms. We show the model-driven multi-resolution
algorithm using the adaboost framework for classification problems and the data-
driven multi-resolution algorithm using the logitboost framework for regression
problems. Though, we chose to demonstrate in this setting, the proposed frame-
work is generic and can be applied to other additive modeling techniques used
for solving classification and regression problems.

4.1 Model-Driven Multi-resolution Boosting

In the model driven boosting framework, the complexity of weak learner is mod-
ified as the boosting iterations progress. Changing the complexity of the weak
model can be done in a very intuitive manner depending on the choice of the
weak learner. For example, if decision trees are used as a weak learner, the res-
olution can be changed by changing the number of levels in the decision tree
that is being considered. The initial boosting iterations use trees with only one
level (or decision stumps) and later on the resolution can be increased by in-
creasing the tree-depth. One has to note that the complexity of the modeling
(or classification boundary) is significantly increased by changing the resolution.
Algorithm 1 describes our model-driven multi-resolution boosting framework
using the adaboost algorithm for a binary classification problem. The weight
vector W is initialized to 1/N (uniform). The main algorithm runs for a prede-
fined number (T) of iterations. The procedure Train will obtain weak learner
(and the corresponding training error) using the weights W (t). The number of
splits (nsplits) is a parameter that determines the complexity of the model i.e.
the more the number of splits in the weak learner, the more the complexity of
the model. It is initialized to one at the beginning. As the iterations progress,
the complexity of the weak learner is either retained or incremented depending
upon the training error.

For every iteration, the training error of the current model is compared with
the error of a slightly complex model (with nsplits+2 nodes in the tree). If this
new model performs well, then the complexity of the current model is increased
(nsplits = nsplits + 2) and the re-weighting of the data points is computed
using this new model. The weights are normalized (so that they sum to one)
in every iteration. One can see that the algorithm appears to be working in a
similar manner to the traditional Adaboost, except for the fact that the choice
of the weak learner is made more systematically from simple to complex and
is not chosen arbitrarily as done in the standard boosting procedure. In this
manner, the algorithm increases the complexity of the weak learners chosen and
the final weighted combinations of the selected weak learners are used as the final
trained model. Hence, the model will have a very simple classification boundary
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in the initial stages and the boundary becomes more and more complex as the
iterations proceed.

4.2 Data-Driven Multi-resolution Boosting

In this section, we will describe the data-driven approach where we maintain the
same complexity of the weak learner, but change the number of data points to be
modeled during each boosting iteration. Algorithm 2 describes our data-driven
multi-resolution boosting framework for a regression problem. As mentioned ear-
lier, this approach is demonstrated using the logitboost algorithm. The initial
model is set to null or to the mean value of the target values. The main program
runs for a predefined number (T) of iterations. Initially, res is set to 1 indicating
the simplest model possible (which will consider all the data points). The feature
values are sorted independently by column-wise and the indices corresponding to
each column are stored. As the iterations progress, the resolution considered for
fitting the weak learner is retained or doubled depending on the error. In other
words, depending on the error obtained at a given iteration, the resolution of the
data is either maintained or increased for the next iteration. For every iteration,
the residual r is computed depending on the difference between the target value
(Y) and the final model (F ). By equating the first derivative of the loss function
to zero, we will set the residual as the data to be modeled during the next iter-
ation using another weak regressor. Using the quasi-Newton’s method the data
to be modeled in the next iteration will be set to − (I + 2rrT )−1 · r. The best
multivariate Gaussian model will be fitted to this data at a given resolution.

Theorem 4.1. During each boosting iteration, the minimum of the loss function
is achieved by setting f = r and the Newton’s update is chosen by setting f =
−(I + 2rrT )−1 · r.

Proof. We will discuss the derivations for the first derivative and the second
derivative and show the Newton updates in the case of the boosting for regression
problems. Consider the following exponential loss function:

L(y, F, f) = exp(‖ y − F − f ‖2)

For the Newton’s update equation, we need to compute the first and second
derivatives with respect to f(x) and evaluate them at f(x) = 0.

s(x) =
∂L(y, F, f)

∂f(x)
|f(x)=0 = 2exp(‖ r − f ‖)(r − f)|f=0 = 2 · exp(rT r) · r

Taking the derivative again, we have

H(x) =
∂2L(y, F, f)

∂f(x)2
|f(x)=0 = 2exp(‖ r − f ‖2) · I

+ 4exp(‖ r − f ‖2) · (r − f) · (r − f)T |f=0 = 2exp(rT r) · (I + 2rrT )
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Hence, the inverse of the Hessian becomes

H−1(x) =
(I + 2rrT )−1

2exp(rT r)

Finally, the Newton’s update is given as follows:

F (x) = F (x) − H(x)−1s(x) = F (x) − (I + 2rrT )−1 · r

Hence, we plug-in the value −(I + 2rrT )−1 · r as the regression value to be
modeled using the weak regressor. Also, we can notice that the minimum of the
loss function can also be obtained by equating the first derivative to zero.

2exp(‖ r − f ‖)(r − f) = 0 ⇒ r = f

In other words, by modeling the residual directly using the weak regressor,
the minimum of the loss function can be obtained. End of Proof

The details of the procedure bestfit which obtains the best weak model at a
given resolution of the data is described in the next section. The main reason for
retaining the resolution of the next iteration is that sometimes there might be
more than one significant component at that given resolution. One iteration can
model only one of these components. In order to model the other component, one
has to perform another iteration of obtaining the best weak model at the same
resolution. Increasing the resolution for the next iteration might fail to model
the component accurately. After ensuring that there are no more significant
components at a given resolution, our algorithm will increase the resolution
for the next iteration. Hence, the best weak model corresponding to current
resolution or next higher resolution is obtained at every iteration and the model
with the lowest error is added to the final model.

For every iteration, the best weak model is fit to the data based on a single
feature value at a given resolution. This is performed using the bestfit function
in the algorithm. One way of achieving the multi-resolution in this context is to
use scale-space kernel to model a subset of data and handling the data in a multi-
resolution fashion. The procedure bestgaussfit (instead of bestfit) performs this
task for a particular value of resolution. Additive modeling with smooth and
continuous kernels will result in smooth functions for classifier boundary and
regression functions. Gaussian kernels are a simple and a trivial choice for scale-
space kernels that are powerful universal approximators. Also, Gaussian kernels
allow generative modeling of a target function which is a good choice for many
applications like object detection. The basic idea is to slide a Gaussian window
across all the datapoints corresponding to each feature at a given resolution.
Algorithm 3 contains two loops. The outer loop ensures that the Gaussian fit
has to be computed for each feature and the inner loop corresponds to the
sliding Gaussian. In other words, depending on the given resolution (indicated
by n datapoints), a Gaussian kernel containing n datapoints is moved across all
the data points and the location where the minimal residual error is obtained.

The result f is obtained by fitting a Gaussian kernel computed using weighted
median (μ) and standard deviation (σ) for the datapoints within this window.
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Algorithm 2. Data-driven Multi-Resolution Boosting
Input: Data (X ), No. of samples (N), No. of iterations (T ).
Output: Final Model (F )
Algorithm:
set res = 1, F = ∅
for i = 1 : d do

[X̂ , idx(:, i)] =sort(X (:, i))
end for
for t = 1 : T do

r = L(Y, F )
[f̂0, err0] = bestfit(X̂ , r,N, d, res, idx)
[f̂1, err1] = bestfit(X̂ , r,N, d, res ∗ 2, idx)
if err0 < err1 then

F = F + f̂0

else
F = F + f̂1

res = res ∗ 2
end if

end for
return F

Algorithm 3. bestgaussfit
1: Input: Sorted feature data (X̂ ), No. of samples(N), No. of samples to fit Gaussian

(n), Residual vector (r), Sorting indices (idx).
2: Output: Best fit Regressor (f̂), Error (Errmin)
3: Algorithm:
4: Errmin =MAXDOUBLE
5: for i = 1 : d do
6: for j = 1 : N − n + 1 do
7: x̂ = X̂ (:, j : j + n − 1)
8: r̂ = r(idx(j : j + n − 1, i))
9: wgt(1 : n) = abs(r̂(1 : n))/sum(abs(r))

10: μ = Ewgt(x̂) = wgtT ∗ x̂
11: σ = sqrt(Ewgt((μ − x̂)2))
12: f =normpdf(X̂, μ, σ)
13: β =sum(r̂)/sum(f(j : j + n − 1))
14: err = (r − βf)T · (r − βf)
15: if err < Errmin then
16: Errmin = err
17: f̂ = f
18: end if
19: f = min(f̂(1 : d))
20: end for
21: end for
22: return {f, Errmin}
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After obtaining the weak learner it must be scaled (scale factor is β) according
to the target values. Finally, the error is computed between the weak learner and
the target values. If the error with the new model is improved, the resolution
is doubled (change at a logarithmic scale) or in other words, the number of
datapoints considered to fit a Gaussian is halved. In fact, we can use any other
heuristic to change the resolution more efficiently. Experimental results showed
that this change of resolution is optimal and also this logarithmic change of
resolution has nice theoretical properties as they mimic some of the wavelet
decomposition methods.

The multi-resolution aspect of our algorithm can be seen from the fact that
the resolution of the data to be modeled is either maintained or increased as the
number of iterations increase. In fact, one might interpret this approach as an
improvement in the weak learner alone because the algorithm proposed here will
obtain improved weak learner at every iteration and hence the overall boosting
will have faster convergence. We consider that the main contribution of this
paper is not just at the level of choosing a weak learner but it is at the junction
between the choice of weak learner and the iterations in the boosting algorithm.
Also, our algorithm obtains the weak models in a more systematic hierarchical
manner. Most importantly, the increase in the resolution is monotonically non-
decreasing, i.e. the resolution either remains the same or increased.

5 Experimental Results

We will now demonstrate our results on some real-world datasets. All experi-
ments were run in MATLAB 7.0 and on a pentium IV 2.8 GHz machine. Six dif-
ferent real world binary classification datasets were chosen from the UCI machine
learning repository [2]. Multi-class classification problems can also be performed
using methods similar to [1]. Two different sets of experiments were conducted
on these datasets to illustrate the power of multi-resolution boosting. In order
to demonstrate the model-driven framework, decision trees at multiple resolu-
tions (different number of levels in the decision tree) are considered, and in order
to demonstrate the data-driven framework, Gaussian kernels are considered for
fitting the data at multiple resolutions.

5.1 Results for Model-Driven Multi-resolution

Fig. 1 shows the test error results on different datasets during the boosting it-
erations. Comparisons are made between the standard Adaboost and the multi-
resolution boosting framework. We can see that the error obtained using the
multi-resolution boosting procedure is significantly lower compared to the stan-
dard procedure. This clearly illustrates the fact that the multi-resolution scheme
is less prone to the over-fitting problem. Under this framework, during the initial
iterations of boosting, decision stumps (trees with only one level of child nodes)
are used. As the iterations proceed, more deeper trees (with levels greater than
2) are used for modeling. This way, a hierarchical approach is used for comput-
ing the classification boundary from low resolution to high resolution. Using a
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(a) Sonar Dataset (b) Bupa Dataset

(c) Diabetes Dataset (d) Tic-Tac-Toe Dataset

Fig. 1. Test error during the boosting iterations on various datasets. The dashed line
gives the error obtained using the standard Adaboost algorithm and the solid line gives
the error obtained using the model-driven multi-resolution boosting algorithm.

high-resolution weak models will suffer from the problem of over-fitting. For ex-
ample, by using a tree with many levels in the first few iterations in the boosting
procedure might obtain a very complicated decision boundary which is prone to
the over-fitting problem. Also, it will be expensive to use complex trees from
the start of the boosting procedure when it is not required to have a complex
decision boundary.

5.2 Results for Data-Driven Multi-resolution

We demonstrate the power of data-driven multi-resolution approach using scale-
space kernels on binary classification problems. Additive modeling with smooth
and continuous kernels will result in smooth functions for classifier boundary and
regression functions. Since, obtaining the width of the kernel during the boosting
process can be a challenging task, the use of scale-space kernels can resolve the
problem by using adaptive step-sizes by a ‘global-to-local’ fitting process. One
cannot predetermine the reduction in the kernel width. In our multi-resolution
framework, we choose to reduce it by halves using the concepts of wavelet decom-
position methods which were well studied concepts in the context of handling
image operations efficiently. We compare the performance of these scale-space
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Table 1. Experimental results of Data-Driven Multi-Resolution boosting. Performance
of scale-space kernels with other kernels on various real-world datasets. Test error along
with the standard deviation using five-fold cross validation procedure is reported.

Dataset Cancer Ionosphere Sonar Bupa Tic-Tac-Toe Diabetes

Number of Samples 569 351 208 345 958 768

Number of Features 30 34 60 6 9 8

static kernel -n/2 0.1938±0.05 0.3647± 0.08 0.6632± 0.13 0.8785± 0.08 0.6947± 0.04 0.6765± 0.06

static kernel -n/4 0.1993 ±0.03 0.333 ±0.08 0.6697±0.07 0.9156 ± 0.11 0.5725± 0.02 0.6419±0.06

static kernel -n/8 0.244± 0.09 0.4118± 0.1 0.9148± 0.13 0.9453± 0.06 0.5644 ± 0.02 0.657±0.019

static kernel -8 0.7638 ±0.07 0.503 ±0.06 1.144 ± 0.15 0.9384± 0.11 0.5662± 0.03 0.7487±0.06

Dynamic kernel 0.1898± 0.03 0.3553 ± 0.06 0.7543± 0.09 0.869 ±0.05 0.5726± 0.03 0.6676±0.07

Exhaustive kernel 0.2325± 0.06 0.4243 ± 0.12 0.8068±0.30 0.9643± 0.12 0.5624±0.04 0.6546 ±0.07

Scale-space kernel 0.1895 ± 0.04 0.3371± 0.09 0.7125± 0.14 0.8962 ± 0.13 0.5603± 0.038 0.6386± 0.05

kernels with other static and dynamic kernels. Exhaustive kernel is the most
expensive one which tries to fit a kernel of various widths during each iteration
of boosting. Dynamic kernel (or random kernel) fits a kernel of random width
during the boosting process. Static kernels will have static widths that do not
change during the boosting process.

Compared to other static kernels of fixed width, the scale-space kernels do not
suffer from the generalization problem as clearly illustrated by the results on the
test data shown in Table 1. Scale-space kernels consistently perform better than
the exhaustive or dynamic kernels. For some datasets, wider static kernels perform
better than the scale-space kernels and for other datasets static kernels with lesser
width perform better. However, scale-space kernels are competitive with the best
possible kernels and can be generically used for any dataset. Overall, the scale-
space kernels are less than twice as expensive as the static width kernels. One can
also see that the results of the scale-space kernels are fairly robust compared to
other kernels. This multi-resolution framework will provide a systematic hierar-
chical approach of obtaining the classification boundary in the context of addi-
tive modeling. One of the main reasons for using the scale-space framework is for
faster convergence of the results by dynamically choosing the weak regressors dur-
ing the boosting procedure. Choosing an optimal weak regressor by exploring all
possibilities might yield a better result, but it will be computationally inefficient
and infeasible for most of the practical problems. For such problems, scale-space
kernels will give the users with a great flexibility of adaptive kernel scheme at a
very low computational effort (also considering fast convergence). The fact that
the scale-space kernels converge much faster than static kernels make them more
suitable for additive modeling algorithms. To the best of our knowledge, this is the
first attempt to use the concepts of scale-space theory and wavelet decomposition
in the context of boosting algorithms for predictive modeling.

6 Conclusion

Recently, additive modeling techniques have received a great attention from
several researchers working in a wide variety of applications in science and en-
gineering. Choosing optimal weak learners and setting their parameters dur-
ing the modeling have been a crucial and challenging task. In this paper, we
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proposed a novel boosting algorithm that uses multi-resolution framework to
obtain the optimal weak learner at every iteration. We demonstrated our re-
sults for logitboost based regression problems on real-world datasets. Advan-
tages of our method compared to existing methods proposed in the literature is
clearly demonstrated. As a continuation of this work, we would like to perform
the generalization of the multi-resolution approach for other ensemble learning
techniques.
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