
H-STAR: LLM-driven Hybrid SQL-Text Adaptive Reasoning on Tables

Nikhil Abhyankar†, Vivek Gupta‡, Dan Roth‡, Chandan K. Reddy†

†Virginia Tech, ‡University of Pennsylvania
nikhilsa@vt.edu, {gvivek,danroth}@seas.upenn.edu, reddy@cs.vt.edu

Abstract

Tabular reasoning involves interpreting natu-
ral language queries about tabular data, which
presents a unique challenge of combining lan-
guage understanding with structured data anal-
ysis. Existing methods employ either tex-
tual reasoning, which excels in semantic in-
terpretation but struggles with mathematical
operations, or symbolic reasoning, which han-
dles computations well but lacks semantic un-
derstanding. This paper introduces a novel
algorithm H-STAR that integrates both sym-
bolic and semantic (textual) approaches in a
two-stage process to address these limitations.
H-STAR employs: (1) step-wise table extrac-
tion using ‘multi-view’ column retrieval fol-
lowed by row extraction, and (2) adaptive rea-
soning that adapts reasoning strategies based on
question types, utilizing semantic reasoning for
direct lookup and complex lexical queries while
augmenting textual reasoning with symbolic
reasoning support for quantitative and logical
tasks. Our extensive experiments demonstrate
that H-STAR significantly outperforms state-of-
the-art methods across three tabular question-
answering (QA) and fact-verification datasets,
underscoring its effectiveness and efficiency.1

1 Introduction
Tabular data is one of the most widely used formats
for storing structured information in real-world ap-
plications. Table-based reasoning presents an in-
herently challenging problem, requiring logical,
mathematical, and textual reasoning over unstruc-
tured queries and structured tables (Ye et al., 2023).
Thus, understanding and inferring tabular data has
become a significant area of research in natural
language processing. Tabular reasoning tasks (il-
lustrated in Figure 1), such as table-based question
answering (Pasupat and Liang, 2015; Nan et al.,
2022) and table-based fact verification (Chen et al.,
2019), have been extensively explored in the past.

1The codes and data are available at: https://github.
com/nikhilsab/H-STAR

Q: NY Americans did not qualify for playoffs in 1936/37
Evidence: Columns: [year, national cup]; Rows: [1]
A: False Fact Verification

Short-form QA

Long-form QA

row_id Year Division Playoffs National Cup

0 1935/36 1 Champion ?

1 1936/37 1 DNQ Champion

... ... ... ... ...

18 1953/54 1 Champion Champion

19 1954/55 1 No playoff ?

row_id Year Division Playoffs National Cup

Q: How was the cup performance in 1936/37 and 1953/54?
Evidence: Columns: [year, national cup]; Rows: [1, 18]
A: NY Americans won the national cup
     in 1936/37 and 1953/54

Q: When did NY Americans win the cup after 1936?
Evidence: Columns: [year, playoffs]; Rows: [1,18]
A: 1953/54

Figure 1: An illustration of different tabular reasoning tasks
(a) Fact-verification, (b) Short-form QA, and (c) Long-form
QA. For each task, a question Q is paired with its answer A,
which varies by task. Evidence shows the relevant columns
and rows needed to answer the question.

Advancements in Large Language Models
(LLMs) have led to better performance across vari-
ous tasks through carefully crafted prompts. In the
domain of table reasoning, symbolic approaches
such as Program of Thought (Chen et al., 2023) and
textual methods like Chain of Thought (CoT) (Wei
et al., 2022; Brown et al., 2020) have been explored.
However, when applied individually (see Figure 2)
these methods often struggle due to the complex-
ities imposed by the intricate mix of numerical,
temporal, and textual data, coupled with complex
table structures (Shi et al., 2023; Liu et al., 2023;
Sui et al., 2024). Textual reasoning excels in natu-
ral language understanding but often misinterprets
table structures and struggles with quantitative rea-
soning. Conversely, SQL-based approaches are
strong in quantitative problem-solving but perform
poorly on noisy or unstructured inputs (Liu et al.,
2023). As a result, recent techniques (Cheng et al.,
2022; Ye et al., 2023; Wang et al., 2023; Nahid and
Rafiei, 2024) that rely solely on textual or symbolic
reasoning suffer from similar limitations. There-
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Q: did the new york americans win the
national cup in 1936?

a) SQL based Reasoning

b) Text based Reasoning

SQL: SELECT
`national cup` FROM w
WHERE `year` = '1936/37';

champion

The question asks to find
whether new york
americans win the cup
in 1936....

yes

b) Text based Reasoning

Q: how long did it take for the new york
americans to win the national cup after 1936?

a) SQL based Reasoning

The instance after 1936,
when the team won the
national cup is 1953, thus
the answer is 18

17
SQL: SELECT
(CAST(SUBSTR(year, 1, 4)
AS INTEGER) - 1936) AS
years_after_1936 FROM.... 

18

(c)(a)

Year Playoffs National
Cup

1935/36 Champion ?

1936/37 DNQ Champion

... ... ...

1953/54 Champion Champion

1954/55 No playoff ?

(b)

[Original Table]

Figure 2: An illustration highlighting the complexity of table reasoning and the need for an integrated approach: (a) Original
table, (b) Symbolic reasoning misinterprets the question and returns a value instead of a yes/no response, and (c) Text-based
approach fails to solve a math question correctly, leading to an incorrect answer.

fore, it is crucial to explore the question: How can
symbolic and textual approaches be integrated
into a hybrid method for tabular reasoning that
leverages their complementary strengths while
mitigating their individual limitations?

In this paper, we introduce H-STAR which com-
bines symbolic and textual reasoning abilities of
LLMs, achieving the best of both worlds. H-STAR
decomposes the table reasoning task into two sub-
tasks: (a) Table Extraction and (b) Adaptive Rea-
soning. In the table extraction phase, we employ
a step-by-step ‘multi-view’ chain, first identifying
relevant columns using the original table and its
transposed form. The filtered table is then used
for row extraction, contrary to other approaches,
which use the original table for both row and col-
umn selection (Ye et al., 2023; Nahid and Rafiei,
2024). Focusing on relevant table cells helps LLMs
by providing the right context, thereby reducing
hallucinations in reasoning. We employ a com-
bination of SQL-based and text-based techniques
in H-STAR’s table extraction phase. In the adap-
tive reasoning phase, we use the language compre-
hension capabilities of LLMs to guide them with
few-shot examples to decide when to support se-
mantic methods with symbolic (SQL) approaches.
H-STAR employs semantic reasoning universally,
using it exclusively for direct lookup, common-
sense, and complex lexical queries while using an
additional SQL step for quantitative, mathematical,
and logical tasks. This strategy optimizes perfor-
mance on diverse question types, supporting text
comprehension with computation when required.

We demonstrate the efficacy of H-STAR across
three tabular benchmarks involving table QA and
table fact verification. Our experiments show that
using the combined approach of H-STAR, aligned
with multi-view extraction and adaptive reasoning

outperforms all prior state-of-the-art approaches.
Our analysis demonstrates that H-STAR is robust
and generalizable across LLMs, showcasing its su-
perior reasoning capabilities across various tasks.
Our main contributions are:

(a) We introduce H-STAR, a two-step method uni-
fying table extraction with adaptive reasoning to
enhance performance on tabular reasoning. It is
a hybrid approach that effectively integrates sym-
bolic (SQL logic) and semantic (textual) methods.

(b) Through extensive experiments, we demon-
strate that H-STAR’s hybrid approach outperforms
individually implemented symbolic and semantic
methods, particularly excelling on longer tables.

(c) Our experiments showcase H-STAR’s efficient
table extraction and enhanced reasoning capabili-
ties across different models and datasets, empha-
sizing the importance of every stage in achieving
improved performance.

2 H-STAR Approach

H-STAR decomposes the table reasoning task into
extraction and reasoning stages, combining LLM’s
textual comprehension with symbolic reasoning. It
converts the original table (T) into a query-specific
table (TCR) (refer Algorithm 1). Figure 3 illus-
trates our H-STAR approach. Unlike, DATER (Ye
et al., 2023) and TabQSLify (Nahid and Rafiei,
2024), which use textual reasoning and text-to-
SQL respectively, H-STAR integrates both reason-
ing types in a complementary manner for table
extraction. Our reasoning step dynamically uses
symbolic techniques alongside semantic methods
for quantitative questions, overcoming the limits of
pure textual reasoning. H-STAR operates in two
main stages: 1) Table Extraction and 2) Adaptive
Reasoning.



2.1 Table Extraction

Two-dimensional tables consist of columns and
rows. Table extraction involves a two-step rea-
soning chain: (1) column extraction and (2) row
extraction (see Figure 3). As illustrated in Algo-
rithm 1, for a given table T, table extraction returns
a table TCR (lines 1-8) based on the input query Q.

Column Extraction. As shown in Algorithm 1,
H-STAR uses a ‘multi-view’ technique, first us-
ing the original table T (line 1) followed by its
transposed form TT (line 2) for column extraction.
Changing the ‘view’ acts as a verifier accounting
for any information missed due to the table struc-
ture, thus improving the overall performance (see
Appendix A.4). In Figure 3, given an input table
T and the question Q (‘How long did it take the
New York Americans to win the National Cup after
1936?’), the LLM employs colsql to generate an
SQL query to extract columns ‘year’ (C1). This
is followed by the text-based step coltext which
processes table TT to return columns C2 (‘year’,

‘national cup’). This step captures the ‘national cup’
information relevant to answer the query, which is
missed by colsql. Table T is then filtered for
columns ‘year’, ‘national cup’ (C’) derived from
C1 and C2 to obtain table Tc (lines 3,4).

Algorithm 1 H-STAR
Input: (T, Q)→ Table - Question pair
Output: Â→ Predicted Answer

Stage A: Table Extraction
Column Extraction

1: C1← colsql(T, Q) ▷ SQL approach
2: C2 ← coltext(TT, Q) ▷ Text approach

▷ TT refers to the transposed table
3: C′ ← C1∪ C2

4: TC← T.filter(C′)
▷ Filter table T with columns C′ to get TC

Row Extraction
5: R1← rowsql(TC, Q) ▷ SQL approach
6: R2← rowtext(TC, Q, R1) ▷ Text approach
7: R′ ← R1 ∪ R2
8: TCR ← TC.filter(R′)

▷ Filter table TC with rows R′ to get TCR

Stage B: Adaptive Reasoning
9: if math(Q) == True then

10: Ev ← fsql(TCR, Q)
11: Â← ftext(TCR, Q, Ev)

▷ Use SQL generated Ev with TCR to generate Â.
12: else
13: Â← ftext(TCR, Q)

▷ Use only the table TCR to generate Â
14: end if
15: return Â

Row Extraction. After obtaining the filtered ta-
ble TC with relevant columns (Algorithm 1, line
4), H-STAR proceeds to the row extraction phase

culminating in the query-specific table TCR (lines
5-8). The filtered table TC has fewer tokens than
T, fitting within the token limit and enabling more
efficient row extraction. As shown in Figure 3, the
SQL query generated by rowsql on the column-
filtered table TC extracts the relevant rows R1 (‘row
18’). While it returns the appropriate row, it is not
sufficient to answer the question. To overcome
these limitations, we use text-based row verifica-
tion rowtext to obtain the missing rows, ultimately
retrieving ‘row 1’ and ‘row 18’ (R2). Combining
R1 and R2 gives the relevant rows R’ (‘row 1’, ‘row
18’), resulting in the final table TCR.

2.2 Adaptive Reasoning

We propose an adaptive reasoning framework that
harnesses the strengths of textual reasoning while
mitigating its quantitative limitations through sym-
bolic reasoning. First, we prompt LLMs to lever-
age their language understanding capabilities to
evaluate the query requirements. We apply sym-
bolic reasoning for queries necessitating quanti-
tative analysis and use the generated output (Ev)
along with the table (TCR) as the input to the final
textual reasoning step. For instance, in Figure 3,
when faced with a question like "How long did it
take the New York Americans to win the National
Cup after 1936?", LLM needs to calculate the an-
swer, and our pipeline prioritizes symbolic reason-
ing (fsql) through SQL-generated code. This code
is executed on a SQL engine, enabling precise an-
swers from the table TCR. The output from this
SQL-based evaluation Ev serves as additional evi-
dence, supporting the final reasoning step (ftext).
By explicitly integrating this quantitative approach,
our algorithm effectively addresses LLMs’ limita-
tions in handling quantitative reasoning, thereby
improving the accuracy and robustness when tack-
ling questions that demand numerical reasoning.

3 Experiments

Benchmark Datasets. We evaluate our method
on three datasets covering fact verification, short-
form, and long-form question-answering tasks
using in-context examples. (a) TabFact (Chen
et al., 2019): A fact verification benchmark uti-
lizing Wikipedia tables. We evaluate the test-
small set, containing 2,024 statements and 298
tables, with each statement labeled as Entailed
("True") or Refuted ("False"). (b) WikiTQ (Pasupat
and Liang, 2015): The WikiTableQuestions (Wik-



Year Playoffs National Cup

1935/36 Champion ?
1936/37 DNQ Champion

... ... ...
1953/54 Champion Champion

1954/55 No playoff ?

Text-based Extraction (coltext)

SELECT year FROM w;

"year"

Year 1935/36 ...

Playoffs Champion ...

National
Cup ? ...

Take Table
transpose (TT)

Use the response and
generate  a text-based
answer

SQL based Extraction (colsql)

"year", 
"national cup"

SQL Response: year
The question asks to find the year after
1936, when the team won, and count ...

Final Table TCR

SELECT * FROM w WHERE
(CAST(SUBSTR(year,1,4) AS 
INTEGER) > 1936 AND
`national cup` = 'champion'

"row 18"

SQL based Extraction (rowsql)

"row 1",
"row 18"

Text based Extraction (rowtext)
SQL response: row 18
The question asks 1936 and for the
years after 1936, when new york
americans won....

SQL based Reasoning (fsql)

years_after_1936

17

Text based Reasoning (ftext)

Since the question contains
calculations, it is suitable for
SQL
SQL: SELECT COUNT()...

Use the SQL-generated
response for the text-based
row selection

Use the SQL-generated
response for the text-based
column selection

17

Use the response and
generate text-based
answer

Answer
17

Use the table and the
SQL-generated evidence
for  final reasoning.
Based on the additional 
evidence provided and 
the table ... 

Stage B: Adaptive Reasoning

row_id Year National
Cup

1 1936/37 Champion

18 1953/54 Champion

Q: How long did it take for the New York Americans to win the national cup after 1936?

Stage A: Table Extraction

Stage B: Adaptive Reasoning

Step 1: Column Extraction Step 2: Row Extraction

Word(s) linked to columns: national cup
Value(s) linked to column: 1936

national cup
year Instances of winning the national cup row 1, row 18

1936 as the reference year row 1

how long did it take calculation-based question SQL generated evidence

If the question has
calculations/counting,
use SQL to aid
the final reasoning

Column Extraction (T    TC) Row Extraction (TC     TCR)

row_id Year National
Cup

0 1935/36 ?

1 1936/37 Champion

... ... ...

18 1953/54 Champion

19 1954/55 ?

text reasoning

Add 'row_id' to the
columns selected from
SQL (C1) and text
response (C2) and prune
the table

Column Filtered Table TC

Stage A: Table Extraction

Additional Evidence EV

Figure 3: An overview of our proposed method, H-STAR, consisting of a combination of code generation and text-based
verification. Given a complex table and its question, H-STAR answers using (a) Table Extraction: extracts the question-specific
table from the original by first selecting the columns followed by rows. (b) Adaptive Reasoning: when the question has any
mathematical component, it generates an additional table using SQL used in the textual reasoning step.

iTQ) dataset involves question-answering tasks
over semi-structured Wikipedia tables. It includes a
standard test set with 4,344 table-question pairs. (c)
FeTaQA (Nan et al., 2022): FeTaQA (Free-Form
Table Question Answering) comprises free-form
questions requiring synthesis from multiple table
sections for responses. It demands advanced rea-
soning and profound tabular data understanding,
evaluated on a test set of 2003 samples.

Evaluation Metrics. We tailor our evaluation
metrics based on the task and dataset character-
istics. For fact-verification datasets like TabFact,
we evaluate performance using binary classifica-
tion accuracy. For short-form question-answering
datasets such as WikiTQ, we assess accuracy by
measuring the exact match between predicted out-
puts and the gold-standard answers. For more com-
plex tasks in FeTaQA, which involve long-form
question answering, we evaluate performance us-
ing ROUGE-1, ROUGE-2, and ROUGE-L metrics
(Lin, 2004), comparing predicted outputs against
the long-form answers.

LLM Models. In our research, we use state-
of-the-art large language models (LLM) such as
Gemini-1.5-Flash (Reid et al., 2024), PaLM-2
(Anil et al., 2023), GPT-3.5-Turbo, GPT-4o-mini
(OpenAI, 2023), and the open-source Llama-3-70B

(Dubey et al., 2024) for table reasoning tasks. Our
model inputs include in-context examples, the ta-
ble, and the question for each step of the pipeline.
All baselines with PALM-2 are from the propriety
PALM-2 model, which is different from the public
PALM-2 API (used in H-STAR and TabSQLify).

Baseline Methods. We compare our method with
(a) generic reasoning based on language models,
and (b) table-manipulation reasoning based on lan-
guage models.

(a) Generic Reasoning. These methods direct
the LLM to carry out the required downstream task
based on the information from the table and the in-
put question. They include End-to-End QA, which
offers only the table and the question, and Few-
Shot QA, which involves a few examples with the
table-question-answer triplet alongside the table
and the question. Chain-of-Thought prompts the
LLMs to provide a supporting reasoning chain that
leads to the answer.

(b) Table Manipulation. These techniques in-
volve several steps, with the initial stage dedicated
to automatically pre-processing the table for the rea-
soning task. BINDER utilizes in-context examples
to produce SQL or Python code containing LLM
API calls to generate answers. DATER directs the
language model to break down tables and ques-



tions, applying reasoning to the decomposed tables
based on sub-questions. Chain-of-Table employs
the table as an intermediate output in its reasoning
process, iterating through tasks until the final an-
swer is obtained. TabSQLify uses SQL to trim the
table and then reasons based on the reduced table.

3.1 Main Results
Table 1 compares the performance of different
methods on the TabFact, and WikiTQ datasets,
across GPT-3.5-Turbo and PaLM-2. This compari-
son involves evaluating against generic reasoning,
table manipulation techniques, and H-STAR. Ap-
pendix A includes analyses on the FeTaQA dataset.

GPT-3.5-Turbo PaLM-2

TabFact WikiTQ TabFact WikiTQ

Generic Reasoning
End-to-End QA 70.45 51.84 77.92 60.59
Few-shot QA 71.54 52.56 78.06 60.33
CoT 65.37 53.48 79.05 60.43

Table Manipulation
BINDER 79.17 56.74 76.98 54.88
DATER 78.01 52.90 84.63 61.48
Chain-of-Table* 80.20 59.94 86.61 67.31
TabSQLify 79.50 64.70 79.78 55.78

H-STAR 85.03 69.56 86.51 68.62

Table 1: Comparison of various methods across datasets.
The results are reported from the Chain-of-Table paper for
fair comparison. * Chain-of-Table uses a proprietary PaLM-2
model that is better than the publicly available version.

Analysis. (a) On WikiTQ dataset, H-STAR sur-
passes all baselines with both GPT-3.5-Turbo and
PaLM-2 models. H-STAR achieves an accuracy
of 69.56% on WikiTQ with GPT-3.5-Turbo, mark-
ing an improvement of 17.72% over the vanilla
GPT-3.5-Turbo model. (b) On the TabFact dataset,
H-STAR outperforms all methods with GPT-3.5-
Turbo, attaining an accuracy of 85.03%, which
is a 14.58% improvement over the vanilla model.
With PaLM-2, H-STAR achieves comparable per-
formance with Chain-of-Table on TabFact while
improving over it by 1.3% on WikiTQ.

Comparison Across Methods Table 2 compares
H-STAR with ReAcTable (Zhang et al., 2023) and
SYNTQA (Zhang et al., 2024b), which use both
textual and symbolic approaches for table reason-
ing. SYNTQA (GPT) uses the GPT model to de-
cide between semantic and symbolic approaches,
applying the chosen method for reasoning based on
its selection. Additionally, it is compared with AL-
TER (Zhang et al., 2024a), which augments both
queries and table data to facilitate reasoning.

TabFact WikiTQ

ReAcTable 73.1 52.5
ALTER 84.3 67.4
SYNTQA (GPT) - 65.2

H-STAR 85.0 69.6

Table 2: Comparison of various methods across datasets on
GPT-3.5-Turbo.

Analysis. H-STAR outperforms methods that
use symbolic and textual approaches, such as Re-
AcTable, SYNTQA(GPT), and ALTER, showing
the effectiveness of its complementary reasoning
in a two-stage process. Appendix A.1 presents a
comparison with more methods.

Performance Across LLMs Table 3 compares
the performance of more advanced models like
Gemini-1.5-Flash, GPT-4o-mini, and the open-
source Llama-3-70B on TabFact and WikiTQ
datasets. The results emphasize H-STAR’s gen-
eralizability across different models and consistent
improvements across datasets. Even advanced mod-
els show significant benefits by using H-STAR.

GPT-4o-mini Gemini-1.5 Llama-3

TF WTQ TF WTQ TF WTQ

Generic Reasoning
End-to-End QA 73.22 59.43 81.12 58.47 78.41 57.89
CoT 75.99 64.31 79.99 64.11 75.34 65.49

Table Manipulation
TabSQLify 78.30 68.74 79.50 63.92 60.70 66.85
Chain-of-Table 85.09 68.53 86.95 70.05 85.86 70.76

H-STAR 89.42 74.93 89.08 73.14 89.23 75.76

Table 3: Comparison of various models across datasets. TF:
TabFact; WTQ: WikiTQ

Analysis. (a) H-STAR shows much higher ac-
curacy for GPT-4o-mini, scoring 89.42% on Tab-
Fact and 74.93% on WikiTQ, compared to the
End-to-End QA and Chain of Thought methods,
which achieve 73.22% and 75.99% on TabFact
and 59.43% and 64.31% on WikiTQ. This marks
a 16.2% improvement on TabFact and 15.5% on
WikiTQ. (b) For Gemini-1.5-Flash, accuracy rises
from 81.12% and 58.47% respectively to 89.08%
on TabFact and 73.14% on WikiTQ. (c) Similarly,
for Llama-3-70B, H-STAR improves the perfor-
mance across both the datasets by a margin of 11%
on TabFact and 18% on WikiTQ, showing consis-
tent gains across models and datasets.

3.2 Efficiency Analysis

Efficiency of Table Extraction. Stage-1 in
H-STAR involves the extraction of the table most
relevant to the question. Our table extraction



method uses a two-step chain to select the relevant
columns followed by the rows. Figure 4 compares
the number of average table cells for the extracted
table for H-STAR, H-STAR without row extrac-
tion, and H-STAR without column extraction with
other baselines.

WikiTQ TabFact FeTaQA0

40

80

120

Av
er

ag
e 
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159

88 86

59

40
53

31
19 1518 13 10

Original Table w/o Row Extraction w/o Column Extraction Table Extraction
DATER TabSQLify

Figure 4: Comparison of average table cells in the final table.

Analysis. In particular, H-STAR significantly re-
duces the average number of processed table cells
- from 159 to 18 for the WikiTQ dataset, from 88
to 13 for the TabFact dataset, and from 86 to 10 for
the FeTaQA dataset. In contrast, other table manip-
ulation methods, like TabSQLify and DATER yield
higher values. Our approach showcases superior
effectiveness, notably reducing cell counts across
all datasets. This emphasizes how H-STAR effec-
tively reduces irrelevant information, thus focusing
LLMs on the right evidence for right reasoning.

Efficiency on Longer Tables. Table-CoT (Chen,
2023) highlights that longer table size, with tables
exceeding 30 rows, is a significant cause of erro-
neous generations. This observation is supported
by a decline in LLM performance as the number
of tokens in the table increases. In Table 4, we
classify LLM performance based on total tokens
into three groups - small (< 2000 tokens), medium
(2000 to 4000 tokens), and large (> 4000 tokens)
and compare H-STAR with table manipulation like
methods BINDER, DATER, Chain-of-Table, and
TabSQLify.

Method Small Medium Large

BINDER 56.54 25.13 6.41
DATER 62.50 42.34 34.62
Chain-of-Table 68.13 52.25 44.87
TabSQLify 68.15 57.91 52.34

H-STAR 71.64 65.20 64.84

Table 4: Performance of various methods on different table
sizes on WikiTQ.

Analysis. The results shown in Table 4 empha-
size the challenges LLMs face when reasoning over

longer tables. Our findings align with previous re-
search, revealing a significant decrease in LLM
performance as table sizes increase. While other
table manipulation methods experience a drop in
performance with larger tables, H-STAR maintains
consistent performance across all table sizes.

3.3 Error Analysis

H-STAR The disjoint, step-wise nature of
H-STAR enables identifying and analyzing fail-
ures. Figure 5 shows 100 randomly selected in-
stances from the Tabfact and WikiTQ datasets
where H-STAR returns incorrect answers. In this
study, ‘Missing Columns’ and ‘Missing Rows’ re-
fer to missing necessary columns and rows, respec-
tively. ‘Incorrect Reasoning’ occurs when H-STAR
extracts the correct table, but LLM fails to produce
the correct answer. ‘Incorrect Annotations’ include
semantically identical answers in different formats,
ambiguous questions, and incorrect gold answers.
Figure 5 shows that for 100 TabFact failures, 2%
are missing columns, 9% missing rows, 79% in-
correct LLM reasoning, and 10% incorrect annota-
tions. For WikiTQ, 6% are missing columns, 17%
missing rows, 54% incorrect reasoning, and 23%
incorrect annotations.

Missing
Columns

Missing
Rows

Incorrect
Reasoning

Incorrect
Annotation

0

20

40

60

80

Pe
rc

en
ta

ge

2
9

79

106
17

54

23

TabFact WikiTQ

Figure 5: Error distribution on 100 error samples across
datasets for H-STAR (GPT-3.5-Turbo).

Analysis. Fewer errors in column and row ex-
traction indicate that H-STAR effectively retrieves
the necessary table data. This improvement allows
us to "shift left" by addressing issues earlier in
the pipeline, enhancing overall performance. The
higher percentage of errors in reasoning does not
reflect poorly on the LLM; instead, it underscores
the effectiveness of our table extraction process.

H-STAR vs Others Figure 6 compares errors
in H-STAR, with TabSQLify, and BINDER on
100 WikiTQ samples where TabSQLify fails. Tab-
SQLify extracts wrong tables for 62 out of 100 (6
missing columns, 56 missing rows). Out of the 38



samples that remain, it incorrectly reasons on 29 of
the samples (76%). BINDER does not handle table
extraction and instead relies on generating multiple
neural SQL queries for final reasoning. However, it
fails to reason correctly in 70 out of 100 instances.

Missing
Columns

Missing
Rows

Incorrect
Reasoning

Incorrect
Annotation

Correct
Answers

0

20

40

60

Co
un

t

6

56

29

9
00 0

70

9

21

4

16

27

10

43

TabSQLify BINDER H-STAR

Figure 6: Analysis of error types in 100 samples from Wik-
iTQ where TabSQLify fails. Note: As we move from left to
right, the total samples decrease for each stage in the pipeline.

In contrast, H-STAR proves more effective in
both table extraction and reasoning, generating cor-
rect answers on 43 samples. Additionally, it demon-
strates fewer errors in table extraction (4 missed
columns; 16 missed rows) and reasoning (27 of the
remaining 80 samples, i.e. 34%).

4 Ablation Study
To evaluate the significance of the two primary
stages in H-STAR: a) Table extraction and b)
Adaptive reasoning, we conducted an ablation
study, removing one stage at a time. For the first
condition, the final adaptive reasoning stage was
substituted with a basic chain-of-thought reason-
ing process, while maintaining the table extraction
stage. Conversely, the second condition retained
the adaptive reasoning stage but omitted the table
extraction stage, specifically by removing the row
extraction and column extraction steps individually
and then collectively. A detailed assessment of
the contribution of each stage to the overall perfor-
mance of the method is shown in Table 5. It high-
lights the importance of each step in the pipeline.
Removing any step can result in a performance loss
especially adaptive reasoning which causes a 7%
drop for both TabFact and WikiTQ datasets. For a
detailed error case study and further analysis, refer
to the Appendix E.

Method TabFact WikiTQ

H-STAR 86.51 68.62

w/o row extraction 86.17 66.30
w/o column extraction 84.04 67.03
w/o table extraction 83.79 63.58
w/o adaptive reasoning 79.35 61.47

Table 5: Performance on TabFact and WikiTQ datasets.

4.1 Impact of the Hybrid Approach
We perform a quantitative study of the impact of
the hybrid approach in H-STAR. Figures 16, 17
(Appendix E) depict how using only one of the
approaches results in insufficient outputs for col-
umn and row extraction tasks respectively. Further-
more, Table 6 shows that not employing a hybrid
approach results in a significant performance loss.

Method TabFact WikiTQ

CoT 79.05 60.43
H-STAR text 79.43 61.47

Text-to-SQL 52.05 42.03
H-STAR sql 58.50 46.09

H-STAR 86.51 68.62

Table 6: Performance using only text-based/SQL-based rea-
soning; H-STAR text: H-STAR with textual reasoning only;
H-STAR sql: H-STAR with symbolic reasoning only.

Analysis. SQL methods though efficient with
numerical reasoning, are highly sensitive to data
variations like irregular formatting and mixed data
types, leading to a performance drop. In contrast,
textual reasoning is more resilient, offering fuzzy
matching and better interpretation of data. By com-
bining textual and symbolic reasoning, H-STAR
uses their complementary strengths, achieving su-
perior performance.

4.2 Symbolic vs Semantic Approaches
As shown in Table 7 removing SQL extraction
drops the accuracy to 85.22% on TabFact and
64.39% on WikiTQ, removing text extraction
causes a drop to 83.74% and 60.31%, respectively.
SQL reasoning removal results in 84.48% and
64.76%, but omitting text reasoning causes the
largest drop, to 58.70% and 54.35%.

Method TabFact WikiTQ

H-STAR 86.51 68.62

w/o SQL extraction 85.22 64.39
w/o text extraction 83.74 60.31
w/o SQL reasoning 84.48 64.76
w/o text reasoning 58.70 54.35

Table 7: Performance of H-STAR after systematically remov-
ing symbolic part and semantic parts from: 1) table extraction
(both row and column extraction); 2) adaptive reasoning.

Analysis. Table 7 shows that text-based ap-
proaches excel in both table extraction and rea-
soning. The evaluation datasets often contain noisy
data that SQL-based approaches struggle with due
to their reliance on structured schemas. Since text-
based reasoning methods are more effective at han-



dling such irregularities, they achieve reasonably
high scores, albeit lower than our hybrid approach.

5 Key Findings

Firstly, our evaluation demonstrates that our hybrid
approach achieves substantial improvements, sur-
passing the performance of previous state-of-the-
art methods across various table reasoning tasks.
Secondly, the quantitative analysis demonstrates
that our ‘multi-view’ approach extracts tables spe-
cific to the query. Furthermore, the qualitative anal-
ysis highlights fewer errors in our table extraction
method compared to prior approaches, confirming
a decrease in irrelevant information.

Thirdly, our analysis indicates consistent perfor-
mance even with longer tables, emphasizing our
method’s effectiveness in accurately extracting rel-
evant information by filtering out noise. Lastly, the
ablation study shows that decomposing the task
into sub-tasks significantly enhances the overall
performance, with each sub-task playing a crucial
role in achieving superior results. Moreover, it also
highlights the constraints of relying solely on either
text or SQL approaches, which are effectively ad-
dressed by our H-STAR approach. Together, these
findings emphasize the substantial advantages of
our hybrid and multi-view approach in addressing
complex table reasoning tasks.

6 Related Work

Table reasoning tasks require the ability to rea-
son over unstructured queries and structured or
semi-structured tables. Traditional approaches like
TAPAS (Herzig et al., 2020), TAPEX (Liu et al.,
2021), TABERT (Yin et al., 2020), TURL (Deng
et al., 2022), PASTA (Gu et al., 2022) work on pre-
training language models jointly on large-scale tab-
ular and text data to reason in an end-to-end man-
ner. Advancements in LLMs allow them to learn
from in-context examples, reducing inference costs.
Text-to-SQL (Rajkumar et al., 2022) and Program-
of-Thought (Chen et al., 2023) use symbolic meth-
ods to solve table-based tasks via Python/SQL pro-
grams. Textual-based reasoning techniques like
Table-CoT (Chen, 2023) and Tab-CoT (Ziqi and
Lu, 2023) extend prompting methods such as zero
and few-shot CoT for tabular reasoning.

Decomposing problems into smaller, manage-
able tasks has proven effective in solving complex
reasoning challenges (Zhou et al., 2022; Khot et al.,
2022). Recent techniques in table reasoning follow

this approach, either by breaking tasks into fixed
sub-tasks (Cheng et al., 2022; Ye et al., 2023; Nahid
and Rafiei, 2024) or by employing iterative meth-
ods (Jiang et al., 2023; Zhang et al., 2023; Wang
et al., 2023). BINDER (Cheng et al., 2022) is an
SQL-based approach that modifies SQL statements
to include LLM API calls within SQL statements.
ALTER (Zhang et al., 2024a) augments both the
queries along with the table data. DATER (Ye et al.,
2023) and TabSQLify (Nahid and Rafiei, 2024) are
table decomposition methods that use semantic and
symbolic reasoning respectively. Chain-of-Table
(Wang et al., 2023) uses a textual reasoning ap-
proach to update tables iteratively before the final
reasoning step. ReAcTable (Zhang et al., 2023)
extends the ReAct (Yao et al., 2023) framework to
table reasoning by employing step-by-step reason-
ing, iteratively generating sub-tables using external
tools like SQL and Python. A detailed explana-
tion has been provided in Appendix C. SYNTQA
(Zhang et al., 2024b) is an ensemble approach em-
ploying an answer selection mechanism selecting
between text-to-SQL and text-based models. In
contrast, H-STAR follows a fixed two-stage table
extraction and reasoning pipeline, applying both
symbolic and semantic approaches complementar-
ily at each stage, which leads to improved perfor-
mance.

7 Conclusion

In this study, we present H-STAR, a novel method
that effectively integrates semantic and symbolic
approaches, demonstrating superior performance
compared to existing methods in tasks involving
table reasoning. Our approach involves a two-step
LLM-driven process: firstly, employing ‘multi-
view’ table extraction to retrieve tables relevant to a
query, and then, implementing adaptive reasoning
to select the optimal reasoning strategy based on
the input query. We address prior bottlenecks with
efficient extraction and reasoning, leading to im-
proved overall performance, particularly on longer
tables. Our results highlight the need to move be-
yond relying solely on either technique and demon-
strate the effectiveness of an integrated approach
that combines the advantages of both methods. Fu-
ture directions involve testing the adaptability of
our methods to semi-structured, complex hierarchi-
cal, and relational tables. Enhancing the reasoning
process through techniques such as self-consistency
and self-verification shows promising potential.



Limitations

Our current work has focused primarily on a subset
of table reasoning tasks using datasets sourced from
Wikipedia. While this has laid a solid foundation, it
limits exploration into diverse reasoning tasks such
as table manipulation, text-to-table generation, and
table augmentation, which could provide valuable
insights and enhance our approach’s capabilities.
Additionally, our method’s generalizability is con-
fined to Wikipedia-based datasets, restricting its
application to other domains that require specific
domain knowledge, which our current approach
lacks. Extending our approach to different domains
may necessitate integrating domain-specific knowl-
edge to ensure effective reasoning.

Furthermore, our evaluation has been limited
to relatively straightforward table structures. Han-
dling more complex data representations such as
semi-structured tables, hierarchical tables, and re-
lational databases remains unexplored territory.
These structures present unique challenges that our
current approach may not effectively address. Fi-
nally, our study has focused solely on the English
language, potentially limiting applicability to lan-
guages with different linguistic complexities that
we have not accounted for.

Ethics Statement

We, the authors, affirm that our work adheres to the
highest ethical standards in research and publica-
tion. We have carefully considered and addressed
various ethical issues to ensure the responsible and
fair use of computational linguistics methodolo-
gies. To facilitate reproducibility, we provide de-
tailed information, including code, datasets (all
publicly available and in compliance with their
respective ethical standards), and other relevant re-
sources. Our claims align with the experimental
results, though some stochasticity is expected with
black-box large language models, which we mini-
mize by maintaining a fixed temperature. We pro-
vide comprehensive details on annotations, dataset
splits, models used, and prompting methods, ensur-
ing our work can be reliably reproduced.
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A Supplementary Analysis

A.1 Comparison With Diverse Methods
Tables 8 and 9 show results of other baseline meth-
ods on WikiTQ and TabFact datasets respectively.
Our method, H-STAR, outperformed all other mod-
els by substantial margins.

Model Method Accuracy

Pre-trained/fine-tuned

TaPas 48.8
GraPPa 52.7
LEVER 62.9
ITR 63.4
SYNTQA(GPT)* 70.4

Codex2

GPT-3 CoT 45.7
TableCoT 48.8
DATER 65.9
BINDER 61.9
ReAcTable 65.8

GPT-3.5-Turbo

ReAcTable 52.5
TableCoT 52.4
StructGPT 52.2
ALTER 67.4
SYNTQA(GPT)* 65.2

GPT-3.5-Turbo H-STAR 69.6

Table 8: Comparison of H-STAR with additional methods on
WikiTQ dataset. * SYNTQA (GPT) uses GPT-3.5-Turbo to
choose between SQL/text reasoning and uses: 1) fine-tuned
models for reasoning; 2) GPT-3.5-Turbo for reasoning.

Model Method Accuracy

Pre-trained/fine-tuned

Table-BERT 68.1
LogicFactChecker 74.3
SAT 75.5
TaPas 83.9
TAPEX 85.9
SaMoE 86.7
PASTA 90.8

Codex

TableCoT 72.6
DATER 85.6
BINDER 85.1
ReAcTable 83.1

GPT-3.5-Turbo
ReAcTable 73.1
TableCoT 73.1
ALTER 84.3

GPT-3.5-Turbo H-STAR 85.0

Table 9: Comparison of H-STAR with additional methods on
TabFact dataset.

2OpenAI Codex model is not available publically anymore.

A.2 FeTaQA
Represented in Table 10 are the results for the Fe-
TaQA dataset using the ROUGE scores (Lin, 2004).
We observe an incremental improvement in the
scores when compared to other methods on the
GPT-3.5-Turbo. The ROUGE scores focus on lex-
ical similarities while ignoring the semantic simi-
larity between predicted and gold outputs. These
metrics are known to be insensitive to capturing im-
provements when using in-context learning since
the model does not learn the expected style of the
long-form text just from an instruction or a few
examples.

Prompting ROUGE-1 ROUGE-2 ROUGE-L

PaLM-2*
DATER 0.63 0.41 0.53
Chain-of-Table 0.66 0.44 0.56

GPT-3.5-Turbo
Table-CoT 0.62 0.39 0.51
TabSQLify 0.58 0.35 0.48

H-STAR 0.62 0.39 0.52

Table 10: Performance on FeTaQA dataset. PaLM-2* refers
to the Google proprietary PaLM-2 model.

Figure 7 illustrates an example where the gener-
ated output, despite being correct in answering the
question, is penalized by the ROUGE metric. This
highlights the limitations of the metric in evaluating
the correctness of the generated responses.

Question: 
When did Art Howe coach the Yale Bulldogs, and what was his
overall record with the team?

Gold Answer:
Howe led the Yale football team as head coach for one year (1912)
and compiled a 7-1-1 record.

Prediction: 
Art Howe coached the Yale Bulldogs in 1912, and his overall
record with the team was 7-1-1.

ROUGE 1: 0.51 ROUGE 2: 0.21 ROUGE L: 0.41

Figure 7: An example of FeTaQA representing low ROUGE
scores for correct answers.

Human Evaluation We further evaluate the qual-
ity of our generations using human evaluation. We
refer to (Nan et al., 2022) and evaluate our gen-
erations on four factors: 1) Fluency based on the
nature and grammar of the output; 2) Correctness
measuring the degree of correctness of the predic-
tion; 3) Adequacy to measure if all the necessary
information is contained in the output; 4) Faithful-
ness to check whether the generation is grounded
to the final extracted table used for reasoning. We

https://doi.org/10.18653/v1/2023.findings-acl.651
https://doi.org/10.18653/v1/2023.findings-acl.651


ask five internal human annotators to assign a score
of 1-5 for each criterion and report the percentage
of samples having values of 4 or 5. Table 11 shows
the results by five annotators for our method and
compares it with other prior methods. The per-
formance pattern of H-STAR is similar to human
performance with comparable fluency and faith-
fulness while matching the trend of having higher
adequacy over correctness. While we marginally
outperform other methods, there is still scope for
improvement.

Method Fluent Correct Adequate Faithful

T5-large 94.6 54.8 50.4 50.4
Human 95 92.4 95.6 95.6

TableCoT 96 82 75 87
TabSQLify 97 88 84 93

H-STAR 96.6 87.6 89.6 94

Table 11: Human evaluation results on FeTaQA dataset.

Qualitative Analysis In this section, we perform
a qualitative analysis on 100 samples of FeTaQA
with TabSQLify (Nahid and Rafiei, 2024). The
study aims to compare the generations of H-STAR
with TabSQLify by evaluating the answer quality.
The answers are evaluated based on their fluency
and adequacy when compared with the gold an-
swers. Table 12 shows that H-STAR has better
quality generations in 26% samples, as opposed to
only 18% for TabSQLify. ‘Both’ indicates samples
where both the algorithms perform on par. This can
be attributed to the use of the same LLM. Many fail-
ures for TabSQLify are derived from an insufficient
table, which further highlights the limitations of
using a single-view approach for table extraction.

Method % of samples

Both 56%
TabSQLify 18%

H-STAR 26%

Table 12: Comparison of H-STAR with TabSQLify on 100
samples.

Figure 8 showcases such an example where Tab-
SQLify returns ‘information not provided’ because
of incorrect of an extracted table. It can be noted
that H-STAR generates an answer comparable with
the ground truth for the same. Figure 9 visually de-
picts the outputs from both methods. It illustrates
the evaluation process undertaken to compare the
quality of the outputs.

Question: Who won the 1888 Belgian general election?

TabSQLify:
the answer is not
provided in
the given information.

Answer: The result was a victory for the Catholic Party, which
won 98 of the 138 seats in the Chamber of Representatives.

H-STAR:
The Catholic Party won
the 1888
Belgian general election.

Figure 8: An example of FeTaQA dataset where TabSQLify
fails as a result of insufficient table evidence.

Question: Where and when did the the 1963 Giro d'Italia start
and finish?

TabSQLify:
the 1963 giro d'italia started
in naples and finished in
potenza on may 19th.

Answer: The Giro started in Naples, on 19 May, with a 182
km (113.1 mi) stage and concluded in Milan, on 9 June, with a
136 km (84.5 mi).

H-STAR:
The 1963 Giro d'Italia started
on 19th May in Naples and
finished on 9th June in Milan.

Question: What did Deschanel play in 1983?

TabSQLify:
in 1983, deschanel played
the role of annie glenn in the
movie "the right stuff".

Answer: In 1983, Deschanel played Annie Glenn in the
movie, The Right Stuff.

H-STAR:
In 1983, Mary Jo
Deschanel played the role of
Annie Glenn.

Figure 9: Comparison of the outputs with TabSQLify.

A.3 Analysis: Generated Samples

In Table 13, we study H-STAR by consider-
ing the total number of samples generated by
the LLMs. BINDER and DATER utilize self-
consistency techniques to refine their results, while
the Chain-of-Table approach adopts a more it-
erative sample creation process. Specifically,
BINDER generates 50 Neural-SQL samples, imple-
menting self-consistency, while DATER employs
self-consistency at each step, resulting in 100 sam-
ples. In contrast, the Chain-of-Table method opts
for a more resource-efficient strategy, producing 25
samples across three steps: ‘Dynamic Plan’, ‘Gen-
erate Args’, and ‘Query’. TabSQLify generates the
fewest samples, with one generation each for the
table decomposition and query steps. Using single
outputs can result in a decrease in accuracy when
the model fails to return an answer. Thus, H-STAR
incorporates self-consistency measures by gener-
ating two outputs at each stage to ensure output
validity. Each step, except Query, involves two
generations for both SQL and Text, i.e., a total of
four steps for column and row retrieval. These addi-
tional steps serve as a precaution against abnormal
LLM generations. Overall, H-STAR is efficient
and only uses 6-10 sample generations.



Method # samples / step Total # samples

BINDER Neural SQL: 50 50

DATER

Decompose Table: 40

100Generate Cloze: 20
Generate SQL: 20
Query: 20

Chain-of-Table
Dynamic Plan ≤ 5

≤ 25Generate Args ≤ 19
Query: 1

TabSQLify Table Decompose: 1 2Query: 1

H-STAR
Column Extraction: 2-4

6-10Row Extraction: 2-4
Query: 2

Table 13: Number of generated samples for different meth-
ods.

A.4 Benefit of using Transposed Table
Table 14 compares H-STAR’s performance using
transposed versus original tables for text-based col-
umn verification. On TabFact, H-STAR achieves
86.51% accuracy with transposed tables, versus
85.22% with original tables. On WikiTQ, accu-
racy is 68.62% with transposed tables, compared
to 66.59% with original tables.

Method TabFact WikiTQ

H-STAR (with transposed table) 86.51 68.62
H-STAR (with original table) 85.22 66.59

Table 14: Comparison between H-STAR using a) transposed
table and b) original table for text-based column extraction.

Analysis. Transposing tables leads to better per-
formance than using the original table for column
verification. The transposed table approach is more
effective for complex datasets like WikiTQ, which
are harder to reason upon and contain longer tables.

B Input Table Format

The input table format changes depending on the
type of reasoning used. Since H-STAR uses a hy-
brid approach, the input table format also varies
depending on the type of reasoning used. Besides
the question and the in-context examples, the table
is accompanied by a list of columns and a table
caption if available. Providing more context aids in
better semantic understanding (Singha et al., 2023;
Sui et al., 2024).

B.1 Symbolic Reasoning
We adopt the table prompt format from previous
SQL-based methods Text-to-SQL (Rajkumar

et al., 2022; Cheng et al., 2022; Nahid and Rafiei,
2024). We include (1) the table schema containing
CREATE TABLE followed by the schema, (2)
the table header and all the rows separated by
tabs, and (3) the list of columns along with the
corresponding query. If the prompt exceeds the
context limit, we truncate the table rows to fit
within the limit. Example of the input table:

CREATE TABLE 2012–13 Exeter City F.C.

season(

row_id int,

name text,

league int,

total int)

/

All rows of the table:

SELECT * FROM w;

row_id name league total

1 danny coles 3 3

4 john o’flynn 11 12

8 jamie cureton 20 20

/

columns: [’name’, ’league’, ’total’]

B.2 Textual Reasoning

We convert the tables into linear, sequential text.
Continuing with the format of previous textual
reasoning methods (Ye et al., 2023; Chen, 2023;
Wang et al., 2023), we adopt the PIPE encoding i.e.
plain text separated by ‘|’. Furthermore, we append
the table with the caption and the list of columns
similar to the format in Section B.1. Example of
the input table:

table caption: 2012–13 Exeter City

F.C. season

/

col : name | league | total

row 1: danny coles | 3 | 3

row 4: john o’flynn | 11 | 12

row 8: jamie cureton | 20 | 20

*/

columns: [’name’, ’league’, ’total’]

C Comparison with ReAct

While our method appears to be similar to ReAct
in terms of combining textual reasoning and tool-
based methods, there are significant differences
between H-STAR and ReAct:



1. Integration of Symbolic and Semantic Rea-
soning. H-STAR combines SQL-based and text-
based reasoning, while ReAct merges textual rea-
soning with actions. ReAct uses tools mainly
for actions, not reasoning. H-STAR applies SQL
for quantitative tasks and text for lexical queries,
whereas ReAct focuses more on textual reasoning.

2. Fixed Multi-Stage Approach. ReAct prompts
LLMs to alternate between reasoning and actions,
allowing interaction with external sources. H-
STAR, on the other hand, splits tabular reasoning
into two stages: 1) Table Extraction, and 2) Adap-
tive Reasoning, blending SQL and text reasoning.
This hybrid approach sets H-STAR apart from Re-
Act’s focus on textual reasoning and interaction
with the environment.

3. Table Extraction Approach. H-STAR uses
a "multi-view" approach for table extraction, iden-
tifying relevant columns from both original and
transposed tables before selecting rows, reducing
irrelevant data, and improving focus. In contrast,
ReAct does not employ any extraction method.

4. Adaptive Reasoning Strategy. H-STAR uses
SQL to support semantic reasoning for quantita-
tive tasks while relying solely on semantic reason-
ing for lexical queries. In contrast, ReAct inter-
leaves reasoning and actions without adapting to
task type. H-STAR’s hybrid approach, combining
SQL logic and text understanding, excels in han-
dling diverse tasks, outperforming ReAct on table
reasoning tasks.

D Implementation Details

We provide the implementation details including
the hyperparameters and prompt details for each
of the individual steps. H-STAR operates in two
key stages: 1) Table Extraction and 2) Adaptive
Reasoning. The Table Extraction phase includes
column extraction (SQL-based: colsql and text-
based: coltext) and row extraction (SQL-based:
rowsql and text-based: rowtext). The Adaptive
Reasoning phase consists of SQL-based (fsql) and
text-based (ftext) reasoning components.

D.1 Hyperparameters
Table 15 provides the details of PaLM-2 hyper-
parameters used for the WikiTQ and TabFact
datasets. Table 16 showcases the hyperparameter
setting for GPT-3.5-Turbo. The hyperparameters
‘samples’ indicate the number of outputs taken for

each step of the pipeline whereas the ‘examples’
indicate the number of few-shot demonstrations for
each step.

Function temperature top_p output_tokens samples examples

WikiTQ

colsql 0.4 1.0 512 2 3

coltext 0.7 1.0 512 2 3

rowsql 0.4 1.0 512 2 3

rowtext 0.7 1.0 512 2 2

fsql 0.1 1.0 512 1 3

ftext 0.0 1.0 512 1 4

TabFact

colsql 0.4 1.0 512 2 4

coltext 0.7 1.0 512 2 3

rowsql 0.4 1.0 512 2 4

rowtext 0.7 1.0 512 2 3

fsql 0.1 1.0 512 1 3

ftext 0.0 1.0 512 1 5

Table 15: Hyperparameter settings for PaLM-2.

Function temperature top_p output_tokens samples examples

WikiTQ

colsql 0.3 1.0 512 2 3

coltext 0.4 1.0 512 2 2

rowsql 0.3 1.0 512 2 3

rowtext 0.4 1.0 512 2 3

fsql 0.1 1.0 512 1 4

ftext 0.0 1.0 512 1 4

TabFact

colsql 0.2 1.0 512 2 4

coltext 0.4 1.0 512 2 3

rowsql 0.4 1.0 512 2 4

rowtext 0.5 1.0 512 2 3

fsql 0.1 1.0 512 1 4

ftext 0.0 1.0 512 1 5

Table 16: Hyperparameter settings for GPT-3.5-Turbo.

D.2 Input Prompts
Figures 10, 11, 12, 13, 14 and 15 illustrate the in-
put prompts containing sample in-context learning
examples for the steps colsql, coltext, rowsql,
rowtext, fsql, and ftext respectively.

E Error Analysis: Case Study

Figures 16 and 17 showcase how semantic and
symbolic approaches can individually fail for the
column and row extraction steps. Figures 19, 18,
20 and 21 illustrate error cases for each individual
step within H-STAR.



SQL-based Column Extraction

You are given the table schema, and the table along with the corresponding statement. Write a simple SQLite
program for selecting the required columns only, to help answer the question correctly. The SQLite program
need not directly answer the question. Assume you always have enough information when executing the SQLite.
Fuzzy match data if unsure.

1. Plan:  
 - Identify critical values and ranges from the table related to the statement.
 - Make use of your domain knowledge to find the correct approach to solve the question.
 - Always select the column with special aggregate values like 'total'.
2. Retrieval:
 - Generate a simple SQL program extracting the relevant columns
 - SQL: SELECT <COLUMNS> FROM w;
 - Evidence: f_col([column names])

Response Format:
Begin your response with 'Output' and include:
- Plan: Write the plan for column extraction along with a reasoning chain
- Retrieval: Write a simple SQL query
 Evidence: f_col([column names])

Before you return the answer, review your outputs and make sure you have followed all the given instructions.
Make sure to only select columns.
```
<input>
CREATE TABLE Płock Governorate(
    row_id int,
    language text,
    number int,
    percentage (%) text,
    males int,
    females int)
/*
All rows of the table:
SELECT * FROM w;
row_id    language    number    percentage (%)    males    females
0    polish    447685    80.86    216794    230891
1    yiddish    51215    9.25    24538    26677
2    german    35931    6.49    17409    18522
7    total    553633    100    275652    277981
*/
columns: ['row_id', 'language', 'number', 'percentage (%)', 'males', 'females']
Q: how many male and female german speakers are there?
<output>
1. Plan:
 - We need to count the number of male and female speakers
 - The column 'language' with the aggregate value 'total' must be included
 - We then select the 'males', 'females', 'language' 
2. Retrieval:
 # SQL format: SELECT <column names> FROM w;
 - SQL: SELECT `language`, `males`, `females` FROM w;
   # Only output the column names from the column list
 - Evidence: f_col([language, males, females])

```

Figure 10: Prompt for SQL-based column extraction (colsql).



Text-based Column Extraction

You need to select all the relevant columns from the table and obtain a relevant sub-table to the question. The
sub-table should then be used to answer the question. Please ensure that your final answer matches your
reasoning. Your task is to perform the following actions

1. Plan: 
    Identify critical values and ranges from the table related to the question.
2. Retrieval:     
    Identify all table columns containing question-relevant information. Explain the relevance of each selected
piece of evidence.

Response Format: Strictly follow the given format only.
Begin your response with 'Output' and include:
- Plan: Write the plan for column extraction along with a reasoning chain
- Retrieval: Based on the plan, identify the columns followed by a reasoning chain
   Evidence: f_col([column names])

```
<input>
/*
row: row 1 | row 2 | row 3 | row 4 | row 5
pick: 1 | 2 | 3 | 4 | 5
player: jay washington | alex cabagnot | dennis miranda | ato ular | kameron vales
country of origin: united states | united states | philippines | philippines | united states
pba team: air21 express | sta lucia realtors | coca-cola tigers | blackwater bossing | converge fiberxers
college: eckerd | hawaii - hilo | feu | mpbl | ateneo
*/
Q: Which college has most players belonging to asian countries?
<output>
1. Plan:
 a. Extract data from the 'country of origin' column to create a new column
 b. The table columns 'college', and 'player' contain the question-specific information
2. Retrieval:
Explanation: Look at the 'college', and 'player' columns to identify unique colleges and player names. For each
row, extract the ethnicity from the 'country of origin' column to create a new column to identify Asian
countries.
Evidence: f_col([player, country of origin, college])

```

Figure 11: Prompt for Column-based column verification (coltext).



SQL-based Row Extraction

You are given the table schema, and the table along with the corresponding question. Your task is only to
write an SQLite program to create a subtable to help answer the question. You must not answer the question
but you must only find the relevant suitable. Write a simple but correct SQLite program.

1. Decompose: 
   Find all the subtasks from the main question.
2. Retrieval:
   Generate an SQLite program for each subtask and then combine using only an 'OR' clause.

Response Format:
Begin your response with 'Output: ' and include all the following components:
 - Decompose: Divide the question into smaller manageable sub-tasks; one task for each condition
 - Retrieval: A basic SQLite program for each condition followed by a combined SQLite

**NOTE**
- Use the column names as it is as given in the column list.
- Use 'OR' to combine conditions.
- The SQLite program must be only of the format: SELECT <column names> FROM w WHERE <conditions>;

Be very careful, think, and ensure that all the above instructions are followed, and only then return your
response.
```
<input>
CREATE TABLE British_Records_in_Athletics(

row_id int,
event text,
place text);

/*
3 example rows:
SELECT * FROM British_Records_in_Athletics LIMIT 3;
row_id event place
0 5 km søfteland , norway
1 5 miles york , united kingdom
2 10 km burrator , united kingdom
*/
columns: ['row_id', 'event', 'place']
Q: how many events took place within the united kingdom?
<output>
1. Decompose:
 - Part 1: Find all instances of events that took place within the united kingdom
 # Do not use COUNT() clause
 # The SQLite program must be only of the format: SELECT <column names> FROM w WHERE <conditions>; 
   SELECT event, place FROM w WHERE place LIKE '%united kingdom%';
2. Retrieval:
   SQL: SELECT event, place FROM w WHERE place LIKE '%united kingdom%';

```

Figure 12: Prompt for SQL-based row selection (rowsql).



Text-based Row Extraction

You are provided an initial response containing a response, a table, and a question. Your task is to give
feedback about the initial response and find the omitted rows if any.

1. Assessment:
    - Assess the question
2. Feedback: Based on the nature of the question, provide the feedback.
    a. Calculation/comparison-based question:
      - Check if the comparison is limited to some rows or if it consists of the entire table
    b. Order/temporal-based question:
      - Check if the response includes the row containing the mentioned entity
      - Check if the response contains relative rows mentioned in the question
    c. Entity-specific question:
      - Check if any row about the entity in the question are not included
Add rows if not present in the response.
Rows: f_row([rows])

Response Format:
Begin your response with ‘Output’ and must always include the following:
 - Assessment: Assess the question and the response
 - Feedback: Provide a step-by step feedback on the suggested answers
   Rows: f_row([rows])

Follow all instructions given. Check if all instructions have been followed before returning the answer.
```
<input>
/*
col : rank | athlete
row 0 : 1 | Manjeet Kaur
row 1 : 2 | Olga Tereshkova
row 2 : 3 | Pinki Pramanik
row 3 : 4 | Tang Xiaoyin
row 4 : 5 | Marina Maslyonko
*/
Q: tell me who finished immediately after manjeet kaur
Initial Response: ['row 1']
<output>
1. Assessment:
  - We are asked to find the athlete after manjeet kaur.
  - Thus, we need to return the row for manjeet kaur and the row after it.
2. Feedback:
  - Is the row for Manjeet Kaur included in the initial response? A: No; add(row 0)
  - What is the row after Manjeet Kaur (row 0)? A: row 1; add(row 1)
  - Is the row after Manjeet Kaur included in the initial response? A: Yes
Rows: f_row([row 0, row 1])

```

Figure 13: Prompt for text-based row verification (rowtext).



SQL-based Reasoning

You must carefully understand the table and the corresponding question. Your task is to determine whether
you need an SQLite program to solve the question. The final SQLite program must be simple and must be only
a single program.
Always remember, that most questions do not need an SQLite program, and you must simply return 'None'.

1. Nature of the Question: 
Evaluate the nature of the question. For tasks involving computation, counting, or if the question involves
column selection for extensive tables, the solution is again 'SQL'
Make sure to use the SQLite program for mathematical questions.

2. Final Output:
A. Based on your analysis, if the solution is 'SQL', then you must write an SQLite program to extract a
subtable to answer the question. The SQLite does not need to directly answer the question. Generate an
SQLite that is less complex but ensure that it is correct. Try to use fuzzy-match for values if you are not sure
about the values. Generate a step-by-step SQLite program to answer the question.
B. If the solution is not SQL, then simply return 'None'

Response Format:
Begin your response with 'Output: ' and always include the following:
   - Nature of the Question: Evaluation based on the nature of the question.
   - Final Output: 'None' if SQL is not required otherwise the SQLite program is the solution.

Check if all instructions have been followed before returning the answer.
```

<input>
CREATE TABLE 2008 women 's british open(

row_id int,
player text,
player country text)

/*
3 example rows:
SELECT * FROM w LIMIT 3;
row_id player player_country
0 juli inkster united states
1 momoko ueda japan
2 laura diaz united states
*/
columns: ['row_id', 'player', 'player country']
statement: count the number of players from united states and japan
<output>
1. Nature of the Question: 
   - This question involves counting the number of players from a specific countries.
   - Counting data points within a table is a task suited for SQL.
2. Final Output: Since the task is SQL,
   - Step 1: Group players by country and count the occurrences
     SELECT `player country`, COUNT(*) AS total_players FROM w GROUP BY `player country`;
SQL: SELECT `player country`, COUNT(*) AS total_players_per_country FROM w GROUP BY `player
country`;

```

Figure 14: Prompt for SQL-based reasoning (fsql).



Text-based Reasoning

You are an expert on table data. You must use the table data and the additional evidence to answer the
given question.

- Divide the main statement into sub-tasks and answer each sub-task
- Based on the answers, check whether the statement is supported by the table

**NOTE** 
Please be extremely careful, pause, make sure all instructions have been followed, and only then output
the answer

Response Format:
Begin your response with 'Output: ' and always include the following:
- Decompose: Divide the main question into sub-tasks and answer each sub-task
- Final Answer: Strictly output as a short phrase starting with `therefore, the answer is: "AnswerName1",
"AnswerName2"...` form, no other form

- Read the question carefully, understand, and return what the question asks.
- Be careful, make sure you have followed all instructions, and only then return the output.
```
<input>
/*
col : rank | cyclist | team
row 0 : alejandro valverde (esp) | caisse d'epargne
row 1 : alexandr kolobnev (rus) | team csc saxo bank
row 2 : davide rebellin (ita) | gerolsteiner
row 3 : paolo bettini (ita) | quick step
row 4 : franco pellizotti (ita) | liquigas
row 5 : denis menchov (rus) | rabobank
row 6 : samuel sánchez (esp) | euskaltel-euskadi
row 7 : stéphane goubert (fra) | ag2r-la mondiale
row 8 : haimar zubeldia (esp) | euskaltel-euskadi
row 9 : david moncoutié (fra) | cofidis
*/
columns: ['rank', 'cyclist', 'team']
Q: which country had the most cyclists finish within the top 10?
<output>

Here is an additional evidence to help the answering process.
Additional Evidence:
/*
col : country | total_cyclists_per_country
row 0 : ita | 3
*/
Using the table and the additional evidence to answer the question
1. Decompose:
    - #1: Number of cyclists from Italy in the top 10 = 3
2. Final Answer: Therefore, the answer is: "Italy"

```

Figure 15: Prompt for text-based reasoning (ftext).



Q: how many people were murdered in 1940/41?

Description
Losses 1939/40 1940/41

Direct War
Losses 360,000 42,000

Murdered 75,000 100,000

... ... ...

Total 504,000 352,000

SELECT 1940/41,
`description losses`
FROM w;

"1940/41"

a) SQL based Column Extraction

b) Text based Column Extraction

The questions asks us to
count the number of people
murdered in 1940/41, thus...
f_col([1940/41, murdered])

"description losses"

"murdered" 

"1940/41"

b) Text based Column Extraction

Year Playoffs National
Cup

1935/36 Champion ?

1936/37 DNQ Champion

... ... ...

1953/54 Champion Champion

1954/55 No playoff ?

SELECT year FROM w;

Q: how long did it take for the new york americans to win the national cup after 1936?

a) SQL based Column Extraction

The question asks to
count the number of 
years to win the....
f_col([year, national cup])

"year"

"year"

"national cup"

(b)(a)

Figure 16: Comparison of SQL-based and text-based column extraction methods for answering table queries: (a) SQL-based
selection accurately identifies the columns ("1940/41", "description losses"), while text-based selection mistakenly includes
"murdered" as a table column. (b) The text-based method selects both required columns ("year" and "national cup"), while the
SQL-based approach overlooks "national cup" as a requirement.

Q: how many people were murdered in 1940/41?

SELECT * FROM w
WHERE `description
losses` = 'murdered'

"row 1"

a) SQL based Row Extraction

b) Text based Row Extraction

"row 2, row 3, ..." 

"row 1"

row_id Description
Losses 1940/41

0 Direct War
Losses 42,000

1 Murdered 100,000

... ... ...

6 Total 352,000

The question asks for the
number of people
murdered in 1940/91...

b) Text based Row Extraction

row_id Year National
Cup

0 1935/36 ?

1 1936/37 Champion

... ... ...

18 1953/54 Champion

19 1954/55 ?

SELECT * FROM w
WHERE year > 1936 
AND
`national cup` = 'champion'

a) SQL based Row Extraction

"row 18"

"row 1"

"row 18"

The question asks for 1936
and the years after it, when
new york americans were....

Q: how long did it take for the new york americans to win the national cup after 1936?

(a) (b)

Figure 17: Comparison of SQL-based and text-based row extraction methods for answering table queries. (a) SQL-based
selection accurately selects the necessary rows ("Murdered"), while text-based selection incorrectly includes additional rows; (b)
Text-based method correctly selects relevant rows ("1953/54", "1936/37"), while SQL-based selection misinterprets the query,
including only the row for the year "1953/54".

Original Table (T)

Tournament 2004 2005

Australian
Open A 2R

French Open 2R 1R

... ... ...

Titles-Finals 0-0 0-0

Year End
Ranking 129 91

... 2014 W-L

... 2R 9-10

... 6-10

... ... ...

... 2-5

...

Q: What is the combined score of year end rankings before 2009?

Extracted Table (TCR) 

Answer: 378

Gold Answer: 440

2004 2005 2006 2007 2008

A 2R 2R 2R 3R

2R 1R 1R 2R 2R

... ... ... ... ...

0-0 0-0 0-0 0-0 0-0

129 91 68 90 62

Figure 18: Case Study: ‘Missing Columns’. An illustration of the error ‘Missing Columns’. In the above example, the
extracted table does not contain the column ‘Tournament’ that contains the ‘Year End Ranking’. The omission of the ‘Tournament’
column affects the downstream steps in the pipeline leading to an insufficient row extraction and reasoning.



Year Playoffs National
Cup

1935/36 Champion ?

1936/37 DNQ Champion

... ... ...

1953/54 Champion Champion

1954/55 No playoff ?

Original Table (T)

Season Team Record

1970 Dallas
Cowboys 10-4

1971 Dallas
Cowboys 11-3

... ... ...

2012
San

Francisco
49ers

11-4-1

2013 Seattle
Seahawks 13-3

... All-Pros Runner Up

... Howley San Francisco
49ers

... Lilly*,
Niland,...

San Francisco
49ers

... ... ...

... Bowman, ... Atlanta Falcons

... Sherman,
Thomas

San Francisco
49ers

Q: In which three consecutive years was the record the same?

Season Record

1970 10-4

Extracted Table (TCR) 

Answer : 1970

Gold Answer: 2004, 2005, 2006

Figure 19: Case Study: ‘Missing Rows’. An illustration of the error ‘Missing Rows’. From the above example, it can be seen
that while the extracted columns are correct, the row extraction is incorrect. Thus, as the extracted table lacks the necessary
information, the final answer is incorrect.

Original Table (T)

Date Opponent# Rank#

September 3 Tenessee-
Chattanooga* #11

September 10 Vanderbilt #11

... ... ...

December 3 vs. #6 Florida #3

January 2,1995 vs. #13 Ohio State #6

... Result Attendance

... W 42-13 82,109

... W 17-7 70,123

... ... ...

... L 23-24 74,751

... W 24-17 71,195

Extracted Table (TCR) 

Date Result

November 19 W 21 - 14

December 3 L 23 - 24

January 2, 1995 W 24 - 17

Answer: 55

Gold Answer: 68

Q: What was the total number of points scored by the
tide in the last 3 games combined.

Figure 20: Case Study: ‘Incorrect Reasoning’. An illustration of the error ‘Incorrect Reasoning’. Despite the correct
question-relevant table being extracted, the model misinterprets the question. It adds up the scores by the opposing team instead
thus returning an incorrect answer.

Original Table (T)

Name League FA Cup

Scot Bennett 5 0

Danny Coles 3 0

... ... ...

OWN GOALS 0 0

Total 0 0

... JP Trophy Total

... 0 5

... 0 3

... ... ...

... 0 0

... 0 0

Extracted Table (TCR) 

Name Total

John O' Flynn 12

Pat Baldwin 1

Answer: John O' Flynn

Gold Answer: John

Q: Does pat or john have the highest total?

Figure 21: Case Study: ‘Incorrect Annotation’. An illustration of the error ‘Incorrect Annotation’. In the example, the
query-specific table is correctly extracted and the final reasoning leads to the correct answer. However, the prediction is penalized
for not being an ‘exact match’.


