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Preparing for the next pandemic 
via transfer learning from existing 
diseases with hierarchical 
multi‑modal BERT: a study 
on COVID‑19 outcome prediction
Khushbu Agarwal1, Sutanay Choudhury1*, Sindhu Tipirneni2, Pritam Mukherjee3, 
Colby Ham1, Suzanne Tamang4, Matthew Baker6, Siyi Tang5, Veysel Kocaman7, 
Olivier Gevaert3,4, Robert Rallo1 & Chandan K Reddy2

Developing prediction models for emerging infectious diseases from relatively small numbers of cases 
is a critical need for improving pandemic preparedness. Using COVID‑19 as an exemplar, we propose 
a transfer learning methodology for developing predictive models from multi‑modal electronic 
healthcare records by leveraging information from more prevalent diseases with shared clinical 
characteristics. Our novel hierarchical, multi‑modal model ( TransMED ) integrates baseline risk factors 
from the natural language processing of clinical notes at admission, time‑series measurements of 
biomarkers obtained from laboratory tests, and discrete diagnostic, procedure and drug codes. We 
demonstrate the alignment of TransMED ’s predictions with well‑established clinical knowledge about 
COVID‑19 through univariate and multivariate risk factor driven sub‑cohort analysis. TransMED ’s 
superior performance over state‑of‑the‑art methods shows that leveraging patient data across 
modalities and transferring prior knowledge from similar disorders is critical for accurate prediction of 
patient outcomes, and this approach may serve as an important tool in the early response to future 
pandemics.

The COVID-19 pandemic revealed salient challenges in developing systems that can accurately predict outcomes 
associated with an emerging infectious disease. In particular, it emphasized the need for hospitals to access risk 
stratification tools that could be used to proactively identify COVID-19 patients at a greater risk of undesirable 
 outcomes1–9. Such capabilities are critical for institutions to prioritize resources, and bring a quantitative approach 
to  triaging10 in an emergency, which subjects the human caregivers to intense psychological stress. Undertaking 
hard and pragmatic decisions, and accepting their consequences leads to a new crisis that is appropriately called 
the “hidden pandemic for healthcare workers”11–13. Due to the lack of historical COVID-19 cases for training 
supervised machine learning models, early methods for COVID-19 severity prediction focused on the analysis 
of a relatively small number of carefully chosen model covariates, which included demographic risk factors, prior 
comorbidities, symptoms on admission, and laboratory  biomarkers8,14. These carefully chosen covariates were 
predominately used to train multivariate logistic regression and boosted decision tree-based  approaches1,15–17. 
Electronic health records are heterogeneous data sources that include unstructured clinical notes, structured data 
that are coded as ICD diagnoses and CPT procedures, and numeric measurements such as body vitals along with 
various laboratory test results. Due to their size, richness, and wide-scale adoption, the past few years have seen 
major progress in developing predictive models for different subsets of such data sources, where deep learning 
methods have been shown to achieve state-of-the-art results for several medical outcomes such as re-admissions, 
mortality prediction, and length of  stay14,18–27. However, a notable gap lies in integrating all of the multi-modal 
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information into a single predictive model, and the challenges are amplified by the need for large amounts of 
training data. In this paper, we propose TransMED , a methodology for developing multi-modal predictive mod-
els, while addressing training data scarcity issues posed by emerging (or rare) diseases through transfer learning 
from diseases with shared cohort-level characteristics and similar outcomes.

To address the existing gaps in pandemic preparedness, we sought to improve on current methods to: (i) 
predict if a patient will be staying in the hospital, after a certain time using the patient’s multi-modal history. 
This provides a better understanding of the severity of a patient’s condition, and (ii) predict the likelihood of a 
patient requiring mechanical ventilation. Collectively, these prediction tasks capture the inherent challenges of 
inpatient resource planning such as those to predict which patients are most likely to experience poor outcomes 
over a span of next 3-7  days10,28–31.

Figure 1 presents a case study of a real COVID-19 patient to illustrate how different modalities offer unique 
information to reason about a patient’s current state and future evolution. However, making use of the informa-
tion requires careful handling of sparsity across time and data sources. Diagnostic codes provide a more definitive 
assertion of patient’s short- and long-term medical conditions, but they do not provide continuous observation 
of the patient. In addition, they are not frequently observed and may miss key signals related to clinical deterio-
ration. Observing the occurrence of key procedures and laboratory measurements provide clinical information 
on a patient’s immediate conditions. The drug data stream provides additional treatment information that helps 
characterize a patient’s disease state; compared to clinical observations such as diagnostic codes, procedures, and 
laboratory tests, which typically marks the onset of a problem, the duration of a medication allows us to reason 
about the type and severity of a particular symptom and it’s short- and long-term consequences; thereby serving 
as a bridge to connect other data sources that more sporadically report information.

Our contributions.  TransMED uses a hierarchical approach for learning cross-modal interactions across 
medical concepts that occur closely in time. The self-supervised methodology implemented via BERT  layers32 is 
first used to learn the higher-order fine grained medical concept interactions using a Severe Respiratory Disease 
(SRD) cohort from Stanford Hospital with 9348 patient hospitalizations. Next, specific layers of the model are 
further trained for modeling temporal trajectories of COVID-19 patients using EHR data of 1701 patients. Our 
neural architecture is distinct from the other recent BERT-based32,33 prediction models in multiple dimensions. 
Our model integrates temporal information in multiple representations, that includes clinical notes, discrete 
entity-based representation of diagnostic codes, drug codes, procedure codes along with continuous valued 
time-series measurement of laboratory tests. To the best of our knowledge, the proposed model demonstrates 
the widest integration of EHR-based data sources across multiple modalities for COVID-19 severity prediction. 
Our experiments show that our hierarchical transfer learning based approach using Severe Respiratory Disease 
(SRD) cohorts leads to an average improvement of 12.9% and 10.3% in AUROC for COVID-19 patient stay and 
ventilation prediction. We benchmark our implementation with three models representing distinct prediction 
approaches and demonstrate an improvement ranging over 5.8–29.2% for AUROC and 3.6–66% in F1 score 
measure for ventilation prediction tasks, and accurately predicting the likelihood of short- and long-term patient 
stays.

We also present a new methodology to interpret and evaluate model predictions via multi-comorbidity 
analysis. Much of the literature on EHR models focus on characterizing the prediction performance through 
univariate analysis of the well understood risk  factors30,34. However, clinical presentation of a disease and it’s 
severity can markedly vary depending on the constellation of symptoms, prior health conditions and risk fac-
tors. Deep learning models are adept at learning higher-order feature interactions. Therefore, evaluating model 
recommendations solely in terms of single factors may not explain when a prediction is driven by a hidden 
combination of multiple factors. We present a methodology for identifying top multi-comorbidity conditions 
in a data-driven fashion and evaluate their relative impact on model predictions. We believe our analysis would 
motivate data-driven discovery of key multi-comorbidities associated with a disease while advancing the inter-
pretability and rigor for evaluating deep learning models for clinical use.

Methods
We begin this section with a description of the available data sources and the cohort selection process. After that, 
the problem statement is described followed by a description of the model architecture.

Data sources. Our study is based on de-identified EHR data of all patients treated at Stanford Hospital, 
between January 1, 2015 and March 19, 2021. This dataset was provided via STAnford Research Repository 
(STARR)35 and was used under approval by Stanford University Institutional Review Board (IRB) protocol: 
50033 (Machine Learning of Electronic Medical Records for Precision Medicine). Patient informed consent was 
waived by Stanford University Institutional Review Board (IRB) for this protocol. All methods were carried out 
in accordance with relevant guidelines and regulations.

As part of the de-identification process, the actual admission dates were randomized up to 30 days. The data 
was retrospectively collected during the practice of care and transformed into the OMOP Common Data Model 
Version 5, (https:// www. ohdsi. org/ data- stand ardiz ation/ the- common- data- model/) by the STARR OMOP team. 
Using the STARR OMOP data, we created our cohort of COVID-19 patients (Fig. 2) based on the following 
inclusion criteria: (1) patients with inpatient visits after January 1, 2020, (2) patient age greater than 18 at admis-
sion, (3) patient had either a positive COVID-19 test within 14 days prior to the admission or had a diagnosis of 
COVID-19 within 7 days prior to the admission. Visits that were less than 1 day in length were excluded. We also 
created a cohort that included hospital admissions for severe respiratory disease (SRD) patients with influenza, 
pneumonia or ARDS, for our transfer learning approach. The ICD-9 codes were first mapped to OMOP CDM 

https://www.ohdsi.org/data-standardization/the-common-data-model/
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V5 concept identifiers which were then used to execute queries to retrieve the cohort data. The specific codes 
used for the cohort selection and mechanical ventilation are listed in the Supplementary Table 1. The cohorts 
were cross-referenced for similarity in observed medical codes and ventilation outcomes. Table 1 provides the 
summary statistics for the two cohorts, with a detailed comparison under the results section.

Our study cohorts include clinical observations from four data sources: (1) free-text patient notes at the 
time of admission, (2) discrete codes (we also refer to them as structured data) representing diagnosis codes, 
prescribed drugs, laboratory tests that were ordered, and codes for the procedures performed, (3) continuous 
time-series measurements that were available for a subset of the ordered laboratory tests, and (4) patient demo-
graphics (age/race/sex/ethnicity). We parsed each note into sections and used the SparkNLP  library36 named 
entity recognizer (NER) for extracting medical conditions from the clinical notes (see Supplementary section 
on “Data Sources” for implementation details). The extractions were used to determine the presence or absence 

Figure 1.  An illustration of multi-modal data sources observed over the course of a COVID-19 patient’s 
stay in the hospital. The colors indicate diagnosis (purple), drugs (green), procedures (gray), and numeric lab 
measurements (blue bars). Different data modalities are observed at varying frequency in raw patient data, 
with lab measurements being the most sparse across patients and across time. TransMED reduces the impact 
of sparsity by utilizing all modalities of data in a given time interval (e.g., 24 h), creating more informed patient 
state snapshots in time.
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of baseline risk factors for each patient at the time of admission, including: Coronary Artery Disease (CAD), 
diabetes, family history, hyperlipidemia, hypertension, existing medication, obesity, and smoking. Note that 
COVID-19 patients were modeled de novo, using only data from COVID-19 related admission. Family history 
and existing medication were discarded due to insufficient coverage.

Problem statement. Let Xt = (Ct ,Mt) be the patient state at time t, where Ct ⊆ C is a set of observed 
codes, Mt ∈ R

|M| is a vector of lab values, and C and |M| denote set of codes and lab values observed across the 
whole cohort respectively. Let d ∈ {0, 1}|D| and r ∈ {0, 1}|R| be multi-hot vectors denoting patient demographics 
and risk factors obtained at the time of admission, respectively. The clinical outcome at time t is denoted by Ot . 
The problem statement is as follows: Given demographics d, risk factors r, and a sequence of Th historical states 
Xt−Th+1,Xt−Th+2, . . . ,Xt , predict a clinical outcome of interest Tf  steps ahead into future, denoted by Ot+Tf  . 
Following the tasks proposed in the introduction section, we will focus on two outcomes: patient staying at the 
hospital or patient requiring mechanical ventilation at time (t + Tf ) . Th and Tf  are referred to as “# input time-
steps” and “look-ahead”, respectively.

Model architecture. In this section, we present the intuition behind the key components of our model 
and provide details of the proposed hierarchical model architecture. The supplementary section titled “Related 
Work” provides a detailed overview of all prominent methods that has been applied over diverse modalities and 
prediction methodologies for EHR data. Figure 3 presents the data-flow through our hierarchical multi-modal 
model with two primary components: (1) Transfer learning driven top layers that accept patient state at a given 
time (subsequently referred to as “patient context”) as input and produces a contextualized representation, cap-
turing feature interactions across all modalities of data in a single time step. (2) The bottom temporal modeling 
layer to model patient evolution over time. This layer takes as input, the contextualized vector representations 
output from top layers for each time interval augmented with positional encoding (indicating the time of obser-
vation) and produces a vector representing patient evolution over time.

The transfer learning component is implemented using BERT layers due to their proven effectiveness in 
learning contextual relationships between set of  observations32. The choice for specific implementation of the 
temporal modeling layer is flexible, and we discuss the different options for this layer in detail below. Overall, we 
use the SRD cohort to train the cross-modal interaction layers during transfer learning. We train the temporal 
layers on the COVID-19 patient data only and keep the multi-modal transformer layers fixed from the training 
of SRD cohort.

Multi‑modal patient context encoders.  We begin with describing the “patient context” data structure that cap-
tures the state of a patient over a single aggregation interval, across all modalities of patient data. We define the 
patient context as a collection of labeled sets that contains both static attributes (such as demographics and risk 
factors) and all multi-modal EHR information available during a specific interval in time.

We map numeric age values into 11 bins, based on CDC criteria (https:// www. cdc. gov/ coron avirus/ 2019- 
ncov/ covid- data/ inves tigat ions- disco very/ hospi taliz ation- death- by- age. html). Age, race, and ethnicity are rep-
resented as categorical variables, while the rest of the variables such as sex and presence of risk factors are rep-
resented as boolean variables (shown in Fig. 3a). The temporal information associated with the patient context 

Stanford De-id cohort  
(n=3,152,447)

Inclusion Criteria:
1. Inpa�ent visit
2. Age>=18 on visit start date
3. Posi�ve Covid19 test within 14 days of 

visit start date, OR diagnosis code of 
Covid19 within 7 days of visit start date 

(n=1,765)

Exclusion Criteria
1. Length of stay < 1 day

(n=64)

COVID cohort
(n=1,701)

(a) COVID Cohort

Stanford De-id cohort  
(n=3,152,447)

Inclusion Criteria:
1. Inpa�ent visit a�er Jan 2015*
2. Diagnosis codes of either 

• Pneumonia (excluding idiopathic 
pneumonia syndrome and fungal 
infec�ons)

• Influenza
• Acute respiratory distress

(n=6,892)

SRD cohort
(n=6,892)

(b) Severe Respiratory Disease (SRD) Cohort

Figure 2.  Cohort selection process for COVID-19 and Severe Respiratory Disease (SRD) patients from the 
Stanford Hospital. *For the SRD cohort, the start year 2015 was chosen heuristically to ensure sufficient data.

https://www.cdc.gov/coronavirus/2019-ncov/covid-data/investigations-discovery/hospitalization-death-by-age.html
https://www.cdc.gov/coronavirus/2019-ncov/covid-data/investigations-discovery/hospitalization-death-by-age.html
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at a given time interval can be naturally recognized as a collection of sets, where each set represents a type of 
information such as diagnosis codes, drugs, procedures, laboratory tests and contains the discrete identifiers 
of associated diagnosis codes, drugs, etc. (shown in Fig. 3b). The multi-modal patient context encoder module 
takes in the collection of sets as described above and returns a single vector representing the patient context. We 
encode each boolean and categorical variables as a one-hot vector. The last component in the patient context are 
laboratory measurements, which are represented as a dictionary of key-value pairs representing a test and it’s 
associated numeric value. We only used the laboratory measurements from the COVID-19 cohort due to unit 
consistency issues in the SRD data. A concatenation of all these vectors yields the final embedding, representing 
the patient context.

Learning contextual representation of patient state in a time interval. Our first component focuses on learning 
a contextualized representation of the patient state per time interval. This contextualization is important. For 
example, a drug may be recommended as an “if-then” measure, where it is used if the patient descends into a 
critical condition. If a physician were to read a chart with such information, they would understand this series of 
events and recognize why the drug exists on the patient record. On the contrary, if the patient was already in a 
condition where the drug had to be administered, it would be reflected through the presence of other diagnostic 
codes and lab measurements. The BERT layer in Fig. 3 accomplishes this contextualization effect, and generates 
a different vector embedding for each entity (such as the drug) depending on the input patient context.

Transfer learning.  Our unique hierarchical transfer learning exploits short-term similarity across SRD and 
COVID-19 cohort, while accounting for differences in their patient’s temporal trajectories. We adopt a self-
supervised learning  approach37,38 to first train the BERT-based multi-modal patient context encoder layer (green 
box in Fig. 3c) on short-term patient state representation. Given a patient context Ct = (c1t , . . . , c

|Ct |
t ) , we gen-

erate a random mask mt ∈ {0, 1}|Ct | to replace a specified number of condition, drug or procedure codes with 
a special [MASK] token. and train the model to predict the missing values from the rest of the patient context 
using categorical cross-entropy loss.

Unlike existing self-supervised methods for EHR  data20,32,33 that mask and predict codes encoded within the 
complete patient trajectory, we perform contextualization within a small time step (e.g., 12–24 h) without encod-
ing time. This facilitates learning a more fine-grained contextualization model from SRD, which is essential for 

(1)Ĉt = (ĉ1t , . . . , ĉ
|Ct |
t ) where ĉit =

{

[MASK], ifmt [i] = 1
cit , otherwise

Figure 3.  TransMED architecture. Patient context encoders are shown in (a) for static attributes and (b) for 
multi-modal temporal attributes. The proposed hierarchical transfer learning model is shown in (c). The transfer 
learning components take as input the patient’s multi-modal encoded state and produce a contextualized 
vector. The vectors for all time steps are combined along with static attributes to model patient’s (task-specific) 
evolution over time.
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transfer learning across diseases where the patient conditions may evolve at different time-scales7,15. The masked 
patient context Ĉt is then passed through a BERT module to get contextualized patient state at time t. hCt  denotes 
the embedding for the entire context.

which are passed through a linear layer to predict the masked codes.

Learning over time from the entire history. Finally, the temporal modeling step introduces additional layers 
on top of the pre-trained layers to specialize the model for specific prediction tasks. All encoded patient con-
texts ( hCi , i = 1, . . . ,Th ) are further augmented with a relative positional encoding ( rposi )37 to produce the inputs 
(denoted as X̂i below) going into the temporal layer (purple box in Fig. 3c). The position encoding represents the 
offset in time as measured from the beginning of the patient stay, and allows us the model to reason about vari-
able gaps in the patient data. For example, assuming we aggregate a patient’s information using a 24 h interval, 
and we have 3 diagnosis codes being reported at 3 PM (day 1), 9 AM (day 3), and 3 AM (day 4), they would be 
associated with a positional index of 1, 3, and 4. For the static patient attributes, we encode them as shown in 
Fig. 3a and pad appropriately to produce a vector of same size as the {hCi } , and further combine with the posi-
tional offset of zero to produce X̂0.

Finally, the resultant sequence from static patient attributes and the encoded vector embeddings from each time 
step ( X̂0, X̂1, . . . , X̂Th ) are fed into a temporal layer (denoted as fT (·)). We experimented with fT (· ) using the 
following: a GRU (Gated Recurrent Unit)39 layer, a feed forward network (FFN), and a multi-ahead attention 
 layer37. The temporal layer is followed by a dense layer, and the output from the dense layer is passed through a 
non-linear function that produces the final scalar output. Handling of the input ( {X̂i} ) and the output from fT (· ) 
changes depending on the specific choice of the temporal layer, and the specific implementations are described 
by equations (4)–(6). We use the binary cross-entropy as the loss function for training the temporal prediction 
layers combining fT (· ) and the final dense layer.

Results
Comparison of SRD and COVID‑19 Cohorts. Our motivation to adopt a transfer learning approach for 
training a COVID-19 outcome prediction model was inspired by the strong similarity between the vocabularies 
in SRD and COVID-19 cohorts (Table 1). 88.8% of the diagnosis codes in our COVID-19 cohort were also found 
in the SRD cohort. Similarly, the drugs, procedures and laboratory measurement codes in the COVID-19 cohort 
have an overlap of 94.04%, 63.2% and 90.57%, respectively. The SRD cohort also provided a strong coverage for 
patients with severe outcomes, even though the distributions of outcomes are slightly different from the COVID-
19 cohort (Fisher’s exact test, P < .05 ). 14.6% of the patients in the SRD cohort required ventilation as compared 
to 11.4% in the COVID-19 cohort. Proportion of ICU days and mortality incidents in the SRD cohort are 23.4% 
and 8.34%, compared to 5.76% and 6.46% in the COVID-19 cohort, respectively.

In terms of demographics, the COVID-19 cohort is quite different from the SRD cohort. In particular, the 
age distribution of patients in the two cohorts is significantly different (chi-squared P < .001 , see Table 1). This is 
partly due to the fact that we restricted the COVID-19 cohort to adults only. However, if we restrict the analysis 
to adults only in both cohorts, the difference persists—while the proportion of patients in the age group 18–30 is 
quite similar (9.8% and 8.7% in COVID-19 and SRD cohorts, respectively), the COVID-19 cohort has a signifi-
cantly higher proportion of patients in the 30–65 age group (53.1%) than the SRD cohort (44.8%) (chi-squared 
P < .001 ), and consequently, the mean age among adults in the COVID-19 cohort is significantly less than in 
the SRD cohort (Mann-Whitney U-statistic P < .001 ). The cohorts are significantly different with respect to sex 
(Fisher exact test P < .001 ), with the COVID-19 cohort being more balanced than the SRD cohort. There are 
significant differences between the cohorts with regard to race as well (chi-squared P < .001 , ignoring the “Other/
Unknown” class). Finally, the “Hispanic or Latino” ethnicity is significantly over-represented in the COVID-19 
cohort compared to the SRD cohort (chi-squared P < .001).

Training and evaluation setup. As mentioned earlier, we evaluate the model on two binary classification 
tasks on the COVID-19 dataset. To generate input dataset per patient, first, each patient’s stay duration is seg-
mented into intervals of fixed length (aggregation windows) and the visit data within each interval is aggregated. 
For interpretability reasons, we use a 24-h aggregation interval. We then use the sliding window approach to 
generate individual samples for all the models by considering each timestep in the visit as the current timestep. 

(2)hCt , h
1
t , . . . , h

|Ct |
t = BERT(ĉ1t , . . . , ĉ

|Ct |t )

(3)c̃t
i = softmax(wThit) ∈ R

|C| ∀i = 1, . . . , |Ct |

(4)H ′ = fselect(GRU(X̂0, X̂1, . . . , X̂Th)), fselect returns the last element from GRU output sequence.

(5)
H ′ = fselect(BERT(X̂0, X̂1, . . . , X̂Th)), fselect returns the first element from BERT output corresponding to “CLS”.

(6)H ′ = FFN(X̂0 ⊕ X̂1 ⊕ · · · ⊕ X̂Th), where ⊕ represents tensor concatenation operation

(7)ôt = FFN(H ′)
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No timesteps containing or following the first occurrence of a positive outcome can be part of an input. We 
benchmark our model against three methodologies: logistic regression (LR)17, a Gated Recurrent Unit (GRU)-
based  approach18, and  BEHRT32 which is a state-of-the-art extension of  BERT37 models for electronic healthcare 
records. Similar to BEHRT,  MedBERT33 proposed training at patient visit sequence level, and uses only the diag-
nosis codes from a patient cohort. Hence, we only empirically compare with BEHRT which uses a much wider 
scale of structured EHR data and is more suitable for the in-stay patient study. We did not consider any time-
series model due to the sparse and highly irregular nature of the time-series based laboratory measurements. 
The COVID-19 cohort was split randomly into 60% train, 20% validation, and 20% test dataset for evaluation 
purposes. The same split of patient cohorts was used for evaluating all of the methods. The models are evalu-
ated using the AUROC (Area under Receiver Operating Characteristic curve) and the F1-score measure. The 
F1-score captures both the precision (positive predictive value) and recall (aka sensitivity, the fraction of relevant 
instances correctly retrieved) capability of the model. If TP, FP, and FN indicate “True Positive”, “False Positive” 
and “False Negative”, respectively, F1-score measure is given by:

Table 1.  Summary of the COVID and SRD cohorts.

COVID SRD P

 Number of patients 1701 6892

Number of hospitalizations 1701 9348

Quarter-wise distribution of hospitalization

Before 2020 0 8574

2020-Q1 35 559

2020-Q2 329 202

2020-Q3 350 13

2020-Q4 566 0

2021-Q1 421 0

Length of stay, median (Interquartile range) 4.8 (2.8–8.8) 5.0 (2.0–13.0) .42

Age at encounter, mean (SD) 56.8 (18.6) 38.14 (30.9) < .001

Age at encounter among adults, mean (SD) 56.8 (18.7) 60.11 (18.4) < .001

Age groups < .001

< 18 0 (0%) 3689 (39%)

18–30 166 (10%) 492 (5%)

30–65 903 (53%) 2534 (27%)

>=65 632 (37%) 2633 (28%)

Race < .001

White 582 (34%) 3522 (51%)

Black or African American 70 (4%) 314 (5%)

Asian 228 (13%) 1157 (17%)

American Indian or Alaskan Native 10 (1%) 21 (0%)

Native Hawaiian or Other Pacific Islander 46 (3%) 173 (3%)

Other/unknown 765 (45%) 1705 (25%)

Ethnicity < .001

Hispanic or Latino 691 (41%) 1687 (24%)

Not Hispanic or Latino 989 (58%) 5099 (74%)

Other/Unknown 21 (1%) 106 (2%)

Sex < .001

Male 854 (50%) 3108 (45%)

Female 847 (50%) 3784 (55%)

Clinical outcomes

Ventilation (yes/no) 194/1507 1365/7983 < .001

ICU admissions (yes/no) 98/1603 2188/7160 < .001

Mortality (died/survived) 110/1591 780/8568 .01

Input codes, [common codes/COVID total], [SRD total]

Diagnosis 2310/2599 6293

Procedure 1204/1905 5778

Drugs 2147/2283 4592

Lab measurements 1355/1496 2431
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For each outcome task (the likelihood of the patient staying in the hospital and ventilation risk) we study two 
variations of prediction into the future: predict short-term (3 days) and long-term (7 days) ( Tf = 3, 7 ) patient 
outcomes. For all variations, we feed 2 days of patient’s past history ( Th ) to the model. A detailed performance 
analysis of TransMED as a function of input history size and look-ahead duration is provided in Supplementary 
Table 4.

Implementation details. Baselines. For LR, we use an aggregated view of patient’s diagnoses, proce-
dures, drugs, lab codes, lab measurements, demographics, and risk factors over time. The model is trained using 
all variables encoded with the one-hot encoding scheme. BEHRT model adapts the BERT layers for structured 
EHR data. It considers the sets of medical codes occurring across multiple visits of a patient as a single instance 
of training sample. Analogous to the NLP domain, each code is embedded similar to a word, and a time-offset 
embedding is added for each token depending on the visit id. To ensure a fair comparison , the BEHRT model is 
pre-trained on SRD and fine-tuned on COVID-19 dataset as well. For the GRU baseline, we encode each input 
timestep as a multi-hot vector of diagnosis, procedure, and medication codes. Additional implementation details 
for the baseline methods can be found in Supplementary section titled “Methods: Implementation details.”

TransMED : The BERT encoder layers in our model are implemented using the PyTorch BERT implementa-
tion available from Huggingface https:// github. com/ huggi ngface/ trans forme rs and used 2 layers and 2 heads 
with a hidden size of 64 for most configuration (refer to Supplementary section titled “Methods: Implementation 
details” for hyperparameter search). We noticeably used a low number of parameters in the model to ensure 
training convergence with limited data. We mask and predict one token for every patient state input to the 
model. The model was trained for a maximum of 300 epochs (both at visit level and patient temporal level) or if 
the validation loss stopped reducing for 15 consecutive epochs. Training was performed using a single NVIDIA 
Tesla V100 GPU of 16 GB memory capacity, leading to average training time of 2 h for the transfer learning step 
(using SRD cohort) and 30 min for the temporal modeling layer using COVID-19 cohort. For reproducibility 
purposes, our code will be made publicly available upon the acceptance of this paper.

Performance analysis. We perform extensive experiments to answer following major questions: (1) which 
method is the best modeling approach for a specific prediction task? (2) What is the impact of using transfer 
learning for predicting COVID-19 patient outcomes? (3) How effective are different modalities of data in captur-
ing patient state over various complexities of prediction objective?

Table 2 provides a comparison of TransMED with respect to other benchmarks on all prediction tasks. We 
experimented with different combinations of input data sources for TransMED , LR, GRU, and BEHRT, and report 
the best performance for each model. All studies are performed in sliding window setting as described in the 
evaluation setup. A primary observation from Table 2 is that the performance gaps between the benchmarked 
methods vary depending on the prediction task. Arguably, the patient stay prediction is a simpler task since it 
requires developing a coarser-level understanding of patient’s severity. A patient can stay in the hospital for a 
variety of reasons and learning the association between all potential factors and a severity level is key to accurate 
prediction. On the other hand, predicting a patient’s ventilation risk requires reasoning about a more specific 
set of symptoms. Also, accurate prediction of ventilation risk requires robustness against label imbalance due 
to the rareness of the outcome. TransMED performs on par with GRU for the patient stay prediction task and 
consistently outperforms logistic regression and BEHRT. For the two ventilation prediction tasks, TransMED 
demonstrates an average improvement of 17.5% for AUROC and 34.84% for F1 measure over logistic regression, 

recall =
TP

TP + FN
, precision =

TP

TP + FP
, F1 =

2× recall × precision

recall + precision

Table 2.  Performance comparison of TransMED with other methods. Significant values are in bold. The 
methods are evaluated for predicting patient stay and ventilation risk in short-term (next 3 days) as well as 
long-term (next 7 days). TransMED ’s best performance was observed using BERT as fine tuning layer for long 
term ventilation prediction while feed-forward layer did best for other tasks.

Model

3 days 7 days

AUROC F1 AUROC F1

(a) Patient stay prediction results

LR 0.79 (0.77–0.81) 0.67 (0.65–0.71) 0.74 (0.71–0.77) 0.68 (0.65–0.72)

BEHRT 0.68 (0.64–0.71) 0.43 (0.42–0.44) 0.62 (0.58–0.65) 0.43 (0.42–0.44)

GRU 0.84 (0.81–0.86) 0.77 (0.75–0.79) 0.80 (0.76–0.83) 0.67 (0.61–0.72)

TransMED 0.84 (0.82–0.86) 0.72 (0.70–0.74) 0.80 (0.77–0.83) 0.73 (0.70–0.76)

(b)  Ventilation risk prediction results

LR 0.64 (0.52–0.78) 0.31 (0.28–0.35) 0.68 (0.56–0.80) 0.31 (0.28–0.34)

BEHRT 0.63 (0.60–0.66) 0.43 (0.42–0.44) 0.66 (0.63–0.69) 0.2 (0.19–0.22)

GRU 0.62 (0.48–0.77) 0.5 (0.5–0.5) 0.72 (0.59–0.87) 0.51 (0.49–0.54)

TransMED 0.83 (0.77–0.89) 0.52 (0.49–0.56) 0.77 (0.67–0.87) 0.53 (0.49–0.57)

https://github.com/huggingface/transformers
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the next best performing method. A detailed comparison of the AUROC profiles for TransMED and other base-
lines is provided in Supplementary Fig. 1.

Impact of transfer learning and hierarchical model.  With regards to self-supervised learning approaches, 
TransMED demonstrates an average gain of 25.6% for AUROC and 45.8% for F1 measures over BEHRT across 
four tasks. The significant out-performance of TransMED over BEHRT demonstrates the impact of our hierar-
chical modeling approach beyond adapting BERT and pre-training on multiple cohorts. The impact of transfer 
learning and multi-modality is studied in Table 3. TransMEDw/o TL lists performance without transfer learning 
from SRD (pretrains and finetunes only on COVID-19 cohort) and compares it to different pretraining settings. 
Transfer learning makes a significant impact in improving performance across all four tasks, with an average 
improvement of 12.9% and 10.3% in AUROC for patient stay and ventilation prediction, respectively. Notice-
ably, transfer learning is the primary contributing factor in the significant performance difference between 
TransMED and other baseline methods for the ventilation prediction tasks. This demonstrates transfer learning 
helps learn the fine grained interactions between medical concepts that are essential to accurate prediction of 
complex medical outcomes, in presence of limited training data. For multi-modality, we see that, using only 
the procedure codes can offer significant predictive performance for all methods for the patient stay prediction 
task (see Supplementary Table 5). Introduction of risk factors from clinical notes, laboratory measurements and 
demographics however improves the accuracy of ventilation prediction by 3.7% and 4.0% in AUROC, respec-
tively. The combination of demographics, laboratory measurements, clinical notes and procedure codes con-
sistently produces the best performance for TransMED across four prediction settings. Supplementary Table 5 
provides the details for all input variations that were experimented with and reports the performance breakdown 
for TransMED as a function of input features.

Model interpretability via single and multicomorbidity analysis. This section presents two dif-
ferent evaluations of our model’s ability to account for important clinical factors. First, we begin with profiling 
the model’s predicted risk score distribution in terms of well-established univariate risk factors in the clinical 
 literature29,30, namely the chronic conditions extracted from clinical notes and demographics information such 
as age, gender, and sex. Next, we examine the ability of the model to account for important multi-comorbidities. 
Taking inspiration from the literature on recommendation  systems40, we demonstrate a new methodology to 
identify top multi-comorbidities present in the patient population. We then compute a ranked list of the top 
multi-comorbidities associated with patients with a ventilation outcome, and compare the top-ranked multi-
comorbidities as predicted by the model. This is a significantly harder test and we demonstrate that TransMED 
successfully ranks the majority of the multi-comorbidities using this top-k verification approach.

Defining clinical risk factors. Figure 4a shows the distribution of different chronic conditions and risk factors 
in the entire population vs ventilated population. We observe that the admitted patients had high prevalence of 
hypertension, obesity, smoking, and diabetes (present in around 60-65% of the population), while hyperlipi-
demia and coronary artery disease (CAD) were observed in 40% and 23% of the cohort, respectively. However, 
the prevalence of all risk factors was substantially higher in the ventilated population. Diabetes, obesity, and 
hypertension were present in more than 90% of patients, while CAD and diabetes patients had the highest ratio 
of (ventilated/total population).

Univariate analysis of model predicted risk scores. Figure 4b provides the model predicted ventilation risk score 
for patients with or without a risk factor. Patients with any of the risk factors were predicted to have a higher risk 
than patients without a risk factor, which is consistent with ground truth observation. The average predicted risk 

Table 3.  Ablation study results of the proposed TransMED model analyzing the impact of transfer learning 
and data modalities on the final performance. Ablation study was performed with a fixed set of hyper-
parameters and feed forward network fine tuning layer. See Supplementary “Methods: Implementation details” 
for description of hyperparameter tuning.

Method

Short-term 
patient stay

Long-term 
patient stay

Short-term 
ventilation

Long-term 
ventilation

AUROC F1 AUROC F1 AUROC F1 AUROC F1

Impact of transfer learning

TransMEDw/o TL 0.71 0.62 0.72 0.67 0.72 0.47 0.71 0.48

TransMEDwith SRD 0.81 0.69 0.78 0.70 0.79 0.50 0.74 0.49

TransMEDwith SRD+COVID 0.83 0.71 0.79 0.72 0.84 0.52 0.77 0.51

Impact of data modalities

TransMEDstruct 0.82 0.70 0.76 0.69 0.81 0.54 0.74 0.50

TransMEDstruct+NLP 0.83 0.71 0.77 0.69 0.79 0.53 0.75 0.51

TransMEDstruct+NLP+demo 0.83 0.72 0.77 0.70 0.81 0.53 0.75 0.51

TransMEDstruct+NLP+demo+labvalues 0.83 0.71 0.79 0.72 0.84 0.52 0.77 0.51
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scores were highest for CAD and diabetes patients, with CAD patients having the largest variance. Between all 
risk factors, diabetes and hypertension patients had the highest increase in risk compared to the non-diabetic or 
non-hypertension patients.

We further studied the model predicted risk scores across different patient demographics in terms of age and 
sex (shown in Fig. 5). Patient race was excluded from our analysis due to insufficient coverage across different 
racial groups. Amongst male and female sex, the model predicted higher risk scores for male patients compared 
to their female counterparts, consistent with the ground truth for ventilation cases observed at 7.9% in male and 
4.3% in female patients, respectively. For different age groups, the patients under 30 years of age were predicted 
to be at very low risk even in the presence of risk factors, again consistent with ventilation outcomes observed 
in the data (1/164 patients under 30). The model predicted risk increased for patients with age when they did 
not have any risk factor. However, in the presence of a chronic condition, the model gave a larger range of risk 
scores to CAD patients between ages 30–65, although the mean scores for other chronic conditions remained 
similar across ages 30-65 (ventilated = 51/883) and the 65+ age group (ventilated = 50/614). A detailed analysis 
of model performance for these sub-cohorts via AUROC measures is provided in Supplementary Table 2 and 3.

Multivariate analysis of model predicted risk scores. Finally, we introduce our methodology for evaluating the 
model predictions in terms of multi-way feature interactions. Details of the multi-comorbidity generation and 
ranking process are provided in Supplementary “Implementation of Multi-Comorbidity Ranking” section. We 
compare a ranking of the top multi-comorbidities from six clinical risk factors as determined by their preva-
lence in the ventilated sub-cohort with a ranking derived through model predicted scores (Fig. 6). The model 
predicted risk ranking on the right closely agrees with the ground truth ranking of comorbidities for ventilated 
patients, with top-5 (out of 30) ground truth comorbidity interactions, in top-9 comorbidities identified by the 
model. Our analysis establishes that the TransMED learns reliable risk scores across salient clinical risk factors 
and captures multi-way feature interactions consistent with ground truth observed for ventilation outcomes.

Figure 4.  (a) Risk factor prevalence in ventilated patients compared to the total population. (b) The distribution 
of model predicted risk scores for ventilation outcomes across the test cohort. The bars show the range while the 
mean score is showed as a line across the bar. All chronic conditions lead to a higher predicted risk while the 
mean scores were highest for patients with CAD and Diabetes [consistent with the ground truth trends observed 
for ventilated patients in (a)].

Figure 5.  The influence of chronic risk factors across sex and age groups on the TransMED predicted risk 
scores for ventilation outcome ( Tf = 3).
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Discussion
Set against the backdrop of COVID-19, we reviewed a number of challenges faced by health systems worldwide 
to develop improved risk stratification tools for pandemic responses. We created a rigorous model evaluation 
framework dedicating significant effort to explore the best settings for the benchmark methods, exploring differ-
ent pre-training strategies (pre-train on only SRD cohort, or a merged SRD and COVID-19 patient cohort) and 
evaluating impact of data source selection (see results for 12 different combinations in Supplementary Table 5. 
The evaluations were performed across the four prediction task settings of varying complexity. Our conclusions 
are drawn from the resultant space of models representing the widest possible variation of data and neural archi-
tectures for our study cohorts. The following are key observations that emerge from our study.

Transfer learning from existing disease can be key to modeling emerging infectious (and rare) 
diseases.  Pre-training TransMED ’s transformer-based multi-modal patient encoder layers on the larger 
SRD cohort consistently provided performance boost ranging from 8 to 17% for our model performance. While 
our insight into the experiments with transfer learning primarily arose from clinical intuitions, we confirmed the 
“transfer potential” by inspecting the overlap in the vocabularies, as well as similarities in outcomes as detailed 
in the previous section. To our knowledge, no other work has demonstrated the ability to train an effective deep 
learning model for COVID-19 by training on other pre-existing patient cohorts.

Building models with imperfect multi‑modal data. Much of the initial literature on predictive mod-
els for electronic healthcare records is overwhelmingly biased towards models with diagnostic codes and drug 
codes. Studies based on procedure codes or time-series measurements constitute a small fraction. TransMED ’s 
best performance was driven by a combination of procedure codes, numeric laboratory measurements, demo-
graphics and knowledge of risk factors extracted from clinical notes. Given the historical importance of diagno-
sis codes and drug codes in building predictive models and their relative under-performance in our study raises 
key questions about the utility of each data source. As Fig. 1 illustrates, we found diagnostic codes are coded in 
sparsely. While medication data is available more continuously, it does not change frequently to suggest changes 
in a patient’s condition. From this perspective, our best performing input combination is strongly intuitive. 
Observing critical procedures such as a radiological test or heparin therapy allows a model to escalate a patient’s 
severity level, observing measurements such lymphocyte counts over time allows the model to reason about the 
trend of infection levels, and the knowledge of demographic information such as age, race, and sex coupled with 
prior knowledge of baseline risk factors such as diabetes, hypertension, and CAD can guide a model’s association 
with other symptoms and outcomes.

Guiding training data complexity . We observe that in a setting with imperfect data, we need to explic-
itly reason about the discriminative value of each data source. We also ensured the availability of sufficient train-
ing data for each feature introduced in every data source. We only included 8 laboratory measurements out of 
1496 unique laboratory measurement codes by considering the number of patients who had available data (we 
set 1200 patients as a minimum threshold) and the minimum number of days results were available for each 
patient (set to two). Ensuring high overlap between medical codes was critical to the benefit of transfer learning 
as well. Considering that procedure codes have an overlap of 63.2% across SRD and COVID-19 patient cohorts, 
as compared to 88.88% for diagnostic codes, 94.04% for drugs, and 90.57% for laboratory measurements, it is 
safe to say that the discriminative nature of procedure codes was a dominant factor over vocabulary overlap. 
Introduction of each feature affects the learning complexity by increasing the number of model parameters. 
Implicitly and intuitively, we sought to maximize the ratio of information entropy in our training data for each 
model parameter.

Merit of hierarchical approach for learning from sparse data. We conclude this discussion by not-
ing that our approach outperformed others by explicitly recognizing the sparsity in the training data. Instead of 
learning the association of different medical codes or laboratory measurements at an entire patient stay level, we 
sought to learn the dependencies at finer granularity of time. However, we also used the demographics informa-

Figure 6.  Size-3 comorbidities by prevalence in ventilated patients vs model predicted risk score. The top 5 (out 
of 30) comorbidities in the ground truth were found within the top 9 risk scores predicted by the model.
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tion and risk factors as static attributes associated with each time interval. Given that most of the multi-modal 
data streams occur sparsely and irregularly, this design decision reduced the complexity of learning the associa-
tion between “everything” but provided less ambiguous input for each sample in the transfer learning step. In 
short, we ensured that the information flowed across modalities within a single time interval via the pre-train-
ing/transfer learning step, and then across time through the temporal layer during the fine-tuning step. Given 
that both TransMED and BEHRT were trained on identical transfer learning settings, the strong performance 
gap of TransMED over BEHRT demonstrates the merit of our hierarchical modeling approach.

Summary and conclusions
Our work shows that a transfer-learning approach that learns from prior and related EHR databases is a prom-
ising way to build predictive models for diseases with limited data. A key conclusion from our study is that 
hierarchical learning, that first models the interaction between various medical concepts over shorter intervals, 
and then learns temporal dependencies is effective for transfer learning across diseases where patient condi-
tions evolve at different time-scales. Our methodology demonstrates that a neural architecture that integrates 
both static (such as demographics and clinical risk factors) and dynamic information (such as temporal lab 
measurements) in a fashion that is robust to the sparsity and irregularity of multi-modal data sources is likely to 
provide the best predictive model for complex outcomes. We also propose a method for multi-way comorbid-
ity analysis that can be extended to include a richer set of phenotypes and evaluate a model’s ability to capture 
complex interactions between them. TransMED ’s ability to improve the prediction accuracy on complex tasks 
such as predicting the likelihood of ventilation seven days into the future by an average of 17.5% on AUROC 
and 34.84% for F1 score demonstrates the promise of our method and motivates further investigation for tasks 
such as mortality prediction and drug recommendation.

Data availability
The data that support the findings of this study are available from STAnford medicine Research data Repository 
(STARR) (https:// starr. stanf ord. edu) but restrictions apply to the availability of these data, which were used 
under license for the current study, and so are not publicly available. The code will be released as open source 
on https:// github. com/ pnnl/ Trans MED.

Received: 12 October 2021; Accepted: 20 May 2022

References
 1. Barda, N. et al. Developing a covid-19 mortality risk prediction model when individual-level data are not available. Nat. Commun. 

11, 1–9 (2020).
 2. Yan, L. et al. An interpretable mortality prediction model for COVID-19 patients. Nat. Mach. Intell. 2, 283–288. https:// doi. org/ 

10. 1038/ s42256- 020- 0180-7 (2020).
 3. Razavian, N. et al. A validated, real-time prediction model for favorable outcomes in hospitalized covid-19 patients. NPJ Digit. 

Med. 3, 1–13 (2020).
 4. Estiri, H. et al. Predicting covid-19 mortality with electronic medical records. NPJ Digit. Med. 4, 1–10 (2021).
 5. Kar, S. et al. Multivariable mortality risk prediction using machine learning for covid-19 patients at admission (aicovid). Sci. Rep. 

11, 1–11 (2021).
 6. Yang, Z., Dehmer, M., Yli-Harja, O. & Emmert-Streib, F. Combining deep learning with token selection for patient phenotyping 

from electronic health records. Sci. Rep. 10, 1–18 (2020).
 7. Wang, Z. et al. Hospitalised covid-19 patients of the mount Sinai health system: A retrospective observational study using the 

electronic medical records. BMJ Open 10, e040441 (2020).
 8. Schwab, P. et al. Real-time prediction of covid-19 related mortality using electronic health records. Nat. Commun. 12, 1–16 (2021).
 9. Tseng, Y.-J. & Shih, Y.-L. Developing epidemic forecasting models to assist disease surveillance for influenza with electronic health 

records. Int. J. Comput. Appl. 42, 616–621. https:// doi. org/ 10. 1080/ 12062 12X. 2019. 16337 62 (2020).
 10. Liang, W. et al. Early triage of critically ill covid-19 patients using deep learning. Nat. Commun. 11, 1–7 (2020).
 11. Krystal, J. H. Responding to the hidden pandemic for healthcare workers: Stress. Nat. Med. 26, 639–639 (2020).
 12. Chen, Q. et al. Mental health care for medical staff in china during the covid-19 outbreak. Lancet Psychiatry 7, e15–e16 (2020).
 13. Kang, L. et al. The mental health of medical workers in Wuhan, China dealing with the 2019 novel coronavirus. Lancet Psychiatry 

6, 66 (2020).
 14. Lassau, N. et al. Integrating deep learning ct-scan model, biological and clinical variables to predict severity of covid-19 patients. 

Nat. Commun. 12, 1–11 (2021).
 15. Mizrahi, B. et al. Longitudinal symptom dynamics of covid-19 infection. Nat. Commun. 11, 1–10 (2020).
 16. Gao, Y. et al. Machine learning based early warning system enables accurate mortality risk prediction for covid-19. Nat. Commun. 

11, 5033 (2020).
 17. Carmichael, H. et al. Learning from past respiratory failure patients to triage covid-19 patient ventilator needs: A multi-institutional 

study. J. Biomed. Inform. 119, 103802 (2021).
 18. Choi, E., Bahadori, M. T., Schuetz, A., Stewart, W. F. & Sun, J. Doctor ai: Predicting clinical events via recurrent neural networks. 

In Machine Learning for Healthcare Conference, 301–318 (PMLR, 2016).
 19. Choi, E., Bahadori, M. T., Song, L., Stewart, W. F. & Sun, J. Gram: graph-based attention model for healthcare representation 

learning. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 787–795 
(2017).

 20. Choi, E., Xiao, C., Stewart, W. F. & Sun, J. Mime: Multilevel medical embedding of electronic health records for predictive health-
care. arXiv preprint arXiv: 1810. 09593 (2018).

 21. Huang, S.-C., Pareek, A., Seyyedi, S., Banerjee, I. & Lungren, M. P. Fusion of medical imaging and electronic health records using 
deep learning: A systematic review and implementation guidelines. NPJ Digit. Med. 3, 1–9 (2020).

 22. Venugopalan, J., Tong, L., Hassanzadeh, H. R. & Wang, M. D. Multimodal deep learning models for early detection of Alzheimer’s 
disease stage. Sci. Rep. 11, 1–13 (2021).

 23. Li, Y. et al. Inferring multimodal latent topics from electronic health records. Nat. Commun. 11, 1–17 (2020).

https://starr.stanford.edu
https://github.com/pnnl/TransMED
https://doi.org/10.1038/s42256-020-0180-7
https://doi.org/10.1038/s42256-020-0180-7
https://doi.org/10.1080/1206212X.2019.1633762
http://arxiv.org/abs/1810.09593


13

Vol.:(0123456789)

Scientific Reports |        (2022) 12:10748  | https://doi.org/10.1038/s41598-022-13072-w

www.nature.com/scientificreports/

 24. El-Sappagh, S., Alonso, J. M., Islam, S. R., Sultan, A. M. & Kwak, K. S. A multilayer multimodal detection and prediction model 
based on explainable artificial intelligence for Alzheimer’s disease. Sci. Rep. 11, 1–26 (2021).

 25. Landi, I. et al. Deep representation learning of electronic health records to unlock patient stratification at scale. NPJ Digit. Med. 
3, 1–11 (2020).

 26. Harutyunyan, H., Khachatrian, H., Kale, D. C., Ver Steeg, G. & Galstyan, A. Multitask learning and benchmarking with clinical 
time series data. Scientific data 6, 1–18 (2019).

 27. Thiagarajan, J. J., Rajan, D., Katoch, S. & Spanias, A. Ddxnet: A deep learning model for automatic interpretation of electronic 
health records, electrocardiograms and electroencephalograms. Sci. Rep. 10, 1–11 (2020).

 28. Altschul, D. J. et al. A novel severity score to predict inpatient mortality in covid-19 patients. Sci. Rep. 10, 1–8 (2020).
 29. Gue, Y. X. et al. Development of a novel risk score to predict mortality in patients admitted to hospital with covid-19. Sci. Rep. 10, 

1–8 (2020).
 30. Xu, W. et al. Risk factors analysis of covid-19 patients with ards and prediction based on machine learning. Sci. Rep. 11, 1–12 

(2021).
 31. Satici, C. et al. Performance of pneumonia severity index and curb-65 in predicting 30-day mortality in patients with covid-19. 

Int. J. Infect. Dis. 98, 84–89 (2020).
 32. Li, Y. et al. Behrt: Transformer for electronic health records. Sci. Rep. 10, 1–12 (2020).
 33. Rasmy, L., Xiang, Y., Xie, Z., Tao, C. & Zhi, D. Med-bert: Pretrained contextualized embeddings on large-scale structured electronic 

health records for disease prediction. NPJ Digit. Med. 4, 1–13 (2021).
 34. Burn, E. et al. Deep phenotyping of 34,128 adult patients hospitalised with covid-19 in an international network study. Nat. Com‑

mun. 11, 5009 (2020).
 35. Datta, S. et al. A new paradigm for accelerating clinical data science at Stanford medicine. CoRR arXiv: 2003. 10534 (2020).
 36. Kocaman, V. & Talby, D. Spark nlp: Natural language understanding at scale. Softw. Impacts 8, 100058 (2021).
 37. Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. 

arXiv preprint arXiv: 1810. 04805 (2018).
 38. Wang, P., Agarwal, K., Ham, C., Choudhury, S. & Reddy, C. K. Self-supervised learning of contextual embeddings for link predic-

tion in heterogeneous networks. In Proceedings of the Web Conference 2021 (2021).
 39. Chung, J., Gülçehre, Ç., Cho, K. & Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. 

CoRR arXiv: 1412. 3555 (2014).
 40. Wang, X., He, X., Cao, Y., Liu, M. & Chua, T.-S. Kgat: Knowledge graph attention network for recommendation. In Proceedings of 

the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (2019).

Acknowledgements
The research described in this paper was supported in part by the Laboratory Directed Research and Devel-
opment Program at Pacific Northwest National Laboratory, a multiprogram national laboratory operated by 
Battelle for the U.S. Department of Energy and US National Science Foundation under grant 1838730. O.G. 
was supported by The Weintz Family COVID-19 Research Fund. Any opinions, findings, and conclusions or 
recommendations expressed in this material are those of the authorsand do not necessarily reflect the views of 
the funding agency.

Author contributions
S.Tamang, S.C., K.A., C.R. conceived the study, P.M. generated EHR datasets, P.M. and S.Tipirneni performed 
statistical analysis, K.A., S.C. designed and implemented TransMED , S.Tipirneni implemented all baselines, K.A., 
C.H., S.Tipirneni. performed model optimizations and benchmarking, C.H., S.Tang, V.K. developed pipeline for 
processing clinical notes, S.Tamang, M.B., K.A., S.C. designed experiments for interpretability, C.R., O.G., R.R. 
analyzed the results. All authors reviewed the manuscript.

Competing interests 
The concepts presented in this paper on the hierarchical multi-modal model design are protected with a U.S. 
provisional patent 63/244,067. All authors have no conflicts to declare.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 022- 13072-w.

Correspondence and requests for materials should be addressed to S.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© Battelle Memorial Institute 2022

http://arxiv.org/abs/2003.10534
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1412.3555
https://doi.org/10.1038/s41598-022-13072-w
https://doi.org/10.1038/s41598-022-13072-w
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Preparing for the next pandemic via transfer learning from existing diseases with hierarchical multi-modal BERT: a study on COVID-19 outcome prediction
	Our contributions. 
	Methods
	Data sources. 
	Problem statement. 
	Model architecture. 
	Multi-modal patient context encoders. 
	Learning contextual representation of patient state in a time interval. 
	Transfer learning. 
	Learning over time from the entire history. 


	Results
	Comparison of SRD and COVID-19 Cohorts. 
	Training and evaluation setup. 
	Implementation details. 
	Baselines. 

	Performance analysis. 
	Impact of transfer learning and hierarchical model. 

	Model interpretability via single and multicomorbidity analysis. 
	Defining clinical risk factors. 
	Univariate analysis of model predicted risk scores. 
	Multivariate analysis of model predicted risk scores. 


	Discussion
	Transfer learning from existing disease can be key to modeling emerging infectious (and rare) diseases. 
	Building models with imperfect multi-modal data. 
	Guiding training data complexity . 
	Merit of hierarchical approach for learning from sparse data. 

	Summary and conclusions
	References
	Acknowledgements


