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Abstract

Symbolic regression (SR) is a challenging task in machine learning that involves
finding a mathematical expression for a function based on its values. Recent
advancements in SR have demonstrated the effectiveness of pre-trained transformer
models in generating equations as sequences, leveraging large-scale pre-training on
synthetic datasets and offering notable advantages in terms of inference time over
classical Genetic Programming (GP) methods. However, these models primarily
rely on supervised pre-training objectives borrowed from text generation and
overlook equation discovery goals like accuracy and complexity. To address this,
we propose TPSR, a Transformer-based Planning strategy for Symbolic Regression
that incorporates Monte Carlo Tree Search planning algorithm into the transformer
decoding process. Unlike conventional decoding strategies, TPSR enables the
integration of non-differentiable equation verification feedback, such as fitting
accuracy and complexity, as external sources of knowledge into the transformer
equation generation process. Extensive experiments on various datasets show
that our approach outperforms state-of-the-art methods, enhancing the model’s
fitting-complexity trade-off, extrapolation abilities, and robustness to noise 1 .

1 Introduction
Symbolic regression (SR) is a powerful method to discover mathematical expressions for governing
equations of complex systems and to describe data patterns in an interpretable symbolic form. It finds
extensive applications in science and engineering, enabling the modeling of physical phenomena
in various domains such as molecular dynamics, fluid dynamics, and cosmology [1–6]. Symbolic
representations provide valuable insights into complex systems, facilitating a better understanding,
prediction, and control of these systems through the design of accurate, generalizable, and efficient
models [7–9]. SR models establish the functional relationship between independent and target vari-
ables by mapping them to mathematical equations. The input data can be obtained from simulations,
experimental measurements, or real-world observations. Symbolic regression, however, poses several
challenges, including the combinatorial nature of the large optimization search space, vulnerability to
the quality of input data, and the difficulty of striking a balance between model fitting, complexity,
and generalization performance [10, 11].

Symbolic regression encompasses a wide range of methods, spanning different categories. Traditional
approaches, such as Genetic Programming (GP), use a heuristic population-based search strategy
where each individual represents a potential solution to the problem [12, 13]. Though GP algorithms
are capable of finding solutions for nonlinear and complex problems, they are typically slow to
converge due to the vast functional search space. Also, as they need to start the search from scratch
for each dataset, they tend to be computationally expensive, prone to overfitting, and sensitive to the
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Figure 1: Pareto plot comparing the rankings of all methods in terms of the R2 performance and
identified equation complexity for (a) SRBench Black-box datasets and (b) Feynman datasets.
Our results with Transformer-based Planning (TPSR) applied on top of E2E transformer SR model
improves its average accuracy on both data groups while maintaining a similar range of equation
complexity. TPSR can successfully reach the first Pareto-front which is better than E2E baseline on
both data groups. Connecting lines denote Pareto dominance rankings, colors denote the families of
models, and "∗" indicates SR versus ML methods in Black-box datasets.

choice of parameters [14]. Recent works in SR have shown promising results by using pre-trained
transformers [15] for generating equations as sequences of tokens. These models leverage the prior
knowledge learned through large-scale pre-training and can generate equations with a single forward
pass, leading to considerably faster inference time compared to the GP-based methods [16–19].
However, one of the limitations of these models is that they focus on the supervised language model
pre-training objective borrowed from text generation, i.e., they are trained solely with the token-level
cross-entropy loss, which can result in equations that may exhibit high token-level similarities but
are suboptimal with respect to equation discovery objectives such as fitting accuracy and complexity
which are critical in this task. To mitigate this issue, beam search [20, 21] or sampling [22] approaches
have been employed as decoding strategies to propose multiple candidate equations for a given dataset,
and then select the optimal candidate equation based on the fitting accuracy after optimizing for
constants. Nonetheless, both beam search and sampling decoding strategies primarily rely on the pre-
trained transformer’s logits and next token probabilities, and therefore do not receive any performance
feedback during the generation of equation candidates.

To consider the equation discovery objectives in the transformer generation process and still benefit
from the pre-trained model logits, we propose TPSR, a Transformer-based Planning strategy for
Symbolic Regression. TPSR leverages a lookahead planning algorithm, using Monte Carlo Tree
Search (MCTS) as a decoding strategy on top of pre-trained transformer SR models to guide equation
sequence generation. TPSR significantly improves performance of the discovered equations by
considering verification feedback during the generation process and still remains considerably faster
than GP-based models which do not leverage the pre-training priors and learn expressions for each
dataset from scratch. Notably, our approach is model-agnostic and can be applied to any pre-trained
SR model, enabling optimization of generated equation sequences for non-differentiable objectives
that may encompass combinations of fitting accuracy, complexity, and equation forms. Additionally,
we incorporate different caching mechanisms to reduce the overall inference time. Our experimental
results demonstrate that applying TPSR on top of the pre-trained E2E SR model [18] significantly
enhances its performance across various benchmark datasets. As depicted in Fig. 1, TPSR achieves a
strong balance between fitting accuracy and model complexity compared to other leading baselines.
It also effectively drives the E2E model towards the optimal trade-off, represented by the first Pareto
front. The major contributions of this work are summarized below:

• Proposing TPSR, a new method that combines pre-trained transformer SR models with Monte
Carlo Tree Search (MCTS) lookahead planning to optimize the generation of equation sequences
while considering non-differentiable performance feedback.

• Developing a new reward function that balances equation fitting accuracy and complexity to
optimize the generated equations for an effective trade-off.
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• Demonstrating that TPSR consistently outperforms state-of-the-art baselines across various SR
benchmark datasets, generating equations with higher fitting accuracy while maintaining lower
complexity to avoid non-parsimonious solutions. TPSR still achieves considerably faster inference
time than GP-based models which do not use pre-trained priors.

• Showcasing the extrapolation and noise robustness of TPSR compared to the baseline and conduct-
ing an ablation study to investigate the impact of various model components.

2 Related Work
Symbolic Regression without Learned Priors. Genetic Programming (GP) algorithms are typ-
ically employed for single-instance SR, aiming to find the best-fit equation for a "single" dataset
at hand [12]. Recently, alternative neural network-based search algorithms have been explored,
including deep reinforcement learning (RL) [14, 23, 24], combinations of GP and RL [25], and
Monte Carlo Tree Search (MCTS) as a standalone framework [26]. Despite their successes, all these
methods lack the benefits of prior knowledge learned from large-scale pre-training. Consequently,
they are slow during inference as they need to restart the search from scratch for new datasets.

Pre-trained Transformers for Symbolic Regression. In recent years, pre-trained transformers
have shown remarkable performance in natural language and programming language tasks [27–
29]. This success has inspired researchers to develop pre-trained transformer models for SR [16–
19, 30]. For example, Biggio et al. [16] introduced a Neural Symbolic Regression model that scales
(NeSymReS) with the amount of synthetic training data and generates equation skeletons where
all the numerical constants are represented by a single token “C”. Kamienny et al. [18] proposed
an end-to-end transformer SR framework that predicts the complete equation form along with its
constants. More recent works [30, 31] introduced unified frameworks that include a transformer-
based pre-training stage as the prior for subsequent RL or GP optimization steps. While GP and
RL methods have to start anew for each problem, the transformer approaches rely on synthetic
data and the power of large-scale pre-trained priors to generate equations in a single forward pass.
However, these models are pre-trained on token-level language modeling loss function and thus can
perform suboptimal for other equation discovery objectives critical in SR such as fitting accuracy to
the observed data as well as equation’s complexity. Our model, TPSR, utilizes lookahead planning
to guide the generation of equations towards better performance by employing these objectives as
feedback during the transformer generation process.

Planning in Sequence Generation. Recently, planning algorithms have been utilized in NLP tasks
to optimize text output for specific objectives, such as controlling generated text to meet certain
constraints like non-toxicity or conveying certain emotions [32–34]. Recent advances in programming
language models developed in code generation have also yielded promising techniques that could
be adapted for SR, as they share several vital similarities with each other. Both involve generating
sequences of symbols for a given input and typically require optimizing the generated sequences
for specific criteria which is different from the pre-trianing objective. For code generation, this
may involve optimizing objectives like code compilability, readability, or passing test cases [35–37].
Similarly, in SR, the focus may be on equation-specific sequence-level objectives such as fitting
accuracy or minimizing complexity. Motivated by these successes, we develop an approach that
combines MCTS planning with pre-trained transformer SR models for improved equation discovery.

3 Methodology
3.1 Preliminaries
In SR, the main goal is to find a symbolic expression for the unknown function f(·) mapping the
d-dimensional input x ∈ Rd to the target variable y = f(x) ∈ R. Given a dataset of n observations
D = (xi, yi)

n
i=1, SR methods try to generate an equation f̃(·) such that yi ≈ f̃(xi) for all i ∈ Nn.

Also, the proposed equation is desired to generalize well and to effectively balance the fitting accuracy
and complexity. The transformer SR models are trained on a large-scale dataset comprising equation
instances paired with their corresponding observations, {(D1, f1(·)) . . . (DM , fM (·))}, where M
is the dataset size (number of paired samples). During inference, the trained model directly generates
the equation f̃(·) as a sequence of tokens in an autoregressive manner. An effective way to represent
the expression tree of equations in a sequence is to use prefix notation as in [38]. For embedding the

3



Figure 2: An overview of our proposed method with MCTS-guided decoding at inference compared
to the concurrent works with beam search/sampling decoding strategy.

observations, we adopt the pre-trained SR model backbone from [18]. Notably, given the potential for
large input sequences with tokenized numeric data and the quadratic complexity of transformers, the
method introduced in [18] deploys a linear embedder module to map tokenized inputs to a singular
embedding space before introducing them to the transformer encoder and decoder. Subsequent to
embedding, these models encode the input observations and then pass the encoded representation
along with the masked tokens to decode the equation sequence. To train the model, token-level
cross-entropy loss with teacher forcing is employed to learn the distribution of next token prediction
conditioned on the encoded dataset and the current state of sequence (Fig. 2(a)).

Achieving a good fitting performance from the model’s predicted sequence demands generating
accurate constants in the equation. To address this, the generated skeleton or equation can un-
dergo a round of optimization to estimate their constants using nonlinear methods, such as Broy-
den–Fletcher–Goldfarb–Shanno algorithm (BFGS) [39]. Previous works [18, 16] employ beam
search and sampling strategies for transformer decoding in combination with constant optimization
to propose several candidate equations. Subsequently, they use fitting metrics such as R2 to order
these candidates and output the final equation with the best performance (Fig. 2(b)). Transformer
models utilizing beam search or sampling decoding strategies can generate multiple high-likelihood
equation sequences, but their generation process is based on logits obtained from model parameters
pre-trained with token-matching loss relative to the reference equation. As a result, such models lack
the capability to receive verification feedback during generation and optimize sequence for equation
discovery objectives such as fitting or complexity of equations.

3.2 MCTS-Guided Equation Generation
To generate equations that are both better-fitting and less-complex, it is crucial to incorporate feedback
into the equation generation process. To achieve this, we utilize Monte Carlo Tree Search (MCTS)
lookahead planning during inference, guiding the decoder towards optimal solutions for fitting and
complexity objectives (as shown in Fig. 2(c)). The MCTS-guided transformer decoding explores
different possibilities, identifying the most promising paths based on the objectives.

We frame the SR equation generation task as a Markov Decision Process (MDP) where state s
represents the current sequence at generation step (token) t. If s has not reached the terminal state
(i.e., the <EOS> token), we select the next token from the vocabulary as action a, updating state s′ by
concatenating s and a. Upon reaching the terminal state, the reward r is computed and used to update
the decoding model. MCTS represents states as nodes and actions as edges within a tree structure,
navigating state-space from the root node (i.e., initial state) to reach terminal states with maximum
rewards. MCTS balances exploration and exploitation, considering nodes that lead to higher quality
equations (i.e., higher Q-values) and under-explored nodes (i.e., those with fewer visits). During
the generation process of the transformer, we utilize the MCTS algorithm iteratively to conduct
lookahead planning and determine the next token. However, the large search-space requires more
than the sole application of MCTS to discover high-quality equations. We need to effectively share
information between the pre-trained transformer model and MCTS for better generations. To achieve
this, we incorporate the probabilities of the next-token that are acquired through the pre-trained
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Figure 3: Overview of TPSR’s key steps: Selection, Expansion, Evaluation, and Backpropagation.
MCTS-guided lookahead planning in decoding interacts with the pre-trained transformer SR model
in the expansion and evaluation steps employing the transformer top-k sampling and beam search,
respectively. The designed reward is used to guide the backpropagation.

transformer SR models into the MCTS planning process. This incorporation helps to enhance the
search process, leading to more efficient and effective results. The key steps of MCTS for transformer
decoding in SR models, as depicted in Fig. 3, are as follows:

Selection. The Upper Confidence Bound for Trees [40] criterion is employed to select actions (i.e.,
next tokens) for fully extended nodes in the search tree, balancing exploration and exploitation. We
use the P-UCB heuristic [41] as

P-UCB(s, a) = Q(s, a) + β · Pθ(a|s) ·

√
ln (N(s))

1 +N(s′)
, (1)

where Q(s, a) is the maximum return for action a in state s across all simulations, promoting the
exploitation of the optimal child node. The second term encourages exploration of less-visited
children, with N(s) as state s’s visit count and s′ as the subsequent state. Pθ(a|s) is the probability of
the next token a given the partial sequence state s from pre-trained transformer model parameterized
by θ. The exploration-exploitation trade-off is adjusted by hyperparameter β. Lastly, the next token
action maximizes the P-UCB: Select(s) = argmaxa P-UCB(s, a).

Expansion. In the expansion stage, after selecting a node that is not fully expanded, a new child
(next token) for the current state is explored. Random expansion of the node from the vocabulary,
however, might result in an invalid equation (that does not comply with the prefix notation) and
makes the search process very time-consuming. Therefore, given partial equations, only top-k most
likely choices of the next token are considered as the possible children of the node for expansion. In
other words, we are restricting the actions to be only from the top-k high-likelihood options which
are retrieved from the pre-trained transformer SR model’s logits. These options are then ordered to
determine the sequence in which the children will be expanded.

Evaluation. To evaluate the newly expanded nodes, we perform simulations to complete the equation
sequence. This is necessary because the new state may still be a partial equation and performance
feedback can only be obtained at the end of the sequence when the equation generation is completed.
In MCTS, it is common to employ random actions during the simulation stage. Nevertheless, random
action selection for equation generation, much like during expansion, suffers from certain drawbacks
in terms of time and the possibility of generating invalid equations. Consequently, the pre-trained
transformer SR model is invoked again, this time utilizing beam search with a beam size of b, to
generate complete equation candidates based on the current state. The beam size b determines the
number of complete equations to be generated from the current partial equation. Following these
simulations, the highest reward among all the complete equation candidates is assigned to the new
node value.

Backpropagation. After generating a complete equation f̃(·), the corresponding reward r(f̃(·)) can
be computed. The highest reward among all simulations is then assigned to the new node, which
recursively backpropagates its estimated value to its parents until it reaches the root of the tree. This
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update process involves updating the Q values of all state-action pairs, denoted as s′ and a′, along the
trajectory in the tree to reach the root. Specifically, for each state-action pair, the Q value is updated
by taking the maximum of the current Q value and the new value r: Q(s′, a′)← max (Q(s′, a′), r).
More details on TPSR, including its steps and implementation can be found in Appendix C.

3.3 Reward Definition
We define a numerical reward r ∈ R to evaluate complete equation candidate f̃(·), promoting
fitting accuracy and regulating complexity. After optimizing constants in the complete sequence,
we compute the reward. We first calculate the normalized mean squared error (NMSE) between
ground-truth target variable y and predicted target variable ỹ = f̃(x), and formulate the reward as:

r(f̃(·)|x, y) = 1

1 + NMSE(y, f̃(x))
+ λ exp(− l(f̃(·))

L
), (2)

where l represents equation complexity as the sequence length in prefix notation [18, 42, 16]; L
denotes the model’s maximum sequence length; and λ is a hyperparameter balancing fitting and
complexity reward terms. Higher λ values favor less complex equations, encouraging best-fitting
and penalizing non-parsimonious solutions. NMSE is calculated as ( 1n

∥∥y − f̃(x)
∥∥2
2
)/( 1n

∥∥y∥∥2
2
+ ϵ),

where ϵ is a small constant to prevent numerical instability.

3.4 Efficient Implementation with Caching

Figure 4: An illustration of caching mechanisms
in TPSR.

During MCTS evaluation, the transformer model
generates complete equation sequences from a
given state, constructing implicit tree structures
for beam search and computing top-k next tokens
for visited states. These computations are required
in future MCTS iterations, so we employ two
caching mechanisms, top-k caching and sequence
caching, to reduce redundancy and improve effi-
ciency. Top-k caching stores computed top-k val-
ues for given states. For example, in Fig. 4, when
evaluating state s = [+, sin] in MCTS iteration t,
top-k tokens are computed for s and subsequent
visited states, such as [+, sin, x2]. State and top-k
value pairs are cached for future use, avoiding re-
dundant token retrieval. Sequence caching caches complete equations generated with the provided
beam size. If a state matches a stored equation partially, the cached equation can be used directly in
future iterations, bypassing iterative sequence generation. Both caching strategies are designed to
enhance efficiency without compromising performance. More details are provided in Appendix C.

4 Experiments
In this section, we present our experimental results that evaluate the effectiveness and efficiency of
TPSR. While the proposed decoding strategy is generally model-agnostic, here we showcase the
results of using TPSR for the end-to-end (E2E) pre-trained SR transformer backbone [18], as E2E
is the state-of-the-art open-source pre-trained SR model with publicly accessible model weights.
Additional results of using TPSR with the NeSymReS pre-trained SR backbone [16] can be found in
Appendix D.4. We evaluate our framework by answering the following research questions (RQs):

RQ1. Does TPSR perform better than other decoding strategies (beam search/sampling) and
competing baseline methods over standard SR benchmark datasets?

RQ2. Does TPSR provide better extrapolation and robustness to noise?

RQ3. Are TPSR’s caching mechanisms effective in reducing computation time?

RQ4. What is the role of individual components in TPSR’s overall performance gain?
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Table 1: Performance of TPSR compared with beam search and sampling decoding strategies on the
SRBench [42] and In-domain Synthetic [18] datasets.

Data Group Model Feynman Strogatz Black-box

↑ R2 > 0.99 ↓ Complexity ↑ R2 > 0.99 ↓ Complexity ↑ R2 ↓ Complexity

SRBench

E2E+Beam 0.815 54.19 0.357 53.21 0.847 83.61
E2E+Sampling 0.848 50.73 0.357 50.14 0.864 82.78

TPSR (λ=0) 0.952 84.42 0.928 82.78 0.938 129.85
TPSR (λ=0.1) 0.949 57.22 0.785 56.14 0.945 95.71
TPSR (λ=0.5) 0.924 50.01 0.714 47.02 0.931 82.58
TPSR (λ=1) 0.916 47.24 0.571 43.42 0.924 79.43

Data Group Model ↑ R2 > 0.99 ↑ R2 ↑ Acc0.1 ↑ Acc0.01 ↑ Acc0.001 ↓ Complexity

In-domain

E2E+Beam 0.657 0.782 0.461 0.298 0.2 38.37
E2E+Sampling 0.640 0.794 0.472 0.332 0.208 39.82

TPSR (λ=0) 0.702 0.828 0.550 0.416 0.333 67.11
TPSR (λ=0.1) 0.708 0.833 0.514 0.326 0.213 40.31
TPSR (λ=0.5) 0.697 0.830 0.459 0.274 0.184 36.55
TPSR (λ=1) 0.691 0.827 0.439 0.271 0.176 35.67

4.1 Datasets
We evaluate TPSR and various baseline methods on standard SR benchmark datasets from Penn
Machine Learning Benchmark (PMLB) [43] studied in SRBench [42], as well as In-domain Synthetic
Data generated based on [38, 18]. The benchmark datasets include 119 equations from Feynman
Lectures on Physics database series2 [44], 14 symbolic regression problems from the ODE-Strogatz
database3 [45], and 57 Black-box4 regression problems without known underlying equations. We
limit the datasets to those with continuous features and input dimension d ≤ 10, as the transformer SR
model [18] is pre-trained with dmax = 10. The In-domain Synthetic Data consists of 400 validation
functions with different levels of difficulty and number of input points. This data is referred to as
"in-domain" because the validation functions and their corresponding input points are generated using
the same approach as the data on which the backbone transformer model [18] is pre-trained. More
details on each of these datasets are provided in Appendix A.

4.2 Evaluation Metrics
We evaluate our model using the following three metrics: R2 score [42], accuracy to tolerance ω
[16, 46], and equation complexity [18, 42].

R2 = 1−
∑Ntest

i (yi − ỹi)
2∑Ntest

i (yi − ȳ)2
, Accω = 1( max

1≤i≤Ntest

∣∣∣∣ ỹi − yi
yi

∣∣∣∣ ≤ ω), Complexity =
∣∣∣T (f̃(·))∣∣∣ ,

where R2 measures fitting performance with ȳ as the mean of y in test set, Accω evaluates equation
precision based on tolerance threshold ω, and equation complexity is determined by the number of
nodes in the expression tree T of the generated equation f̃(·). Following [18, 42], we set R2 = 0 for
rare pathological examples and discard the worst 5% predictions for Accω to reduce outlier sensitivity.

4.3 (RQ1) Effectiveness of TPSR
Table 1 presents the performance comparison results of TPSR with the baseline decoding strategies
on the SRBench benchmark and the In-domain synthetic dataset. For the E2E baseline, we use the
settings reported in [18], including beam/sample size of C = 10 candidates, and the refinement of
all the candidates K = 10. For our model, we use the width of tree search as kmax = 3, number
of rollouts r = 3, and simulation beam size b = 1 as the default setting. For PMLB datasets that
contain more than 200 points, we follow [18] and use B bags of data, each containing N = 200
points, due to the limitation that the baseline method is pre-trained with N ≤ 200 data points. In the
baseline method [18], a total of BC candidates are generated (C candidates for B bags), which are
then sorted and refined to generate the best equation. However, for TPSR, since we need to train an
MCTS for each bag, we use an iterative decoding approach, starting with the first bag and continuing

2https://space.mit.edu/home/tegmark/aifeynman.html
3https://github.com/lacava/ode-strogatz
4https://github.com/EpistasisLab/pmlb/tree/master/datasets
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Figure 5: Performance comparison of TPSR and SRBench algorithms in terms of Accuracy-
Complexity-Time on Feynman (top) and Black-box (bottom) datasets. For Feynman dataset, al-
gorithms are sorted based on mean accuracy defined as the ratio of solutions with R2 > 0.99 on
test set under various noise levels, and for Black-box dataset, the algorithms are sorted based on the
median R2 score on test set. TPSR demonstrates a strong balance of performance with relatively
low model complexity and lower inference time compared to GP-based algorithms. The error bars
represent the 95% confidence interval and "∗" refers to SR methods for Black-box dataset.

with subsequent bags until a criterion (R2 > 0.99) is met or we use a maximum of B = 10 bags.
To ensure a fair comparison, we use B = 10 for the E2E baseline method as well. In this table, we
demonstrate the results of our proposed framework, TPSR, with varying values of the λ parameter
that controls the trade-off between fitting performance and complexity in the hybrid reward function
defined in Eq. (2). For a detailed comparison of the experimental settings across different approaches,
refer to Table 2 in Appendix B.

As shown in Table 1, when λ = 0, the framework generates complex equations that overoptimize for
fitting performance. However, as we increase λ, the framework generates less complex equations
with a slight reduction in fitting performance. Notably, even for large values of λ, such as λ = 1,
the fitting performance of TPSR significantly outperforms that of the baseline methods. Based on
the results, we recommend a default setting of λ = 0.1 as it offers a balanced trade-off between
complexity and accuracy, while also mitigating potential overfitting (as detailed in Appendix D.1).
These findings demonstrate the superiority of TPSR over the baseline methods in terms of fitting
performance across all datasets, while generating equations with comparable or reduced complexity
than those generated by the baseline methods. Table 1 shows that TPSR exhibits a more significant
gap in fitting performance when compared to E2E baselines on SRBench datasets, while this gap is
smaller for In-domain datasets (even performing slightly worse on Accω for larger λ = 0.5, 1). This
is due to the In-domain dataset being generated using the same approach as the E2E pre-training data,
resulting in the E2E model’s superior performance on this synthetic dataset. Furthermore, qualitative
comparisons of TPSR with baseline symbolic and black-box regression models demonstrate the
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Figure 6: TPSR with λ ∈ {0, 0.1, 0.5, 1} compared to E2E for (a) Extrapolation performance
where in-domain accuracy is shown for different input sampling variance (σ), and (b) Robustness to
noise, where mean accuracy (R2 > 0.99) is shown for various target noise levels (γ).

superior performance of TPSR in learning the underlying equation and out-of-domain extrapolation
(see Appendix D.3).

Fig. 5 presents a detailed comparison of our proposed TPSR with the baseline E2E transformer
model and all the SRBench baselines on the PMLB Feynman and Black-box datasets. This figure
illustrates the relative position of each algorithm with respect to (1) fitting performance, (2) model
complexity, and (3) inference time. The results indicate that transformer-based planning in the TPSR
significantly enhances the performance of E2E and outperforms even the state-of-the-art GP baselines,
achieving the highest fitting performance on the black-box datasets. This is achieved while the
complexity of the generated equations in TPSR is not greater than that of E2E, and shows a great
fitting-complexity-time balance compared to other SR algorithms. The pareto plots provided in Fig. 1
and Appendix D.2 also demonstrate the effectiveness of TPSR in balancing fitting-complexity as well
as fitting-time compared to all other SRBench baselines. Our TPSR effectively pushes this balanced
performance to the first pareto front for both the Feynman and Black-box datasets. Moreover, it is
important to note that, while the inference time of TPSR is longer than the baseline E2E transformer
model, it still has significantly lower inference time than RL or GP-based SRBench baselines. Further
results on the SRBench and In-domain datasets are provided in Appendix D.

4.4 (RQ2) Extrapolation and Robustness
The ability to extrapolate well is inherently linked to the quality of the equations discovered through
symbolic regression. To investigate the extrapolation performance of TPSR to out-of-training regions,
we normalize the input test data points to different scales (σ) instead of unit variance (used for
training points) as per [18]. Fig. 6(a) depicts the average performance of TPSR compared to E2E with
sampling decoding on the training data as well as testing data in scales of σ ∈ {1, 2, 4, 8, 16} for the
In-domain Synthetic dataset. Also, we investigate the effect of different complexity controlling levels
(λ ∈ {0, 0.1, 0.5, 1.0}) on the extrapolation performance. It can be observed that, while λ = 0 (i.e.,
no complexity regularization) achieves the best fitting accuracy on the training data, it has a sub-par
performance for σ > 8. This can be due to the overfitting issue when the symbolic model is much
more complex than the true function, similar to the common overfitting issue in ML models. Results
highlight the importance of controlling complexity in the extrapolation of identified equations. For
values of λ > 0, the overfitting issue is mitigated as the generated equations become less complex.
However, very high values of λ (e.g., λ = 1) mostly result in poor accuracy performance. The
flexibility of TPSR for allowing different values of λ to balance fitting and complexity for a given
task is crucial for optimal performance. Fig. 6(b) also presents the robustness of TPSR with different
λ levels compared to the E2E transformer baseline on the Feynman dataset. The results indicate that
MCTS-guided lookahead planning can offer robust performance with a smaller drop in accuracy
compared to the baseline in the presence of noise.

4.5 Ablation Study
In this section, we investigate the effect of different MCTS parameters and caching mechanisms on
the performance of TPSR by conducting ablation experiments on the Feynman datasets.
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Figure 7: Ablation study on the modules and parameters of TPSR. (a) Effect of caching mechanisms:
Sequence caching and top-k caching improve the inference time of TPSR (λ = 0.1). (b) Efficiency
and parameters of TPSR: Average accuracy of TPSR (varying model parameters), and baseline
E2E (varying sampling size) across number of generated candidates.

(RQ3) Caching Mechanisms. In Fig. 7(a), we illustrate the effectiveness of the sequence and top-k
caching mechanisms in reducing the total inference time of TPSR (λ = 0.1). Our experiments show
that sequence caching has more effect in dropping the inference time as it replaces the time-consuming
sequence generation process. Overall, these two mechanisms can reduce the total inference time by
around 28%.

(RQ4) Search Parameters. Fig. 7(b) shows the accuracy performance against the number of
generated equations during the decoding process for both TPSR (λ = 0.1) and the baseline E2E with
sampling decoding. In this figure, the ‘number of generated equation candidates’ represents the total
number of complete equation sequences generated by each method. Specifically, this refers to the
sample size in the E2E with sampling decoding, and the function calls of the beam search sub-routine
multiplied by beam size b in TPSR. The results show that under the same number of generated
equation candidates, TPSR significantly outperforms the E2E baseline. This is primarily attributed to
the fact that the E2E baseline is deprived of any performance feedback during the equation generation
process. We report the results for variants of TPSR with different MCTS parameters. We assess
the performance with varying number of rollouts, r = {1, 3, 6, 9}, number of beams in simulations,
b = {1, 3}, and the maximum number of possible expansions at each state, kmax = {2, 3, 4}.
The default setting of TPSR parameters are b = 1, kmax = 3, and r = 3. Results indicate that
increasing r, kmax, and b all contribute to the better performance of TPSR, with the most significant
improvement observed when increasing r. This is because more rollouts provide model with more
opportunities to learn from trials and learn better values.

5 Conclusion
In this work, we propose TPSR, a model-agnostic decoding strategy for symbolic regression that
leverages the power of pre-trained SR transformer models combined with MCTS lookahead planning,
and outperforms the existing methods in generating equations with superior fitting-complexity-time
trade-off. We demonstrate the flexibility of TPSR in controlling discovered equation complexity
without fine-tuning the pre-trained model. We also show that TPSR performs 100x faster than
state-of-the-art genetic algorithms by leveraging the pre-trained priors. Additional results show that
better expressions obtained with lookahead planning can further improve model performance in terms
of noise robustness and extrapolation to unseen data. Future research could focus on enhancing the
adaptability of feedback-based expression generation mechanisms, potentially by modulating the
flexibility of MCTS or transformer model weights, and the integration of MCTS with the training
or fine-tuning of transformer SR models. Furthermore, employing parallelization and distributed
computing could potentially improve planning efficiency.
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Appendix

A Dataset Details
We evaluate TPSR and several baseline methods on the following four standard benchmark datasets:
Feynman, Black-box, and Strogatz from SRBench [42], and In-domain Synthetic Data generated
based on [18]. More details on each of these datasets are given below.

Feynman5: This dataset contains 119 equations sourced from Feynman Lectures on Physics database
series [44]. The regression input points (x, y) from these equations are provided in Penn Machine
Learning Benchmark (PMLB) [42, 43] and have been studied in SRBench [42] for the symbolic
regression task. The input dimension is limited to d ≤ 10 and the true underlying function of points
is known. We split the dataset into B bags of 200 input points (when N is larger than 200) since the
transformer SR model is pretrained on N ≤ 200 input points as per [18].
Strogatz6: This dataset comprises 14 symbolic regression problems sourced from the ODE-Strogatz
database [45] for nonlinear dynamical systems. The input points for these problems are included in
PMLB [43] and have been examined in SRBench [42] for symbolic regression. The input dimension
for these problems is restricted to d = 2 and the true underlying functions are provided.
Black-box7: The black-box regression datasets from PMLB [43] are used for the symbolic regression
task and studied in SRBench [42] among various baselines. The aim of SR study on these black-box
datasets is to find an interpretable model expression that fits the data effectively. We limit the datasets
to those with continuous features and input dimension d ≤ 10, as the transformer SR model [18] is
pretrained with dmax = 10. In total, there are 57 black-box datasets that consist of real-world and
synthetic datasets with varying levels of noise.
In-domain Synthetic Data: Following [18], we construct a fixed validation set consisting of 400
equation examples in which the validation functions were uniformly distributed across three different
difficulty factors: input dimension (d), number of unary operators (u), and binary operators (b).
Specifically, we set d ∼ U(1, dmax), b ∈ U(d − 1, d + bmax), and u ∼ U(0, umax), where
dmax = 10, umax = 5, and bmax = 5 + d. The equation sequence is generated for each function
by providing N = [50, 100, 150, 200] input points (x, y), and the prediction accuracy is assessed
on Ntest = 200 points that are randomly extracted from a multi-center distribution, as described in
[18]. This data is referred to as “in-domain” because the validation data is generated using the same
approach as the data on which the model [18] is pre-trained.

B Implementation Details
Our model implementation leverages the state-of-the-art open-source End-to-End (E2E) SR model
[18] as the pre-trained transformer backbone. This selection is due to the public availability of
E2E’s model architecture, weights, and logits in the Facebook symbolicregression library 8 and
repository 9. The algorithm of our model is provided in Appendix C and all the implementation
code for our experiments with configuration details for reproducibility are open-sourced: https:
//github.com/deep-symbolic-mathematics/TPSR. In our experiments, the model’s maximum
sequence length is set to L = 200, and the constant to prevent numerical stability ϵ in NMSE
calculation ( 1n∥y − f̃(x)∥22)/( 1n∥y∥

2
2 + ϵ) is set to 1e− 9. We set the default maximum number of

node expansions (kmax) to be 3, the beam size of simulations (b) as 1, and the number of rollouts
(r) as 3. The complexity-controlling parameter (λ) was also varied across four values: 0, 0.1, 0.5, 1.
To ensure consistency with the protocol set out by [18], we divided the observation points of each
equation in the SRBench datasets (including Feynman, Strogatz, and Black-box) into training and
testing sets at a ratio of 75%/25%. In the evaluation experiments involving In-domain Synthetic
Data, we adjusted the number of observation points for each equation on which TPSR was trained
to N ∈ [50, 100, 150, 200]. The generated expression was subsequently tested on the Ntest = 200
data points for each sampling variance (σ) of 1, 2, 4, 8, and 16. These synthetic input points with
varying sampling variance are introduced in In-domain data [18] to assess the models’ extrapolation

5https://space.mit.edu/home/tegmark/aifeynman.html
6https://github.com/lacava/ode-strogatz
7https://github.com/EpistasisLab/pmlb/tree/master/datasets
8https://dl.fbaipublicfiles.com/symbolicregression/
9https://github.com/facebookresearch/symbolicregression
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Table 2: Experimental Settings of TPSR and E2E [18]

Setting/Parameter TPSR E2E

Maximum Equation Length (L) 200 200
Maximum No. of Observations (N ) 200 200
Maximum Input Dimension (dmax) 10 10

Maximum No. of Bags (B) 10 10
Beam/Sample size (C) – 10

No. of Refinement Candidates (K) – 10
Maximum Expansion Width (kmax) 3 –

Maximum No. of Rollouts (r) 3 –
Beam Size in Simulations (b) 1 –

UCT Exploration Parameter (β) 1 –

capabilities under different conditions. All experiments are implemented with PyTorch on four
Quadro RTX 8000 GPUs, with 48GB of RAM.

C Methodology Details
C.1 MCTS-Guided Decoding Details
Algorithm 1 provides the details of steps in MCTS-guided lookahead planning as a decoding strategy
for SR. Here, the blue lines correspond to the utilization of reward and selection functions defined
in Eqs. (2) and (1) of Section 3. These functions play a crucial role in guiding the MCTS-based
Transformer Decoding strategy for SR and ensuring effective exploration and exploitation within
the search space. Meanwhile, the red lines in the algorithm denote the places when the pre-trained
transformer SR model is invoked to extract the top-k next tokens and equation candidate beams.
These extracted tokens and beams are employed in the expansion and evaluation steps of the MCTS
algorithm, respectively. By incorporating the pre-trained transformer SR model, the MCTS-guided
decoding strategy can effectively leverage the model’s inherent semantic knowledge gained through
large-scale pre-training to generate high-quality equation candidates and enhance the overall per-
formance of the SR approach. Notably, in this MCTS setting, a "visit" signifies that a state-action
pairing (s, a), has been explored during tree search, appending the corresponding child state, s′, to
the tree. Sequences that are generated as part of the beam search sub-routine of simulations in the
evaluation stage of MCTS are not directly considered as visits to the nodes corresponding to these
sequences. Instead, they serve the purpose of completing the partial equation to allow for feedback
computation. As for cache hits, they are also not counted as visits. The reason is that caching in this
context is used to save computation by storing previously computed values, and a cache hit simply
means retrieving a stored value rather than performing a new visit.

Algorithm 1: MCTS-Guided Decoding for Symbolic Regression
Input : rmax: maximum number of rollouts, kmax: number of children of nodes used for

top-k next token selection, b: beam size, c: P-UCB exploration parameter
while r < rmax do

node← root;
1) Selection
while |node.children| > 0 do

node← SELECT(node.children, c);
end
2) Expansion
next tokens← TOP_K(node, kmax);
for action ∈ next tokens do

next state← CONCAT(node, action);
Add next state as a child of node;

end
3) Evaluation
Equation← BEAM_SEARCH(node, b);
reward← GET_REWARD(Equation);
Save (Equation, reward) pair in a dictionary ;
4) Backpropagation
Update values on the trajectory given the reward ;

end
Return Equation with the highest reward ;
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Figure 8: MCTS-Guided decoding algorithm for Symbolic Regression without using the pretrained
transformer SR model for expansion and evaluation steps.

Figure 9: MCTS-Guided decoding algorithm for Symbolic Regression with the pre-trained trans-
former model used for expansion and evaluation steps.

C.2 Distinguishing TPSR from other MCTS Approaches in SR
It is essential to highlight that the implementation of the MCTS approach in TPSR differs from the
standalone MCTS algorithm for SR. In a recent work, Sun et al. [26] shows that Monte Carlo Tree
Search can be effective for exploring the optimal expression trees that govern nonlinear dynamical
systems. This work introduces several adjustments to the conventional MCTS to enable the recovery
of equations as expression trees. However, we would like to remark that using MCTS as a standalone
algorithm for SR is a single-instance SR method, meaning that it requires searching from scratch
for a new function or measurement data, and does not leverage pre-trained priors. To highlight the
role of pre-trained transformer in our TPSR framework, we compare the MCTS-guided decoding
algorithm in TPSR (Fig. 9, replicated from the main body for ease of comparison) with a standard
MCTS algorithm (Fig. 8) which can be used in a similar fashion but without sharing information
with the pre-trained transformer. During the expansion phase, standard MCTS chooses the next
accessible action from the action set (i.e., the vocabulary of tokens) and appends the state that can be
reached through the chosen action. In this example, action x1 is selected, and the new state appended
to the tree is [sin, x1]. Subsequently, during the evaluation phase, MCTS assesses the new state
by implementing a random policy from the new state and calculating the policy’s value. Applying
the standard MCTS algorithm to domains characterized by extensive state or action spaces, such as
symbolic regression with a large combinatorial optimization space that exponentially grows with the
number of input variables, is highly impractical. This is because attempting all possible actions in
the expansion phase is infeasible. Furthermore, the random policy employed in the evaluation phase
exhibits significant variance when estimating the new state’s value, and may result in invalid equations
that are unsuitable for proper evaluation (e.g., accurately assessing the equation’s fitting performance).
To overcome these limitations, TPSR employs the pre-trained transformer SR model. This approach
leverages the semantic knowledge embedded in large-scale pre-trained priors, while conducting
lookahead planning to optimize equation generation for the equation discovery non-differentiable
objectives. By integrating the pre-trained transformer SR model, TPSR can efficiently and effectively
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navigate the vast search space, reducing complexity and enhancing fitting performance, thus offering
more viable solutions for this task.

It is also crucial to emphasize how the integration of MCTS in TPSR differentiates from others, par-
ticularly from works like Kamienny et al. [47], which also pairs MCTS with pre-trained transformers.
Key differentiators include:

General Approach. Unlike [47] that exploits a pre-trained mutation policy M to generate the
expression by following a series of mutations from an empty expression (root), TPSR follows the
seq2seq approach of E2E [18] to generate the expression token-by-token. Consequently, TPSR uses
the pre-trained E2E as its backbone but [47] pre-trains the mutation policy from scratch.

MCTS and Search Strategy. In [47], the search tree consists of full mathematical equations, with
each node representing a distinct equation and edges corresponding to mutations between equations.
In contrast, TPSR employs MCTS as a decoding strategy in the context of the transformer model.
Each node in the search tree of TPSR represents the current state of generated tokens, potentially
forming non-complete sequences, with edges corresponding to mathematical operators or variables.
So, the search tree of [47] with “n” nodes includes “n” different equations, while the TPSR search
tree includes partial decoded sequences, and completed equations only exist at the terminal leaf nodes.
This distinction inherently leads to major differences in selection, expansion, and back-propagation
mechanisms within the MCTS algorithm.

Parameter Update and Learning. [47] utilizes MCTS to update and learn the distribution of
mutations for a group of out-of-distribution datasets. The approach involves fine-tuning an actor-
critic-like model to adjust the pre-trained model on a group of symbolic regression instances. On the
other hand, TPSR uses the pre-trained transformer’s weights to guide the expansion during the search
process, without updating any specific parameters for in-domain or out-of-domain datasets (without
fine-tuning). Consequently, the same settings and pre-trained model are applied to both in-domain
and out-of-domain evaluations in TPSR.

Computation Time. [47] involves pre-training a mutation policy, a critic network, and performing
fine-tuning stages for these networks, leading to significantly higher computation time (a limit of
24hrs and 500K equation candidate evaluations as stated in [47]). In contrast, TPSR has substantially
lower computation time and the number of equation candidate evaluations, typically in the order of
102 equations, taking approximately 102 seconds (as shown in Fig. 5 and 7). This renders TPSR
more suitable for applications where fast yet accurate equation discovery is critical.

C.3 Caching Details

In the evaluation phase of MCTS, a transformer model is employed to produce complete sequences
from a given state. This procedure entails the creation of implicit tree structures that are used to
carry out a beam search. The beam search involves determining the top-k next tokens for the states
visited during the generation process until the entire sequence is generated. These calculations will
be needed in future MCTS iterations for two purposes: (1) to extract the top-k next tokens during the
expansion step of each state and (2) to generate the complete equation from a given state during the
evaluation step. To avoid redundant computations and improve the efficiency of the framework, two
caching mechanisms are used, namely top-k caching and sequence caching.

Top-k caching is a mechanism that stores the computed top-k values for given states. For example, in
Fig. 4 of the main paper, when evaluating the state s = [+, sin] in iteration t of MCTS, the top-k
tokens are calculated for s and its subsequent visited states (e.g., [+, sin, x2]). These pairs of states
and their corresponding top-k values can be stored in a top-k cache. Consequently, if a state s is
visited again in a future iteration (e.g., visiting s = [+, sin, x2] in iteration t + 1 of MCTS), the
cached top-k values are utilized instead of calling pretrained SR model again and retrieving the top-k
tokens from the forward pass of model.

Another mechanism employed to reduce redundant computations is sequence caching, which caches
complete equations generated in a greedy manner. When the beam size in MCTS is one, the sequence
is generated greedily for the given state in the evaluation step. This means that if any partial sequence
of this equation is given, the same equation will be generated by the decoder. As a result, the generated
equation in iteration t can be used directly in future iterations if the state matches the stored equation
partially. For instance, in Fig. 4 of the main paper, consider the equation f̃ : [+, sin, x2, ·, x1] is
generated for s = [+, sin] with b = 1 in iteration t. Now, if in a later iteration (e.g., iteration t+ 1),
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the state to evaluate is s = [+, sin, x2], the iterative sequence generation process can be bypassed by
directly using the sequence cache to predict the complete equation. It is essential to note that both
of these caching strategies serve the same purpose of enhancing the framework’s efficiency without
compromising its accuracy performance.

D Further Results and Visualization

D.1 Controlling the Fitting-Complexity Trade-off

Figure 10: Effect of controllable com-
plexity parameter (λ) on average test ac-
curacy and equation complexity for the
Feynman dataset. E2E uses sampling de-
coding.

Fig. 10 illustrates the relationship between fitting accuracy
and complexity of predicted equations for various values
of λ ∈ {0, 1, 0.5, 1}, on the Feynman dataset. This fig-
ure highlights the impact of the controllable complexity
parameter λ on balancing the trade-off between fitting per-
formance and equation complexity. As it can be observed,
when the value of λ is set to 0, the TPSR framework gen-
erates exceedingly complex equations, resulting in a com-
plexity score greater than 80. These equations are primar-
ily focused on optimizing fitting performance. However,
as λ is slightly increased to 0.1, there is a minimal effect
on the fitting performance, while the complexity of the
generated equations drops significantly to a score of less
than 60. As λ continues to increase, the TPSR framework
produces equations with reduced complexity, accompa-
nied by a slight decline in fitting performance. Fig. 10
demonstrates that even when λ is set to a large value,
such as 1, the fitting accuracy performance of the equa-
tions generated by TPSR remains notably superior to the
baseline E2E+Sampling method (0.916 versus 0.848).
Additionally, the complexity of the generated equations
marginally improves (47.24 compared to 50.73). This
can be observed by examining the gap between the red and
blue dashed lines in both the top and bottom sub-figures
of Fig. 10. These findings emphasize the advantages of
the TPSR framework over the baseline methods in terms
of fitting performance. At the same time, TPSR is capable of generating equations with either
comparable or lower complexity than those discovered by the baseline methods.

Given the significance of λ in governing this trade-off, and to assist users in hyperparameter selection,
we recommend setting λ = 0.1 as a default. Based on our results, particularly Table. 1 and Fig. 10,
we find that this setting tends to achieve a harmonious balance between accuracy and complexity,
mitigating overfitting. It is important to note that this recommendation aims to offer a starting point
for users. The appropriate choice of this hyperparameter may depend on the specific use case, where
the balance between finding an accurate function and sacrificing complexity, versus emphasizing
interpretability and equation simplicity over relative accuracy, becomes relevant.

D.2 Pareto Comparisons: Accuracy-Complexity and Accuracy-Time Trade-off

Fig. 11 presents pareto comparisons of various algorithms on two fronts: fitting-complexity (top
row) and fitting-time (bottom row) trade-off. These comparisons are conducted on the (a) Black-box
and Feynman datasets. Results show that TPSR demonstrates superior performance, consistently
achieving the optimal Pareto-front in all comparisons over both data groups. With respect to the
balance between complexity and accuracy (as also noted in Fig. 1), TPSR outperforms the E2E
transformer backbone and shows comparable performance to state-of-the-art GP algorithms. TPSR
also provides a significant improvement in fitting-time balance, being 100 times faster than leading
GP algorithms, a benefit accomplished by utilizing pre-trained priors. Notably, this substantial
improvement in inference time does not come at the cost of accuracy, as TPSR also exceeds the E2E
baseline as well as most leading GP methods in this aspect.
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Figure 11: Pareto comparison of all methods in terms of fitting-complexity (top) and fitting-time
(bottom) trade-off across (a) SRBench Black-box and (b) Feynman datasets. TPSR successfully
reaches the first Pareto-front in all comparisons. In terms of fitting-complexity balance, it outperforms
E2E baseline, obtaining comparable results to SOTA genetic algorithms. In terms of fitting-time
balance, it performs 100x faster than genetic algorithms by leveraging the pre-trained priors and
surpasses the accuracy of E2E baseline.

D.3 Qualitative Study
Fig. 12 offers a detailed qualitative analysis comparing the performance of TPSR, the E2E baseline
(symbolic model) as well as XGBoost and MLP (black-box models) with respect to the ground-truth
equation x2sin(x). The training dataset, depicted by the shaded red region, consists of 200 data points
randomly sampled within the range of (−2, 2). The evaluation is performed on an out-of-domain
region spanning from (−5, 5).
While all four models demonstrate a strong ability to fit the training data, the proposed TPSR method
surpasses the E2E baseline in fitting the true underlying function, as evidenced by its performance in
the out-of-domain region. This superior performance can be attributed to TPSR’s capacity to generate
less complex equations that still effectively fit the data, a feature highlighted in the accompanying
complexity barplot. Moreover, the results showcase the general superiority of symbolic regression
methods over the black-box XGBoost and MLP machine learning methods when fitting the underlying
function within the unseen evaluation range. This observation emphasizes the potential benefits of
adopting symbolic regression techniques, such as TPSR, in providing more accurate representations
of the data’s underlying symbolic patterns and behaviors.

D.4 Evaluating the Model-Agnostic Capability
In order to underscore the model-agnostic capabilities of TPSR, we also conducted evaluation
experiments to include the integration of TPSR with the "Neural Symbolic Regression that Scales"
(NeSymReS) model by Biggio et al. [16], a pioneering work for large-scale pre-training in SR.

Limitations and Adjustments. NeSymReS, while influential, presents some inherent limitations:
(1) Dimensionality Constraint: It can only handle datasets having a maximum of three dimensions
(D ≤ 3). This limits its application in wider experimental scenarios. (2) Skeleton Prediction:
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Figure 12: Qualitative comparison of TPSR with E2E as well as black-box XGBoost and MLP
models on the ground-truth function x2 sin (x). The training dataset contains 200 points in range of
(−2, 2) (shaded region), and the performance is evaluated over (−5, 5).

NeSymReS is also trained to only predict equation skeletons. As such, the system requires a more
complex constant optimization process, further complicating its integration.

Experiment Setup. Due to the constraints highlighted above, to evaluate the combination of TPSR
with NeSymReS, we use a dataset composed of 52 Feynman equations, as in [16], ensuring the
dimensionality constraint (D ≤ 3) is respected.

Results. As illustrated in Table 3, integrating TPSR with NeSymReS resulted in marked improvement.
Specifically, results show that TPSR has significantly improved the fitting accuracy of NeSymReS
without changing the average complexity of the equations when λ = 0.1 and with a slight increase
when λ = 0.

Table 3: Fitting accuracy and complexity performance of NeSymReS [16] with and without the
proposed TPSR planning on 52 Feynman datasets with D ≤ 3.

Model Avg. (R2 > 0.99) ↑ Avg. Complexity ↓
NeSymReS 0.635 9.98
NeSymReS+TPSR (λ=0.1) 0.808 9.98
NeSymReS+TPSR (λ=0) 0.827 13.30

D.5 Additional SRBench Results
Strogatz Datasets. Fig. 13 presents a performance comparison of TPSR and SRBench algorithms
on the Strogatz dataset (similar to the results shown for Feynman and Black-box datasets in Fig. 5).
The Strogatz dataset comprises 14 equations from a two-state system following a first-order ordinary
differential equation (ODE). As it can be observed, E2E performance is less well on this dataset
compared to other genetic algorithms due to the unique time-ordered distribution of observations,
which differs substantially from the E2E’s pre-training data. Notably, despite not being exposed
to time-ordered data during pre-training, TPSR with the E2E pre-training backbone significantly
enhances its performance on the Strogatz dataset. TPSR ranks among the top three baselines for fitting
accuracy performance while maintaining comparable or even slightly better equation complexity and
inference time.

Black-box Datasets. SRBench [42] studied black-box problems, originally extracted from
OpenML 10 and integrated into PMLB [43], include several datasets derived from Friedman’s
[48] synthetic benchmarks. These Friedman datasets, generated through non-linear functions, display
varying degrees of noise, variable interactions, and non-linearity. As observed in earlier studies [42],
the results from the Friedman datasets tend to highlight the performance differences among top-
ranked methods more noticeably than other benchmarks, where top-performing methods often deliver

10https://www.openml.org/
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Figure 13: Performance comparison of TPSR and SRBench algorithms in terms of Accuracy-
Complexity-Time on Strogatz dataset. Models are sorted based on mean accuracy defined as the ratio
of solutions with R2 > 0.99 on test set under various noise levels. The error bars represent the 95%
confidence interval.

similar results. Fig. 14 shows that performance of several baselines such as KernelRidge, MLP, DSR,
BSR, gplearn, and AFP, degrades on Friedman datasets. However, our TPSR variants maintains its
superior performance across these challenging Friedman synthetic datasets and the remaining PMLB
black-box datasets, asserting its state-of-the-art (top-1) status. Following [42], this performance
distinction is illustrated in Fig. 14 with more details, separating the results of Friedman datasets from
the rest of PMLB black-box datasets.

Figure 14: Detailed performance comparison of TPSR and SRBench algorithms in terms of Accuracy
(Fitting Performance) on Black-box dataset groups: Friedman [48] synthetic datasets, non-Friedman
datasets, and all the black-box datasets. The error bars represent 95% confidence interval and ” ∗ ”
refers to SR methods vs. other ML methods.

Fig. 15 shows an in-depth comparison of TPSR performance, varying λ ∈ {0, 0.1, 0.5, 1}, against
top competitors (Operon, SBP-GP, FEAT, EPLEX, and E2E) on Black-box datasets of different input
dimensions. Given E2E’s pre-training on dmax ≤ 10, we focused on datasets with input dimensions
d ≤ 10. In Fig. 15(a), we note that dataset distribution and model performance both depend
on the input dimensionality. TPSR consistently outperforms competitors across most dimensions.
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Interestingly, lower dimensions (e.g., d = 3) favor TPSR with higher λ = 0.5 or 1, resulting in better
performance, while larger dimensions (i.e., d = 8, 9) benefit from smaller λ = 0, 0.1. This pattern
aligns with the expectation that greater λ values yield less complex expressions, more prevalent in
lower dimensions, and vice versa. Fig. 15(b) presents the average inference time for each model
across different input dimensions. E2E is the fastest, while SBP-GP and DSR are the slowest. Notably,
as input dimension increases, the inference time of Operon and EPLEX significantly escalates, hitting
the scale of 104 and 105 seconds respectively, while TPSR’s time remains relatively constant, peaking
at 103 seconds or roughly 30 minutes for d = 9, compared to Operon’s 3 hours and SBP-GP’s 30
hours. This shows how efficient TPSR is compared to genetic algorithms in finding higher-quality
expressions. Finally, Fig. 15(c) shows the average complexity of expressions generated by each
model for different input dimensions. DSR’s expressions are the least complex, while SBP-GP’s
are the most. TPSR with λ = 0 is slightly more complex than its counterparts. Interestingly, TPSR
with λ = 0.5, 1 produces less complex expressions than GP-based models like Operon, FEAT, and
EPLEX at lower dimensions. However, as dimensions increase, these models generate less complex
expressions than TPSR.

Figure 15: Detailed performance comparsion of TPSR and competing baselines in terms of Accuracy-
Complexity-Time metrics for Black-box datasets of varying input dimensions.

D.6 Additional In-Domain Results

Fig. 16 presents a comprehensive performance comparison between our proposed TPSR method with
varying controllable parameter λ ∈ {0, 0.1, 0.5, 1} and the E2E baseline employing sampling for the
In-domain Synthetic Dataset. As observed, when the complexity of the synthetic formula increases
(as shown in the top row), such as increasing the number of binary/unary operators or the input
dimension, the performance across all models tends to degrade. However, we can see that TPSR with
λ = 0, 0.1 “always“ have lower performance drops and TPSR with λ = 0.5, 1 “mostly“ have lower
performance drop than the E2E. This highlights that not only does the incorporation of performance
feedback in TPSR’s MCTS-guided decoding help the transformer generation scale better with these
difficulty levels, but the controllable complexity parameter λ also plays a pivotal role in performance
scaling for more challenging input functions.
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Fig. 16(d) illustrates that the performance of all models increases as the number of input data points
N grows, as one would expect. However, TPSR with λ = 0, 0.1 exhibits considerably better low-
resource performance for N < 100 compared to the E2E model. It is important to note that the
maximum Nmax = 200 since the E2E model is pretrained with N ≤ 200, and the transformer
architecture employed in the encoding stage demands significant computational and GPU resources
for training the model with N > 200.

Fig. 16(e) also reveals that the performance of all models improve as the number of input data
centroids increases, meaning that as the input data is sampled with greater diversity across different
distribution clusters. We can clearly observe that our proposed TPSR with λ = 0, 0.1 consistently
outperforms the E2E model, both with smaller and larger numbers of centroids.

Fig. 16(f) further investigates the impact of introducing multiplicative noise with variance γ to the
target: y → y(1 + σ), σ ∼ N (0, γ). As evident from the figure, the performance of all models
deteriorates as the noise variance increases. This phenomenon highlights the sensitivity of the
pre-trained models to the input noise of the target variable. However, it is noteworthy that TPSR
with λ > 0 demonstrates slightly better performance compared to the E2E model, particularly when
encountering larger noise variances.

Figure 16: Performance comparison of TPSR for varying λ ∈ {0, 0.1, 0.5, 1} and E2E with sampling
decoding across different levels of formula and input difficulties: (a) number of binary operators,
(b) number of unary operators, (c) input dimension, (d) number of input points N (e) number
of input centroids, and (f) input noise variance γ.

D.7 Additional Ablation Studies
The selection of β, in Eq. (1) can also affect the exploration-exploitation trade-off, influencing the
overall performance of TPSR. Fig. 17 demonstrates the impact of varying β on TPSR’s performance
over 119 Feynman datasets, emphasizing the balance between exploration and exploitation. Based
on the results, we observe that for small values of β, specifically β = 0, the performance is sub-
optimal. This diminished performance can be attributed to constrained exploration. Without sufficient
exploration, the model might miss potential solutions or equation sequences that might be more
effective. At the other end of the spectrum, with large values like β = 100, there is also a decline
in performance. This degradation can be linked to an over-emphasis on exploration at the cost of
exploitation. By exploring too much without adequately leveraging the learned knowledge, the
model can get overwhelmed with possibilities, some of which might not be beneficial. Experiment
results highlight that optimal performance is achieved for β values ranging between 0.1 and 10.
As seen in Fig. 17(b), with an increase in β, the number of equation sequence candidates grows,
indicating an increase in exploration. However, beyond β > 0.1, the increase in sequence candidates
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is marginal. This plateau suggests the possible activation of caching mechanisms due to repetitive
sequence generation. Fig. 17(a) also shows average accuracy performance against different β values,
illustrating the aforementioned trends and offering a visual guide for selecting β.

Figure 17: Ablation study of β parameter in TPSR on 119 Feynman datasets: Balancing Exploration
and Exploitation.

D.8 Examples of Generated Symbolic Expressions
Table 4 presents example comparisons of symbolic expressions generated by E2E using sampling and
our proposed TPSR model with λ = 1 for 200 observation points of given true functions. To improve
readability and simplify notation, all constants in the generated expressions are denoted with the
token “C“. The table highlights how TPSR-generated symbolic expressions are more closely aligned
with the true functions than those generated by E2E. The aligned components are bolded in the table
entries. Additionally, the fitting performance R2 of TPSR-generated equations is notably superior
to that of E2E-generated expressions. This comparison demonstrates how TPSR’s integration of
fitting and complexity feedback during transformer decoding can yield quantitatively and qualitatively
improved expressions using the same model weights. Improved learning of governing expressions
can enhance the interpretability of black-box prediction models, contributing to their extrapolation
and generalizability.

Table 4: Example comparisons of symbolic expressions generated by E2E and TPSR, along with
their respective fitting performance.

Expression R2

True Function 2X0(1− cos (X1X2)) –

E2E Generation CX0 (C + C cos (CX2 + CX1)) + C 0.453

TPSR Generation CX0 (C + C cos (CX1 + CX2 +CX1X2)) + C 1.0

True Function sin2

(
X0X1

(X2
2π )

)
–

E2E Generation C sin (CX0 + CX1 + CX2) + C 0.178

TPSR Generation C sin2
(

CX1X0

CX2+CX1

)
+ C 0.671

True Function X0

(
cos (X1X2) +X3 cos

2 (X1X2)
)

–

E2E Generation CX0 (CX3 + CX2 + CX1 + C cos (CX2 + CX1))
2
+ C 0.878

TPSR Generation CX0

(
cos (CX2X1) +X2

3 cos
2 (CX2X1)

)
+ C 0.996

True Function X0
sin2 (

X1X2
2 )

sin2 (
X2
2 )

–

E2E Generation CX0 + CX0

(
C sin (CX1 + CX2) + CX2

1

)2
+ C 0.655

TPSR Generation CX2
0

(
sin (CX2X1)
sin (CX2)

)2

+ C 0.991

True Function
√

(X2
0 +X2

1 − 2X0X1 cos (X2 −X3)) –

E2E Generation
√

(CX0 + CX1)
2
cos (CX2 + CX2

3 ) + C 0.939

TPSR Generation
√

(CX1X0 cos (CX2 −CX3)− CX2
1X

2
0 ) + C 0.986

24



E Discussion and Future Work
Limitations. While our methodology exhibits substantial potential, it is not without limitations.
One limitation of our approach is the increased inference time of the TPSR in comparison to simpler
decoding methods like beam search and sampling. This extended inference time is primarily due
to the process of searching and incorporating performance feedback during the generation phase
in TPSR’s decoding process. Nevertheless, by exploiting the large-scale pre-trained priors, TPSR’s
inference time still remains considerably lower than the majority of leading genetic algorithms.
Another factor influencing TPSR’s performance is the dependency on the learned priors of the
pre-trained transformer model. TPSR is also subject to the inherent structural limitations of the
pre-trained model, such as constraints on input dimensionality, expression length, and vocabulary
definition. For example, the E2E model is pre-trained with a maximum input dimension (dmax) of 10,
which in turn limits the TPSR with the E2E backbone to d ≤ 10. However, it’s important to note that
TPSR is a model-agnostic framework, implying potential integration with more advanced pre-trained
SR models in the future.

Future Directions. An intriguing dimension in the symbolic regression revolves around out-of-
distribution data. Pre-trained Transformer SR methods, distinct from their search-focused counter-
parts, train on vast synthetic datasets stemming from certain distributions. Essentially, this distribution
is shaped by specific equation generators and sampling techniques. Hence, any data or equation
not stemming from these generators could be viewed as out-of-distribution. Our experimentation
evaluated TPSR and the pre-trained E2E model [18] across both in-domain and out-of-distribution
datasets, as in the SRBench. A crucial observation was that TPSR, with lookahead planning, con-
siderably elevates the pre-trained model’s performance on out-of-distribution datasets, a trend most
pronounced in SRBench comparisons (as illustrated in Table 1). While pre-trained models offer the
strength of utilizing prior knowledge from large-scale datasets, they can be limited when faced with
data far from their training distribution or unique equation forms they have not encountered during
training. TPSR offers a partial solution through its decoding-stage search and lookahead planning,
but it is still limited to the inherent constraints of the pre-trained SR model’s priors. Addressing this
challenge is an intriguing avenue for future research. Possible strategies might involve fine-tuning
pre-trained model weights using non-differentiable rewards for the new out-of-distribution datasets.

F Broader Impacts
Potential positive impacts. The proposed TPSR approach for symbolic regression using
transformer-based models has significant implications for both the research and practical com-
munities. By integrating Monte Carlo Tree Search (MCTS) into the transformer decoding process,
TPSR enables the generation of equation sequences that balance fitting accuracy and complexity,
addressing key challenges in symbolic regression. This has wide-ranging applications in science
and engineering domains, where accurate and interpretable mathematical models are essential for
understanding and predicting complex phenomena. The improved performance of TPSR over state-
of-the-art methods enhances the usability and reliability of symbolic regression models, enabling
researchers and practitioners to extract valuable insights from their data and make informed decisions.

Moreover, TPSR offers practical benefits by leveraging the efficiency of transformer-based models
and the pre-training priors. The ability to optimize equation generation using TPSR enhances the
efficiency and scalability of symbolic regression, making it more accessible in resource-constrained
settings. This opens up opportunities for the adoption of symbolic regression in various domains,
including scientific research, engineering design, and optimization problems. The impact of TPSR
extends beyond symbolic regression, as the integration of MCTS and non-differentiable feedback
into transformer-based models can inspire novel approaches in other fields where the combination
of symbolic mathematical or formal verification and reasoning with machine learning is valuable.
Overall, TPSR has the potential to advance the state-of-the-art in symbolic regression and contribute
to scientific and technological advancements.

Ethical considerations. Symbolic regression makes it easier for anyone to understand underlying
symbolic and mathematical patterns behind the data and learn interpretable mathematical models for
observations. This approach brings the potential for machine learning models to achieve a balance
of high predictive performance and transparency, which is critically valuable in sectors such as
healthcare, where the interpretability of models can directly influence life-saving decisions. However,
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as with any powerful tool, the ethical issues of its use must be considered carefully. For example,
while symbolic regression can yield life-saving insights in the hands of healthcare professionals, it
can also be exploited for malicious purposes. It could be used to decipher patterns and relationships
within data where privacy should be maintained, leading to potential breaches of confidentiality. This
becomes particularly concerning as symbolic regression techniques mature, enabling more effective
comprehension of symbolic mathematical and causal relationships behind data values. To mitigate
this risk, we need the development of separate modules tasked with screening input data and denying
requests where pattern extraction could lead to harmful outcomes.
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