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ABSTRACT
The large-scale nature of product catalog and the changing de-
mands of customer queries makes product search a challenging
problem. The customer queries are ambiguous and implicit. They
may be looking for an exact match of their query, or a functional
equivalent (i.e., substitute), or an accessory to go with it (i.e., com-
plement). It is important to distinguish these three categories from
merely classifying an item for a customer query as relevant or not.
This information can help direct the customer and improve search
applications to understand the customer mission. In this paper, we
formulate search relevance as a multi-class classification problem
and propose a graph-based solution to classify a given query-item
pair as exact, substitute, complement, or irrelevant (ESCI). The
customer engagement (clicks, add-to-cart, and purchases) between
query and items serve as a crucial information for this problem.
However, existing approaches rely purely on the textual informa-
tion (such as BERT) and do not sufficiently focus on the structural
relationships. Another challenge in including the structural infor-
mation is the sparsity of such data in some regions. We propose
Structure-Aware multilingual LAnguage Model (SALAM), that uti-
lizes a languagemodel alongwith a graph neural network, to extract
region-specific semantics as well as relational information for the
classification of query-product pairs. Our model is first pre-trained
on a large region-agnostic dataset and behavioral graph data and
then fine-tuned on region-specific versions to address the sparsity.
We show in our experiments that SALAM significantly outperforms
the current matching frameworks on the ESCI classification task
in several regions. We also demonstrate the effectiveness of using
a two-phased training setup (i.e., pre-training and fine-tuning) in
capturing region-specific information. Also, we provide various
challenges and solutions for using the model in an industrial setting
and outline its contribution to the e-commerce engine.
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1 INTRODUCTION
The goal of an e-commerce search engine is to show a ranked list
of items that best match a shopper’s query intent. Unlike standard
search engines [13, 17], e-commerce engines cannot solely rely
on the textual and semantic content of a query. This is because
shoppers’ queries are often ambiguous, broad, lack specific intent
or have an implicit intent. A simple one-size-fits-all approach to e-
commerce product retrieval seldom works for all types of customer
queries. Practitioners often mitigate this using additional human
labeled data to re-rank items or aptly message the shoppers as to
why an item was surfaced. The shopper may be looking for an exact
match for their query, or a functional equivalent (i.e., substitute),
or an accessory to go with it (i.e., complement). It is important to
distinguish these three categories from merely classifying an item
as relevant or not for a given query. Specifically, annotated data is
used to classify query and item pairs into Exact (E), Substitute (S),
Complement (C), and Irrelevant (I) (ESCI) classes.

Obtaining human annotated data is time consuming and costly.
The size of datasets available to train ESCI classification models
is orders of magnitude smaller than those used to train relevance
models [4] (which typically rely on anonymized aggregated cus-
tomer shopping behavior). In addition, the labeled data available
per-region to train these models is even smaller. However, there
is additional information that is present in e-commerce datasets,
in the form of query-item graphs capturing interactions between
these pairs, and co-purchase behavior across products in the cat-
alog. We hypothesize that one can train better ESCI classifiers by
aggregating information along nodes and edges of this graph to
extract queries and items that are similar to the ones in the labeled
dataset.

Models that use graph information have shown to be compet-
itive in e-commerce search applications. These models typically
tend to outperform their pointwise or pairwise counterparts such
as C-DSSM [21, 28] and MV-LSTM [32], and their adversarial [20]
or multilingual [1] extensions. This is because the aforementioned
methods only focus on the textual information in the query-product
pairs, and ignore any relational information across queries and prod-
ucts. However, existing approaches work with very small graphs,
and are not built to scale to the sizes of graphs typically seen in the
real-world applications. In this paper, we propose Structure-Aware

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3534678.3539158
https://doi.org/10.1145/3534678.3539158
https://doi.org/10.1145/3534678.3539158


KDD ’22, August 14–18, 2022, Washington, DC, USA Nurendra Choudhary et al.

multilingual LAnguage Model (SALAM), illustrated in Figure 2,
that combines text and graph information in a scalable manner,
overcoming the drawbacks of the aforementioned methods.

(a) (b)

Figure 1: Sample of a query-product pair with (a) only text
and (b) text and graph structure. Note that classifying the
relation in (a) based only on text is difficult because both the
products have a single token match with the query. How-
ever, with the aid of graph structure in (b), the classification
becomes easier with more semantic token matches and addi-
tional information about the relations.

Academic research in this topic has explored certain solutions to
the problem of integrating text and graph using hybrid techniques
such as TextGNN [40], TextGCN [35], and Graphormer [37]. How-
ever, these approaches are not scalable to industrial applications
which typically need to handle hundreds of millions of queries
everyday and require low processing latency.

SALAM is first pretrained on a corpus of labeled data across
multiple regions as well as the query-product graph. This allows for
a model that can be initialized using all the labeled data available.
Next, SALAM is fine-tuned on region-specific labeled datasets. We
show via extensive experiments that the use of auxiliary graph
structured information and the proposed two-stage training ap-
proach vastly outperforms baseline methods by 10%-65% across
multiple regions. The specific architectural choices in SALAM also
allow it to be deployed in web-scale systems. SALAM utilizes a mul-

Figure 2: An overview of the proposed SALAM. Given the in-
put query-product pair with their corresponding local neigh-
borhoods, SALAM combines the power of textual and graph
representations for ESCI classification.
tilingual language model (MLM) [5] in congruence with a Graph
Convolution Network (GCN) [15], to capture the textual and graph
features of query-product pairs, respectively. These features are
combined in the latent space with an attention layer [30] to cap-
ture the inter-dependency between the textual and graph-based

features, which are further utilized for the final ESCI classification.
To summarize, the major contributions of this paper are as follows:
(1) We present Structure-Aware multilingual LAnguage Model

(SALAM) that combines a MLM and GCNs within an attention-
based framework to aggregate features from both the text and
graph attributes of query-product pairs, respectively. We show
that the proposed unique aggregation mechanism is able to
outperform the current state-of-the-art models on the task of
ESCI classification with similar computational resources and
model latency limits.

(2) We demonstrate the benefits of utilizing the graph features and
attention aggregation through an ablation study.

(3) We illustrate the performance gains inmulti-region/multilingual
classification produced by using a two-phase (pre-training and
fine-tuning) approach over one that trains a single model.

(4) We detail the challenges that affect the practical viability of
SALAM in industrial settings, and provide solutions for the
same. We also outline the primary benefits of our approach to
an e-commerce search engine.
The rest of the paper is organized as follows; Section 2 presents

the related literature in this topic. Section 3 defines our problem
statement and the model architecture. Section 4 describes our exper-
imental results in a comparative evaluation and Section 5 presents
our deployment strategy along with the contributions of the model
to the e-commerce engine. Section 6 concludes the paper.

2 RELATEDWORK
In this section, we describe the earlier works relevant to our current
problem. We present three broad areas of representation learning:
graph, text, and hybrid (graph+text) methods.
Graph Representation Learning. Earlier research into graph
embeddings relied on two broad methods: matrix factorization and
random walks. Matrix factorization methods [22, 26] attempt to
factorize the adjacency matrix 𝐴 to a low-dimensional representa-
tional matrix 𝐿 by minimizing ∥𝐿𝑇 𝐿−𝐴∥. Random walk techniques
[10, 19, 25, 29, 33] utilize a traversal along the edge connections of
a node to retrieve its neighborhood and learn the representation.
These approaches form a vector space model based on the node’s
neighborhood and have shown the importance of learning graph
representations. However, these methods depend on the method-
ology of the random walk traversal technique and do not handle
the entirety of a node’s neighborhood. Hence, we utilize the power
of deep networks to aggregate features from the nodes’ neighbor-
hood. Some of the popular deep architectures include Graph Neural
Network (GNN) [27], GraphSage [11], Graph Convolution Network
(GCN) [15], and Graph Attention Network (GAT) [31]. In our pro-
posed SALAM model, we utilize the scalable GCN architecture for
learning features from the graph structure of query-product pairs.
Text Representation Learning. Early research in text embed-
dings relied on capturing the context of individual words (or tokens).
These approaches [18, 24] show the effectiveness of distributional
representations in extracting semantic features. However, most
of the problems that involve text need sentence embeddings and
not word-level representations. Towards this, text representations
evolved to utilize sequential word information using recurrent net-
works [32], convolution networks [28], and attention networks [2].
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Recently, newer techniques are based on learning a pre-trained
language model [6, 8] that can be fine-tuned on specific tasks. Such
approaches have shown improved performance over the other rep-
resentational techniques. Thus, in our model, we utilize this two-
step approach, i.e., pre-training and fine-tuning steps, to capture
region-agnostic and region-specific information, respectively.
Hybrid (Graph + Text) Representation Learning. Recently,
we see an increasing research effort focused on extracting hybrid
graph and text information from structured datasets. TextGNN
[40] and TextGCN [35] utilize text embeddings to initialize node
features in a graph network framework. Graphormers [38] utilize
manual graph features (such as spatial encoding and centrality
measures) within a text-based transformer architecture to capture
hybrid features. These methods, while effective, are not scalable to
a practical application that receives millions of queries per day and
hence, we developed SALAM as an effective architecture with low
latency. Another line of approaches [9, 36] focus on the problem
of structured reasoning for question answering. However, these
approaches require specific relational knowledge graphs which are,
generally, not readily available and require significant investment
for construction. Our model uses the platform generated purchase
information for knowledge and hence, does not need any additional
investment.

3 MODEL ARCHITECTURE
In this section, we first discuss the problem statement and then
explain the different components of our architecture and detail its
training and inference pipeline.

3.1 Problem Statement
Let us say that the input query-product pair is (𝑄, 𝑃). From a global
graph G, we pre-compute their neighborhood based on historical
purchase information as 𝑄G and 𝑃G , respectively. The goal of this
work is to build a prediction model 𝑃\ with parameters \ such that

𝑦 = argmax
𝑦′∈{𝐸,𝑆,𝐶,𝐼 }

𝑃\ (𝑦′ |𝑥, \ ); \ = argmax
\

𝑃\ (𝑦 = 𝑦 |𝑥, \ ) (1)

where 𝑦 is the predicted output of model 𝑃\ for a corresponding
input sample 𝑥 = (𝑄, 𝑃,𝑄G, 𝑃G) and 𝑦 ∈ {𝐸, 𝑆,𝐶, 𝐼 } is the ground
truth label for the sample 𝑥 .

3.2 Model Components
In this section, we describe the function of different components
of SALAM and show their hybrid graph-text feature extraction
and aggregation methods. As shown in Figure 3a, we begin the
pipeline with an input query-product pair either received from a
user or a collection of historical queries, 𝑥 = (𝑄, 𝑃). Using 𝑥 , we
compute the corresponding graph neighborhoods 𝑥G = (𝑄G, 𝑃G)
using the Graph Construction module. The textual features of the
input pair are then encoded using a language model and the neigh-
borhood 𝑥G is aggregated using a Neighborhood aggregation net-
work to produce two complementary representations 𝑡𝑄,𝑃 (based
on text) and 𝑔𝑄,𝑃 (based on graph). These representations are then
pooled together using attention to finally produce the probabilities
𝑃\ (𝑦′ |𝑥, \ ) using a normalizing function (i.e., softmax). We will

now provide more specific details of these components used in our
model.
Graph Construction. In this module, we pre-compute a local
neighborhood of connections between queries and products. Several
such query-product graphs are, generally, available in the context of
e-commerce engines such as purchase information, retrieval history,
and click-through rates. For simplicity, in our problem, we utilize
the purchase information, i.e., a query node and product node have
an edge between them if the product has been purchased for a
given query, else no edge exists. To construct the neighborhood,
we perform a breadth-first traversal over the root node till a depth
threshold of𝑛1. Additionally, we also store the corresponding nodes’
features as semantic encoding of its text, obtained from a pre-trained
XLM model [6]. The graph 𝑥G = (𝑄G, 𝑃G) for query-product pair
𝑥 = (𝑄, 𝑃) is stored in a hash map for constant time retrieval during
the training and inference phase.
Language Model. To encode the text attributes (𝑄, 𝑃), we adopt
the multilingual XLM [6] model2. For a pair of text sequences, the
language model provides a sequence of encoding of 𝑒 ∈ R𝐹 , which
is further reduced to 𝑡 ∈ R𝑓 , (where 𝑓 ≪ 𝐹 ) through a dense linear
layer, 𝜙 𝑓

𝐹
: R𝐹 → R𝑓 for computational efficiency in the attention

pooling and final classification layer.

𝑡𝑄,𝑃 =

{
𝜙
𝑓

𝐹
(𝑋𝐿𝑀 (𝑄, 𝑃))

} 𝑓
(2)

where {𝑋 }𝑓 implies that 𝑋 is a feature vector of 𝑓 dimensions.
Neighborhood Aggregation. In SALAM, we use a Graph Convo-
lution (GCN) encoder [15] to encode the graph neighborhood of the
query-product pair. The choice of the graph encoder is dependent
on the trade-off between its performance and scalability on the
huge e-commerce purchase information. From our experiments,
described in Section 4.4, we chose GCN due to its performance ad-
vantage over other graph encoders with similar parameters. Let us
say the input to a GCN for a neighborhood of 𝑁 nodes with feature
dimensions 𝐹 is given by ℎ0 ∈ R𝑁×𝐹 . An 𝐿-layer GCN aggregates
the node neighborhood into features as:

ℎ𝑙+1 = 𝜎

(
𝐷−

1
2𝐴𝐷−

1
2ℎ𝑙𝑊𝑙

)
(3)

Thus, 𝐺𝐶𝑁 (ℎ0) = {ℎ𝐿}𝑓 (4)

where ℎ𝑙 and ℎ𝑙+1 are the input and output to the 𝑙𝑡ℎ GCN layer.
𝑊𝑙 is the learnable feature map for the layer and 𝜎 is a non-linear
activation function. 𝐷 ∈ R𝑁×𝑁 and 𝐴 ∈ R𝑁×𝑁 are the diagonal
degree and adjacency matrices of the graph, respectively. ℎ𝐿 is the
output of the final GCN layer and consequently the encoding of
the nodes’ neighborhood.

Applying this to the given input graph of query-product pair
𝑥G = (𝑄G ∈ R𝑁×𝐹 , 𝑃G ∈ R𝑁×𝐹 ) with node features𝑄, 𝑃 ∈ R𝐹 , we
independently encode the neighborhood graphs of both the query
and product using GCNs and then concatenate (◦) the resultant
features for the final output, 𝑔𝑄,𝑃 as given below:

{𝑔𝑄,𝑃 }2𝑓 = {𝐺𝐶𝑁 (𝑄G)}𝑓 ◦ {𝐺𝐶𝑁 (𝑃G)}𝑓 (5)

1Due to computational constraints, we empirically set 𝑛 to be 2.
2XLM is chosen due to its popularity and multilingual nature, any other trainable

multilingual text encoder can be used as an alternative.
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(a) SALAMmodel architecture

(b) Training pipeline (c) Inference pipeline
Figure 3: An overview of SALAM’s architecture (a) and its training (b) and inference (c) pipelines. (a) The inputs to the architecture
are a query-product text pair with a pre-computed graph neighborhood which is obtained from the purchase information. The
textual and graph features are encoded using a language model and GCN, respectively. Subsequently, the concatenation of the
features are pooled with an attention mechanism to finally predict the probability of the classes. (b) The training pipeline uses
the query database and product catalogue with a ground truth label for back-propagation and saves a model checkpoint on
convergence. (c) The inference pipeline employs the checkpoint to classify search relevance on a user query and products from
the catalogue to generate the final label, which is stored in the database for relevance computation in the e-commerce engine.

Attention Pooling. The graph and text features, while encoded
independently, are derivatives of the same e-commerce dataset.
Hence, our current encoding misses the inter-relations between the
features. To capture these dependencies, we rely on an attentive
pooling mechanism [30] that calculates attention weights to higher
order interactions between the nodes’ text and graph features to
subsequently combine them into a single feature set. The final
output of the attentive pooling between the graph and text features,
𝑜𝑄,𝑃 , is computed as:{
𝑒𝑄,𝑃

}3𝑓
=
{
𝑡𝑄,𝑃

} 𝑓 ◦ {𝑔𝑄,𝑃

}2𝑓 (6){
𝑞𝑄,𝑃

}ℎ
= 𝜙ℎ3𝑓

(
𝑒𝑄,𝑃

)
;
{
𝑘𝑄,𝑃

}ℎ
= 𝜙ℎ3𝑓

(
𝑒𝑄,𝑃

)
;
{
𝑣𝑄,𝑃

}ℎ
= 𝜙ℎ3𝑓

(
𝑒𝑄,𝑃

)
(7){

𝑎𝑄,𝑃

}ℎ
=

{
𝑒𝑥𝑝 (𝛼𝑖 𝑗 )∑ℎ
𝑗=0 𝑒𝑥𝑝 (𝛼𝑖 𝑗 )

𝑣𝑖

}ℎ
𝑖=0

;
{
𝛼𝑖 𝑗

}1
=
𝑞𝑖𝑘 𝑗√
2ℎ

(8)

{
𝑜𝑄,𝑃

} |𝑦 |
= 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝜙
|𝑦 |
ℎ
(𝑎𝑄,𝑃 )

)
(9)

where ℎ is the number of hidden units in the attention layers and,
𝑞𝑄,𝑃 , 𝑘𝑄,𝑃 and 𝑣𝑄,𝑃 are the query, key and value vectors, respec-
tively, obtained using independent linear transformation layers

𝜙ℎ3𝑓 : R3𝑓 → Rℎ for the attention layer. 𝛼𝑖 𝑗 is the attention weight

assigned to the interaction between 𝑖𝑡ℎ query and 𝑗𝑡ℎ key feature.
𝜙
|𝑦 |
ℎ

: Rℎ → R |𝑦 | is a dense layer for feature compression to the
final number of classes and 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (·) is used to map the final set
of features to the probability space for loss computation as:

𝐿(𝑜𝑄,𝑃 , 𝑦𝑘 ) = −
|𝑦 |∑︁
𝑘=1

𝑦𝑘 log(𝑜𝑄,𝑃 ); 𝑦𝑘 =

{
1, if class is k
0, otherwise

(10)

HandlingMulti-Regionality. SALAM uses a two-phase approach
of pre-training on the all the regions together and further fine-
tuning on particular regions to utilize the entire volume of training
data and add regional specificity, respectively. This approach shows
significant improvement in performance (as shown in Section 4.3)
compared to the single phase training framework.

3.3 Implementation Details
SALAM is implemented using Pytorch framework [23] on a single
Nvidia V100 GPU with 4GB VRAM. The model is optimized using
AdamW [16] with standard beta parameters of 0.9 and 0.999 and
a weight decay rate of 0.01. The language model adopted for text
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encoding is XLM-Roberta-base with the standard parameter setting
given in [5]. We limit our node neighborhood to a depth of 𝑛 = 2
with a maximum neighborhood size of 𝑁 = 100. For the graph
encoding, we utilize a 2-layer GCN model (𝐿 = 2) with 16 hidden
units. The raw feature set of the nodes and text encoding of the
language model is of 𝐹 = 768 dimensions which is scaled down
to 𝑓 = 16 (empirically determined) for computational efficiency.
The pooling is done on a single head attention network with ℎ = 8
hidden units in the linear transformations. The loss function used
for gradient descent is binary cross entropy weighted by the class
distribution of the samples in the training dataset. SALAM is trained
and evaluated on three classification variants of the ESCI search
relevance with following unique downstream applications: (i) E vs S
vs C vs I, (ii) E vs S vs CI, and (iii) E vs SCI. The code and evaluation
of our method is already made publicly available at https://github.
com/amazon-research/structure-aware-language-models/.

3.4 Training and Inference Pipeline
In an industrial setting, the training and inference phases have
their unique set of requirements both in terms of model latency
and complexity. In this section, we explain our pipelines that were
designed to meet the general industry requirements.

During the training phase, depicted in Figure 3b, the model can
have access to a significant amount of both memory (RAM/disk)
and compute power (GPUs). More importantly, we also observe that
a significant portion (70%-80%) of queries received by e-commerce
search engines remain constant over the days of a month, and thus,
we consider a monthly update cycle for our model checkpoints.
Hence, the training phase also gets a significant amount of time
due to the monthly entropy of the underlying dataset (i.e., update
frequency). Thus, SALAM’s dependence on graph pre-computation
(a time intensive operation) and query-product pairing (a memory
intensive operation) can be managed in practice. However, one
limitation remains that the model checkpoints need to be industry-
compliant, and hence, the number of model parameters are resource-
dependent (generally a single GPU). For this, we choose our hyper-
parameters (as given in Section 3.3) to limit model size to 2.5 GB
(remaining GPU memory post overhead allocation). The training
pipeline receives the query-product pair from the query database
and product catalogue, with a manually assigned ESCI label. This
information is used to pre-compute the node neighborhoods from
purchase information and to train the SALAM architecture, whose
parameters are further stored as a checkpoint upon convergence.
The checkpoint is further finetuned to region-specific checkpoints
using the same procedure, but with only region-specific datasets.

For the inference phase, presented in Figure 3c, the model’s
requirement is to handle a large number of query-product pairs.
Due to this, the model’s scalability and latency become the primary
concerns. Hence, we only use the pre-computed node neighbor-
hood (no computation during inference) and limit our compute
power to a single GPU. The inference pipeline initiates an instance
of the SALAM model and loads the parameters from the latest
checkpoint. Subsequently, it processes the query-product pairs and
their node neighborhoods (computed during training) received as
input to predict the relevance labels and stores them in a database
for utilization in the e-commerce engine’s relevance computation
pipeline. Note that, the inference pipelines for different regions is

unique and accordingly utilize the corresponding region-specific
model checkpoints.

Further experiments on the evaluation of training and inference
pipelines are presented in Sections 4.2 and 4.5, respectively. The
training and inference algorithms are detailed in Appendix A.

4 EXPERIMENTAL STUDY
In this section, we describe our experimental setup that analyzes
SALAM’s performance on the ESCI classification tasks compared
to its current alternatives. The experiments intend to answer the
following research questions:
RQ1. Does SALAM outperform the current alternatives on the

task of search relevance classification?
RQ2. Is the two-phase training with pre-training and fine-tuning

better than the alternative training frameworks?
RQ3. What are the considerations in the choice of graph encoders?
RQ4. How does SALAM compare to its alternatives in suitability

for an industrial application?

4.1 Datasets and Baselines
The datasets used in our experiments contain ≈ 12𝑀 manually
annotated query-product ESCI pairs collected from the real-world
queries of an e-commerce search engine. The pairs are collected
from 16 different e-commerce site regions3 with queries in vari-
ous languages. No customer information or personally identifiable
information were used in collecting this data. We evaluate the per-
formance of our model on the following three different downstream
tasks of the e-commerce search engine: (i) Four class (E vs S vs C vs
I): applied in complementary item recommendation [12], (ii) Three
class (E vs S vs CI): applied in alternate product suggestion [3] and
(iii) Two class (E vs SCI): for better precision in product recommen-
dation [4]. Each one of these three variants leads to different class
distributions which is adjusted in our model using class weights
of the binary cross entropy loss. 20% of each region’s dataset is
held-out for testing and the other 80% is divided into a training
and validation ratio of 4:1 for 5-fold cross validation in our exper-
iments. More details on the various e-commerce regions and the
class distributions are given in Appendix B.

For the baselines, we consider the publicly available mBERT [8]
and XLM [6] models as well as the multilingual proprietary frame-
work, hereinafter, referred to as proprietary e-commerce baseline (or)
PEBL. The reason for the baseline choice is the multilingual nature
of our experiments. The models are all first trained on a combined
training dataset of all the regions for a small number of epochs (4
in our case), and then fine-tuned on the region-specific datasets
for a larger number of epochs (20 in our case) to finally get the
region-specific checkpoints used in our experimental studies.

4.2 RQ1: Model Performance
In this experiment, we compare SALAM’s performance against
the baselines on the task of search relevance classification. The
candidate models return a single class for each input query-product
pair and the performance is evaluated on the metrics of precision,

3Australia (AU), Canada (CA), India (IN), Singapore (SG), United Kingdom (UK),
United States (US), Japan (JP), Germany (DE), France (FR), Italy (IT), Spain (ES), Nether-
lands (NL), Turkey (TR), United Arab Emirates (AE), Mexico (MX), and Brazil (BR).

https://github.com/amazon-research/structure-aware-language-models/
https://github.com/amazon-research/structure-aware-language-models/
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Table 1: Performance comparison of SALAM against the baselines on the task of search relevance classification in different
e-commerce regions on four class E-S-C-I classification. The metrics used for evaluation are Precision (P), Recall (R), and F1.
The metrics are presented for each class to avoid bias from class distribution and a macro-average over the classes is provided
in column M. Due to the proprietary nature of the models, the results shown are relative to the public mBERT model, i.e., a cell
value of 𝒙 implies that the model performs (1 + 𝒙) ×mBERT. The best results in each segment are highlighted in bold. All the
F1-improvements of SALAM over PEBL and mBERT are statistically significant with a p-value threshold of 0.05.

Region Australia (AU) Canada (CA) India (IN) Singapore (SG)
Class E S C I M E S C I M E S C I M E S C I M

P mBERT .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
XLM .107 .085 .119 -.02 .072 .074 .092 .147 -.06 .060 .065 -.06 -.02 -.19 -.05 .111 .454 .086 -.06 .097
PEBL .213 .170 .238 -.04 .143 .147 .183 .293 -.11 .119 .130 -.13 -.04 -.37 -.10 .222 .908 .172 -.11 .193
SALAM .261 .097 .256 .009 .155 .163 .153 .183 -.02 .116 .116 .021 -.00 -.04 .025 .354 .555 .029 -.08 .150

R mBERT .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
XLM -.01 .788 .817 .774 .332 -.01 .601 1.654 1.416 .382 -.04 .277 .948 .723 .235 -.01 .520 .490 1.417 .289
PEBL -.02 1.58 1.63 1.55 .664 -.02 1.20 3.31 2.83 .764 -.07 .553 1.90 1.45 .470 -.02 1.04 .979 2.83 .578
SALAM -.04 2.00 2.05 1.77 .801 -.03 1.36 4.47 2.78 .872 -.02 .503 2.12 1.68 .533 -.08 1.77 1.51 3.32 .791

F1 mBERT .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
XLM .051 .476 .510 .400 .282 .033 .367 1.047 .702 .328 .015 .101 .510 .246 .149 .056 .492 .320 .765 .296
PEBL .102 .952 1.02 .800 .563 .065 .733 2.09 1.40 .656 .029 .202 1.02 .491 .298 .111 .984 .639 1.53 .591
SALAM .111 1.05 1.20 .923 .644 .067 .775 2.40 1.50 .716 .049 .276 1.14 .912 .408 .138 1.10 .752 1.74 .680

United Kingdom (UK) United States (US) Japan (JP) Germany (DE)
E S C I M E S C I M E S C I M E S C I M

P mBERT .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
XLM .043 -.02 -.01 -.28 -.07 .055 -.07 -.00 -.28 -.07 .075 .394 .121 -.06 .105 .089 .065 .034 -.02 .043
PEBL .085 -.05 -.01 -.57 -.13 .110 -.14 -.00 -.57 -.14 .149 .788 .242 -.12 .210 .177 .129 .067 -.04 .086
SALAM .086 .138 -.01 -.10 .028 .134 -.03 -.04 -.08 .005 .193 1.15 .633 .517 .517 .190 .103 .303 .119 .177

R mBERT .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
XLM -.04 .205 2.497 3.466 .300 -.04 .354 1.114 .906 .220 -.01 .537 .941 2.512 .335 -.02 .721 1.196 1.090 .358
PEBL -.07 .409 4.99 6.93 .599 -.08 .708 2.23 1.81 .440 -.02 1.07 1.88 5.02 .669 -.05 1.44 2.39 2.18 .715
SALAM -.03 .818 8.49 5.52 .780 -.05 1.20 5.50 1.46 .701 .035 1.71 3.59 6.28 1.07 -.04 1.59 2.04 2.67 .749

F1 mBERT .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
XLM .003 .098 1.554 .962 .210 .007 .150 .725 .130 .125 .031 .469 .598 1.070 .295 .034 .405 .611 .598 .288
PEBL .005 .196 3.11 1.92 .419 .013 .300 1.45 .260 .249 .062 .937 1.20 2.14 .590 .068 .809 1.22 1.20 .575
SALAM .028 .487 4.34 3.02 .685 .040 .570 2.58 .784 .514 .115 1.43 2.22 3.57 .996 .077 .843 1.30 1.55 .650

France (FR) Italy (IT) Spain (ES) Netherlands (NL)
E S C I M E S C I M E S C I M E S C I M

P mBERT .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
XLM .036 -.03 .014 -.16 -.03 .088 .007 -.08 -.11 -.02 .069 .116 .103 .000 .069 .100 .127 .100 -.08 .051
PEBL .072 -.07 .03 -.32 -.06 .176 .014 -.17 -.21 -.04 .137 .231 .205 .000 .138 .200 .254 .200 -.16 .101
SALAM .114 -.03 -.08 .076 .023 .218 .080 .036 .149 .123 .138 .230 .149 .033 .134 .285 .238 .246 -.02 .175

R mBERT .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
XLM -.02 .253 1.101 .739 .197 -.04 .703 1.291 1.113 .314 -.01 .466 .959 .856 .319 -.03 .285 .702 1.235 .256
PEBL -.04 .505 2.20 1.48 .393 -.08 1.41 2.58 2.23 .627 -.02 .931 1.92 1.71 .637 -.07 .569 1.40 2.47 .512
SALAM -.04 1.11 3.92 1.92 .678 -.06 1.93 3.77 2.65 .875 -.03 .913 2.01 1.89 .663 -.07 1.24 1.89 3.01 .753

F1 mBERT .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
XLM .010 .138 .748 .288 .163 .026 .384 .641 .491 .252 .030 .296 .534 .460 .245 .037 .213 .430 .609 .236
PEBL .020 .275 1.50 .576 .326 .051 .767 1.28 .981 .504 .059 .591 1.07 .919 .489 .073 .425 .860 1.22 .471
SALAM .040 .573 2.11 1.13 .558 .083 1.02 1.94 1.53 .743 .056 .583 1.05 1.01 .499 .110 .688 1.09 1.58 .639

Turkey (TR) United Arab Emirates (AE) Mexico (MX) Brazil (BR)
E S C I M E S C I M E S C I M E S C I M

P mBERT .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
XLM .087 .043 .012 -.03 .030 .106 .115 .098 -.10 .056 .105 .042 .307 -.11 .053 .147 .028 .360 -.05 .090
PEBL .173 .085 .023 -.05 .059 .212 .230 .196 -.20 .112 .210 .083 .614 -.22 .106 .294 .055 .719 -.11 .179
SALAM .220 .018 .052 .074 .091 .209 .208 .103 -.02 .127 .258 .059 .686 .015 .195 .291 .056 .746 -.00 .214

R mBERT .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
XLM -.02 .164 .652 .376 .190 -.02 .376 1.074 1.870 .352 -.03 .488 .959 1.345 .314 -.03 .710 1.155 .618 .330
PEBL -.04 .327 1.30 .752 .380 -.04 .752 2.15 3.74 .703 -.06 .976 1.92 2.69 .628 -.05 1.42 2.31 1.24 .659
SALAM -.03 .468 1.57 .864 .474 -.03 .836 2.88 2.94 .739 -.06 1.61 2.61 2.88 .832 -.04 1.51 2.42 1.13 .678

F1 mBERT .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
XLM .036 .106 .342 .185 .142 .045 .254 .660 .773 .288 .040 .293 .666 .598 .271 .062 .368 .795 .290 .276
PEBL .072 .212 .683 .369 .283 .090 .508 1.32 1.55 .575 .080 .585 1.33 1.20 .542 .123 .736 1.59 .579 .551
SALAM .095 .236 .804 .499 .346 .090 .532 1.50 1.58 .614 .103 .813 1.67 1.55 .707 .129 .770 1.66 .622 .580

recall, and F-score. The results of our experiments on the four class
variant of the problem are given in Table 1. Results on other variants
follow a similar trend and are provided in Appendix C.

From our results, we observe that SALAM consistently outper-
forms both the baselines on F1-score across all regions and classes
upto 65% (on an average by 15%). While SALAM is able to provide
higher precision than the previous baselines for the ‘E’ class in
several regions such as AU, CA, IN, and others, the major boost

in overall performance is driven by improvement in performance
on the classes of S, C, and I. This demonstrates SALAM’s ability
to leverage the graph information to learn better discriminative
features unaffected by the innate class imbalance of the datasets.
Also, we note that the performance improvement for the regions
with highest number of data samples, i.e., IN, UK, and US is also the
highest at 11%, 23%, and 24%, respectively. This implies that SALAM
is able to learn better discriminative features with higher number
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of training samples. Furthermore, we note that the average per-
formance improvement on majority English language e-commerce
regions is 13.5% and non-English language e-commerce regions
is 7.9%. However, comparing the regions of English CA and non-
English TR with similar number of data samples, we observe that
the performance improvement is comparable at ≈ 6%. Hence, we
conclude that, while the stand-alone performance is high, the rea-
son for lower performance boost in non-English language regions
is caused by a lower number of data samples and not due to the
model architecture. Another point to note is that the SALAM’s
performance is 30% − 80% higher than XLM. Given that XLM is
the language model used in SALAM, this performance gain demon-
strates the main advantage of including graph information in the
task of search relevance classification.

4.3 RQ2: Two-phase Learning Framework
To confirm the effectiveness of the two-phase learning framework
with region-agnostic pre-training and region-specific fine-tuning,
we compare it against a single phase training and validation ap-
proach. To get the single phase model (SALAM-S), we train the
model on the combined training datasets of all the models but for a
larger number of epochs (24 in this experiment)4. The comparison
metrics are precision, recall, and F1. The results of this experiment
are presented in Table 2.
Table 2: Loss in performance by using a single phase training
framework (SALAM-S) in comparison to the two phase train-
ing model. The metrics are relative to the performance of
SALAM, i.e., a cell value of 𝒙 implies that SALAM-S performs
(1 + 𝒙) × SALAM.

Region P R F1 Region P R F1
AU -.154 -.110 -.150 FR -.054 -.265 -.207
CA -.080 -.197 -.153 IT -.129 -.153 -.148
IN -.107 -.089 -.117 ES -.085 -.117 -.106
SG -.097 -.062 -.080 NL -.070 -.134 -.107
UK -.030 -.175 -.124 TR -.040 -.097 -.071
US -.055 -.155 -.121 AE -.038 -.072 -.061
JP -.159 -.182 -.174 MX -.069 -.114 -.102
DE -.103 -.212 -.171 BR -.076 -.070 -.073

From our results, we observe that two-phase learning improves
the performance on test set by 3%-27% when compared to a single-
phase framework trained on the same number of epochs. This
exhibits the unique nature of each region’s e-commerce queries
and promotes the case for region-specific fine-tuning even in the
case of multilingual models.

4.4 RQ3: Graph Encoders
For this experiment, we select the popular graph representation
frameworks of DeepWalk, Chebyshev, Simple Graph Neural Net-
work (GNN), Graph Recurrent Network (GRN), Graph Convolution
Networks (GCN), and Graph Attention Network (GAT) as our can-
didates. We replace the neighborhood aggregation module with the
candidate graph networks in our comparative analysis. To select
the graph encoder, we primarily consider the performance metrics

4Note that the two phase approach uses 4 epochs for pre-training and 20 for
finetuning, so to maintain a fair comparison we train the single phase with 24 epochs.

of precision, recall, and F1, but in a computationally restrained (to
4GB of VRAM) setting to simulate industry setup. The results of
our study are presented in Table 3.
Table 3: Comparison between variants of SALAM with dif-
ferent graph encoders. The results are shown relative to the
performance of the DeepWalk variant, i.e., a cell value of 𝒙
implies that the variant performs (1 + 𝒙) × DeepWalk.

Model Variant P R F1
SALAM-DeepWalk [25] .000 .000 .000
SALAM-GNN [34] .126 .498 .327
SALAM-GRN [39] .167 .557 .377
SALAM-GAT [31] .208 .616 .427
SALAM-Chebyshev [7] .213 .627 .435
SALAM-GCN [15] .235 .678 .472

In our analysis, we observe that given the industry-level memory
constraints, the GCN network performs the best in the classification
task and hence, we select it as the graph encoder in SALAM.

4.5 RQ4: Practical Environment
In this section, we analyze thememory requirements and processing
speed of the model’s training and inference pipeline and compare it
against the baselines for its suitability to an industrial application5.

Table 4: Memory and processing requirements of different
models in the training and inference pipeline. The columns
present the number of parameters (Param), pre-training time
(PTT), fine-tuning time (FTT), inference time (IT), VRAM
requirement (Mem), and disk space requirement (Disk). PTT
and FTT are provided in seconds per epoch and IT is given
in milliseconds per sample. Mem and Disk requirements are
given in Gigabytes.

Model Param PTT FTT IT Mem Disk
mBERT 110M 128K 215 10.67 1.01 16.2
XLM 270M 133K 229 10.87 2.49 39.8
PEBL 150M 130K 217 10.83 1.38 22.1
SALAM 279M 135K 231 11.05 2.57 169.1

From Table 4, we note that our model and the baselines have
similar memory requirements to the XLM model and conforms
to the constraints of a general industrial application environment.
Additionally, we note that the increase in training and inference
times of SALAM when compared to PEBL is within ≈ 3% and ≈ 2%,
respectively. Given the monthly build timelines, the difference is
negligible even for a larger scale of data. However, a significant
challenge is the graph pre-computation module. Given, the large
scale of product catalogues and the frequency of queries, it is com-
putationally challenging to retrieve the local neighborhood during
inference. Hence, we utilize the training set and purchase infor-
mation to pre-compute the local neighborhoods and store it as a
hash-table for O(1) retrieval during inference. The inductive na-
ture of SALAM ensures language model-level results are available
for the non-covered infrequent queries. However, when compared
to PEBL, the graph adds to a huge disk requirement (128GB) and
additional maintenance in practice.

5generally 4GB of VRAM, 16 GB RAM, and 1TB of disk space.
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Figure 4: SALAM Workflow. The existing annotation module can seamlessly be integrated with the training and inference
module of our model. The additional disk requirement for the pre-computed graph database is trivial and within limits of
general industrial settings.

5 DISCUSSION
In this section, we describe the strategy to deploy SALAM in an
industrial application and discuss its impact to e-commerce search.

5.1 Deployment Strategy
As illustrated in Figure 4, SALAM can be trained offline using
manually annotated datasets and region-specific checkpoints can
be stored for inference. One can load these checkpoints to unique
SALAM instances for the different e-commerce regions and deploy
the model in a industrial setting using the LuaJIT6 platform. LuaJIT
loads the model in-memory for real-time inference, removing the
additional overhead of weight transfer from disk to GPU memory.
In accordance with the inference pipeline, query-product pairs
can be processed in batches on multiple processing units and the
labels saved for further utilization in downstream modules. For
any workflow that already uses query-product pair as an input
for classification, integration of SALAM with such workflows is
trivial with minor changes. The graph preprocessing operation is
also cached and looked up in real-time. Specifically, given the long
tailed nature of product search queries, one can precompute query
and product neighborhoods for the samples that correspond to the
majority of traffic. Efficient online inference methods can also be
used to compute the representations in real-time for the tail. Given
the performance gains from the graph information and negligible
difference in inference time, deploying SALAM makes it a viable
investment in practice.

5.2 Contribution to the search engine
In this section, we describe the impact of having an ESCI classifier
in a product search engine. E-commerce product search ranking
depends on lexical, behavioral, and semantic matching. Behavioral
data can sometimes be noisy, and this leads to biases in the data
used to train these models (see for e.g., [20]). Having a classifier
perform an ESCI-based classification at the final stage, or use these
as inputs to other downstream models can help reduce these issues.
Results from these models can also be used for customer messaging
as to why a certain item was shown in response to a query; for ex-
ample, why a charger was shown for a phone query. Improving the

6https://luajit.org/

performance of ESCI classifiers can thus help improve both prod-
uct search quality and the trust customers place in these systems,
helping practitioners better serve their customers in turn.

6 CONCLUSION
In this paper, we presented Structure-Aware multilingual LAnguage
Model (SALAM), a hybrid text and graph based model, that uses
a language model in congruence with a GCN network to respec-
tively capture both semantic and relational information for the
task of ESCI classification. We have shown the effectiveness of our
model in comparison to the currently used alternatives on mul-
tiple ESCI classification problem variants. Additionally, we have
also demonstrated the effectiveness of a two-phase training setup
in handling multiple e-commerce regions, as well as empirically
demonstrated our choice of the graph encoder. Moreover, we have
also compared SALAM with its alternatives in terms of memory
and processing requirements during inference and also detailed its
case for deployment in existing industrial pipelines.

REFERENCES
[1] Aman Ahuja, Nikhil Rao, Sumeet Katariya, Karthik Subbian, and Chandan K.

Reddy. 2020. Language-Agnostic Representation Learning for Product Search on
E-Commerce Platforms. Association for Computing Machinery, New York, NY,
USA, 7–15. https://doi.org/10.1145/3336191.3371852

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural Machine
Translation by Jointly Learning to Align and Translate. In International Conference
on Learning Representations, Yoshua Bengio and Yann LeCun (Eds.).

[3] Tong Chen, Hongzhi Yin, Guanhua Ye, Zi Huang, Yang Wang, and Meng Wang.
2020. Try This Instead: Personalized and Interpretable Substitute Recommendation.
Association for Computing Machinery, New York, NY, USA, 891–900. https:
//doi.org/10.1145/3397271.3401042

[4] Nurendra Choudhary, Nikhil Rao, Sumeet Katariya, Karthik Subbian, and Chan-
dan K. Reddy. 2022. ANTHEM: Attentive Hyperbolic Entity Model for Product
Search. In Proceedings of the Fifteenth ACM International Conference on Web
Search and Data Mining (Virtual Event, AZ, USA) (WSDM ’22). Association for
Computing Machinery, New York, NY, USA, 161–171. https://doi.org/10.1145/
3488560.3498456

[5] Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guil-
laume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer,
and Veselin Stoyanov. 2020. Unsupervised Cross-lingual Representation Learning
at Scale. In Proceedings of the 58th Annual Meeting of the Association for Computa-
tional Linguistics. Association for Computational Linguistics, Online, 8440–8451.
https://doi.org/10.18653/v1/2020.acl-main.747

[6] Alexis Conneau and Guillaume Lample. 2019. Cross-Lingual Language Model
Pretraining. Curran Associates Inc., Red Hook, NY, USA.

[7] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convo-
lutional Neural Networks on Graphs with Fast Localized Spectral Filtering. In

https://luajit.org/
https://doi.org/10.1145/3336191.3371852
https://doi.org/10.1145/3397271.3401042
https://doi.org/10.1145/3397271.3401042
https://doi.org/10.1145/3488560.3498456
https://doi.org/10.1145/3488560.3498456
https://doi.org/10.18653/v1/2020.acl-main.747


Graph-based Multilingual Language Model KDD ’22, August 14–18, 2022, Washington, DC, USA

Proceedings of the 30th International Conference on Neural Information Processing
Systems (Barcelona, Spain) (NIPS’16). Curran Associates Inc., Red Hook, NY, USA,
3844–3852.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota,
4171–4186. https://doi.org/10.18653/v1/N19-1423

[9] Yanlin Feng, Xinyue Chen, Bill Yuchen Lin, PeifengWang, Jun Yan, and Xiang Ren.
2020. Scalable Multi-Hop Relational Reasoning for Knowledge-Aware Question
Answering. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP). Association for Computational Linguistics, Online,
1295–1309. https://doi.org/10.18653/v1/2020.emnlp-main.99

[10] Aditya Grover and Jure Leskovec. 2016. Node2vec: Scalable Feature Learning
for Networks. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (San Francisco, California, USA) (KDD
’16). Association for Computing Machinery, New York, NY, USA, 855–864. https:
//doi.org/10.1145/2939672.2939754

[11] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive Representation
Learning on Large Graphs. In Proceedings of the 31st International Conference on
Neural Information Processing Systems (Long Beach, California, USA) (NIPS’17).
Curran Associates Inc., Red Hook, NY, USA, 1025–1035.

[12] Junheng Hao, Tong Zhao, Jin Li, Xin Luna Dong, Christos Faloutsos, Yizhou Sun,
and Wei Wang. 2020. P-Companion: A Principled Framework for Diversified
Complementary Product Recommendation. In Proceedings of the 29th ACM In-
ternational Conference on Information & Knowledge Management (Virtual Event,
Ireland) (CIKM ’20). Association for Computing Machinery, New York, NY, USA,
2517–2524. https://doi.org/10.1145/3340531.3412732

[13] Marti A Hearst, Anna Divoli, Harendra Guturu, Alex Ksikes, Preslav Nakov,
Michael A Wooldridge, and Jerry Ye. 2007. BioText Search Engine: beyond
abstract search. Bioinformatics 23, 16 (2007), 2196–2197.

[14] Gary King and Langche Zeng. 2001. Logistic regression in rare events data.
Political analysis 9, 2 (2001), 137–163.

[15] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net. https://openreview.net/forum?id=SJU4ayYgl

[16] Ilya Loshchilov and Frank Hutter. 2019. Decoupled Weight Decay Regularization.
In International Conference on Learning Representations. https://openreview.net/
forum?id=Bkg6RiCqY7

[17] Mohammad Najah Mahdi, Abdul Rahim Ahmad, Qais Saif Qassim, Mo-
hammed Ahmed Subhi, and Taofiq Adeola Bakare. 2022. A Survey on the Use
of Personalized Model-Based Search Engine. In Proceedings of International Con-
ference on Emerging Technologies and Intelligent Systems, Mostafa Al-Emran,
Mohammed A. Al-Sharafi, Mohammed N. Al-Kabi, and Khaled Shaalan (Eds.).
Springer International Publishing, Cham, 88–98.

[18] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013.
Distributed Representations of Words and Phrases and Their Compositionality. In
Proceedings of the 26th International Conference on Neural Information Processing
Systems - Volume 2 (Lake Tahoe, Nevada) (NIPS’13). Curran Associates Inc., Red
Hook, NY, USA, 3111–3119.

[19] Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui
Chen, Yang Liu, and Shantanu Jaiswal. 2017. graph2vec: Learning Distributed
Representations of Graphs. In Proceedings of the 13th International Workshop on
Mining and Learning with Graphs (MLG).

[20] Thanh Nguyen, Nikhil Rao, and Karthik Subbian. 2020. Learning Robust Models
for e-Commerce Product Search. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics. Association for Computational
Linguistics, Online, 6861–6869. https://doi.org/10.18653/v1/2020.acl-main.614

[21] PriyankaNigam, Yiwei Song, VijaiMohan, Vihan Lakshman,Weitian (Allen) Ding,
Ankit Shingavi, Choon Hui Teo, Hao Gu, and Bing Yin. 2019. Semantic Product
Search. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery &DataMining (Anchorage, AK, USA) (KDD ’19). Association
for Computing Machinery, New York, NY, USA, 2876–2885. https://doi.org/10.
1145/3292500.3330759

[22] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. 2016. Asym-
metric Transitivity Preserving Graph Embedding. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (San
Francisco, California, USA) (KDD ’16). Association for Computing Machinery,
New York, NY, USA, 1105–1114. https://doi.org/10.1145/2939672.2939751

[23] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019), 8026–8037.

[24] Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. GloVe:
Global Vectors for Word Representation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP). Association for

Computational Linguistics, Doha, Qatar, 1532–1543. https://doi.org/10.3115/v1/
D14-1162

[25] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: Online Learn-
ing of Social Representations. In Proceedings of the 20th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (New York, New York,
USA) (KDD ’14). ACM, New York, NY, USA, 701–710. https://doi.org/10.1145/
2623330.2623732

[26] Sam T. Roweis and Lawrence K. Saul. 2000. Nonlinear Dimension-
ality Reduction by Locally Linear Embedding. Science 290, 5500
(2000), 2323–2326. https://doi.org/10.1126/science.290.5500.2323
arXiv:https://www.science.org/doi/pdf/10.1126/science.290.5500.2323

[27] Franco Scarselli, MarcoGori, AhChung Tsoi, MarkusHagenbuchner, andGabriele
Monfardini. 2008. The graph neural network model. IEEE transactions on neural
networks 20, 1 (2008), 61–80.

[28] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. 2014.
Learning Semantic Representations Using Convolutional Neural Networks for
Web Search. In Proceedings of the 23rd International Conference onWorldWideWeb
(Seoul, Korea) (WWW ’14 Companion). Association for Computing Machinery,
New York, NY, USA, 373–374. https://doi.org/10.1145/2567948.2577348

[29] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. LINE: Large-Scale Information Network Embedding. In Proceedings of the
24th International Conference on World Wide Web (Florence, Italy) (WWW ’15).
International World Wide Web Conferences Steering Committee, Republic and
Canton of Geneva, CHE, 1067–1077. https://doi.org/10.1145/2736277.2741093

[30] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Processing Systems, I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.),
Vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[31] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. International Con-
ference on Learning Representations (2018). https://openreview.net/forum?id=
rJXMpikCZ

[32] Shengxian Wan, Yanyan Lan, Jiafeng Guo, Jun Xu, Liang Pang, and Xueqi Cheng.
2016. A Deep Architecture for Semantic Matching with Multiple Positional
Sentence Representations. In Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence (Phoenix, Arizona) (AAAI’16). AAAI Press, 2835–2841.

[33] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural Deep Network Em-
bedding. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (San Francisco, California, USA) (KDD
’16). Association for Computing Machinery, New York, NY, USA, 1225–1234.
https://doi.org/10.1145/2939672.2939753

[34] Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. 2016. Revisiting
Semi-Supervised Learning with Graph Embeddings. In Proceedings of the 33rd
International Conference on International Conference onMachine Learning - Volume
48 (New York, NY, USA) (ICML’16). JMLR.org, 40–48.

[35] Liang Yao, ChengshengMao, and Yuan Luo. 2019. Graph Convolutional Networks
for Text Classification. Proceedings of the AAAI Conference on Artificial Intelligence
33, 01 (Jul. 2019), 7370–7377. https://doi.org/10.1609/aaai.v33i01.33017370

[36] Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut, Percy Liang, and Jure
Leskovec. 2021. QA-GNN: Reasoning with Language Models and Knowledge
Graphs for Question Answering. In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies. Association for Computational Linguistics, Online, 535–546.
https://doi.org/10.18653/v1/2021.naacl-main.45

[37] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He,
Yanming Shen, and Tie-Yan Liu. 2021. Do Transformers Really Perform Bad for
Graph Representation? arXiv:2106.05234 [cs.LG]

[38] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He,
Yanming Shen, and Tie-Yan Liu. 2021. Do Transformers Really Perform Badly
for Graph Representation?. In Advances in Neural Information Processing Systems,
A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (Eds.). https:
//openreview.net/forum?id=OeWooOxFwDa

[39] Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, and Jure Leskovec. 2018.
GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models.. In
ICML (Proceedings of Machine Learning Research, Vol. 80), Jennifer G. Dy and
Andreas Krause (Eds.). PMLR, 5694–5703. http://dblp.uni-trier.de/db/conf/icml/
icml2018.html#YouYRHL18

[40] Jason Zhu, Yanling Cui, Yuming Liu, Hao Sun, Xue Li, Markus Pelger, Tianqi Yang,
Liangjie Zhang, Ruofei Zhang, and Huasha Zhao. 2021. TextGNN: Improving
Text Encoder via Graph Neural Network in Sponsored Search. In Proceedings
of the Web Conference 2021 (Ljubljana, Slovenia) (WWW ’21). Association for
Computing Machinery, New York, NY, USA, 2848–2857. https://doi.org/10.1145/
3442381.3449842

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.emnlp-main.99
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/3340531.3412732
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/2020.acl-main.614
https://doi.org/10.1145/3292500.3330759
https://doi.org/10.1145/3292500.3330759
https://doi.org/10.1145/2939672.2939751
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1126/science.290.5500.2323
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.290.5500.2323
https://doi.org/10.1145/2567948.2577348
https://doi.org/10.1145/2736277.2741093
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://doi.org/10.1145/2939672.2939753
https://doi.org/10.1609/aaai.v33i01.33017370
https://doi.org/10.18653/v1/2021.naacl-main.45
https://arxiv.org/abs/2106.05234
https://openreview.net/forum?id=OeWooOxFwDa
https://openreview.net/forum?id=OeWooOxFwDa
http://dblp.uni-trier.de/db/conf/icml/icml2018.html#YouYRHL18
http://dblp.uni-trier.de/db/conf/icml/icml2018.html#YouYRHL18
https://doi.org/10.1145/3442381.3449842
https://doi.org/10.1145/3442381.3449842


KDD ’22, August 14–18, 2022, Washington, DC, USA Nurendra Choudhary et al.

A SALAM ALGORITHMS
Algorithms 1 and 2 are the training and inference process flows of
the SALAM model, respectively.

Algorithm 1: SALAM training flow.
Input: Query-product pairs 𝑥 = {(𝑄, 𝑃)}, Pre-computed

neighborhoods 𝑥G = {(𝑄G, 𝑃G)}, Ground truth 𝑦;
Output: Predictor 𝑃\ , \ ;

1 Initialize model parameters \ ;
2 for number of epochs; until convergence do
3 Initialize loss 𝑙 = 0;
4 for (𝑄, 𝑃) ∈ 𝑥, (𝑄G, 𝑃G) ∈ 𝑥G do
5 # Process through language model
6 𝑡𝑄,𝑃 = 𝜙

𝑓

𝐹
(𝑋𝐿𝑀 (𝑄, 𝑃)); using Eq. (2)

7 # Aggregate node neighborhoods
8 𝑔𝑄,𝑃 = 𝐺𝐶𝑁 (𝑄G) ◦𝐺𝐶𝑁 (𝑃G); using Eq. (5)
9 # Attention Pooling

10 𝑒𝑄,𝑃 = 𝑡𝑄,𝑃 ◦ 𝑔𝑄,𝑃 ; using Eq. (6)
11 𝑞𝑄,𝑃 = 𝜙ℎ3𝑓

(
𝑒𝑄,𝑃

)
; using Eq. (7)

12 𝑘𝑄,𝑃 = 𝜙ℎ3𝑓
(
𝑒𝑄,𝑃

)
; using Eq. (7)

13 𝑣𝑄,𝑃 = 𝜙ℎ3𝑓
(
𝑒𝑄,𝑃

)
; using Eq. (7)

14 𝑎𝑄,𝑃 =

{
𝑒𝑥𝑝 (𝛼𝑖 𝑗 )∑ℎ
𝑗=0 𝑒𝑥𝑝 (𝛼𝑖 𝑗 )

𝑣𝑖

}ℎ
𝑖=0

; using Eq. (8)

15 𝑜𝑄,𝑃 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝜙
|𝑦 |
ℎ
(𝑎𝑄,𝑃 )

)
; using Eq. (9)

16 # Loss Calculation
17 𝑙 = 𝑙 + 𝐿(𝑜𝑄,𝑃 , 𝑦𝑘 ); using Eq. (10)
18 end
19 \ ← \ − ∇\ 𝑙 ; # Update parameters
20 end
21 return 𝑃\ , \

Algorithm 2: SALAM inference flow.
Input: {(𝑄, 𝑃)}, {(𝑄G, 𝑃G)}, Region-specific Model

Parameters \𝑟 ;
Output: Label 𝑦𝑘 ;

1 𝑡𝑄,𝑃 = 𝜙
𝑓

𝐹 ,\𝑟
(𝑋𝐿𝑀\𝑟 (𝑄, 𝑃)); using Eq. (2)

2 𝑔𝑄,𝑃 = 𝐺𝐶𝑁\𝑟 (𝑄G) ◦𝐺𝐶𝑁\𝑟 (𝑃G); using Eq. (5)
3 # Attention Pooling
4 𝑒𝑄,𝑃 = 𝑡𝑄,𝑃 ◦ 𝑔𝑄,𝑃 ; using Eq. (6)
5 𝑞𝑄,𝑃 = 𝜙ℎ3𝑓 ,\𝑟

(
𝑒𝑄,𝑃

)
; using Eq. (7)

6 𝑘𝑄,𝑃 = 𝜙ℎ3𝑓 ,\𝑟
(
𝑒𝑄,𝑃

)
; using Eq. (7)

7 𝑣𝑄,𝑃 = 𝜙ℎ3𝑓 ,\𝑟
(
𝑒𝑄,𝑃

)
; using Eq. (7)

8 𝑎𝑄,𝑃 =

{
𝑒𝑥𝑝 (𝛼𝑖 𝑗 )∑ℎ
𝑗=0 𝑒𝑥𝑝 (𝛼𝑖 𝑗 )

𝑣𝑖

}ℎ
𝑖=0

; 𝛼𝑖 𝑗 =
𝑞𝑖𝑘 𝑗√
2ℎ

; using Eq. (8)

9 𝑜𝑄,𝑃 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝜙
|𝑦 |
ℎ,\𝑟
(𝑎𝑄,𝑃 )

)
; using Eq. (9)

10 𝑦𝑘 = argmax(𝑜𝑄,𝑃 )
11 return 𝑦𝑘

B DATASET DETAILS
In this section, we study the different details of our dataset which
contains a total of ≈ 12𝑀 annotated samples with E-S-C-I labels.
The dataset is subsampled for annotation and does not, in any way,
represent the exact query volumes received by e-commerce engines.
On an average, 71.8%, 15.1%, 8.1%, and 4.9% of the overall dataset
are E, S, C, and I classes. We notice that the Exact class is a signifi-
cantly dominant part of the dataset and there is an apparent class
imbalance. Hence, to handle the imbalance we use cross entropy
with class weights computed as given in [14].

Figure 5 depicts the distribution of our dataset across the different
e-commerce regions. We observe that the regions of US and IN
constitute ≈ 37% of the total number of samples and consequently,
also show higher performance improvements in our experiments
(given in Section 4). The rest of regions are similarly distributed of
the remaining 63% and hence show comparable performance gains.

Figure 5: Regional distribution of our dataset. The areas of
the chart present the size of different e-commerce regions in
the overall composition of our dataset7.

C FURTHER RESULTS
Table 5 presents results on the three class (E vs S vs CI) and two
class (E vs SCI) classification variants of the search relevance prob-
lem that are applied to various downstream applications in the
e-commerce engine. An example application of the three class prob-
lem is alternate product suggestion and that of the two class problem
is high precision product search.

7The sample distribution of the datasets is given in (%) due to its proprietary
nature.
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Table 5: Performance comparison of SALAM against the baselines on the task of search relevance classification in different
e-commerce regions for three class E-S-CI and two class E-SCI classification. The evaluation metrics are Precision (P), Recall
(R), and F1. The metrics are presented for each class to avoid bias from class distribution. Due to the proprietary nature of
the models, the results shown are relative to the public mBERT model, i.e., a cell value of 𝒙 implies that the model performs
(1 + 𝒙) ×mBERT. The best results in each segment are highlighted in bold. All the F1-improvements of SALAM over PEBL and
mBERT are statistically significant with a p-value threshold of 0.05.

Region Australia (AU) Canada (CA) India (IN) Singapore (SG)
Class E S CI E SCI E S CI E SCI E S CI E SCI E S CI E SCI

P mBERT .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
XLM .020 -.12 -.00 .044 -.03 .022 -.12 -.02 .048 -.03 -.00 -.10 -.04 -.00 -.01 .014 -.27 -.02 .035 -.07
PEBL .028 -.05 .020 .054 .028 .027 -.05 .005 .056 .040 -.00 -.08 -.02 .001 .025 .013 -.15 -.01 .043 -.00
SALAM .029 -.06 .044 .035 .025 .018 -.07 .062 .046 .029 -.00 .089 .171 -.00 .137 .100 -.08 -.03 .091 -.02

R mBERT .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
XLM -.03 .102 .014 -.03 .120 -.04 .105 .077 -.03 .198 -.03 -.00 -.04 -.01 -.01 -.05 .064 -.01 -.05 .093
PEBL -.01 .118 .042 .005 .136 -.02 .109 .096 .000 .216 -.02 -.01 -.07 .012 .000 -.02 .077 -.01 -.01 .093
SALAM -.02 .150 .055 .007 .089 -.02 .127 .041 -.00 .179 .033 .040 -.00 .063 -.02 -.04 .318 .168 -.03 .189

F1 mBERT .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
XLM -.01 -.01 .007 .009 .046 -.01 -.01 .031 .010 .081 -.02 -.06 -.04 -.00 -.01 -.02 -.10 -.01 -.01 .018
PEBL -.03 .153 .086 .030 .084 -.02 .119 .112 .028 .128 -.00 -.06 -.06 .007 .013 -.08 .146 .089 .020 .050
SALAM -.03 .164 .105 .021 .058 -.03 .116 .112 .022 .105 .024 .044 .059 .031 .058 -.05 .325 .179 .034 .089

United Kingdom (UK) United States (US) Japan (JP) Germany (DE)
E S CI E SCI E S CI E SCI E S CI E SCI E S CI E SCI

P mBERT .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
XLM -.01 -.12 -.06 -.01 -.03 .010 -.10 -.02 .009 -.04 .018 -.06 .038 .035 .004 .020 -.10 .006 .060 -.00
PEBL -.01 -.01 -.01 -.01 .048 .012 -.04 .021 .023 -.01 .021 -.03 .049 .038 .031 .027 .005 .033 .069 .071
SALAM .011 .090 .491 -.01 .233 .011 .154 .552 .006 .194 .046 .199 .613 .049 .228 .026 .007 .034 .052 .067

R mBERT .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
XLM -.01 -.10 -.08 -.00 -.06 -.03 .083 .005 -.03 .043 -.02 .099 .064 -.02 .141 -.03 .093 .040 -.02 .204
PEBL .016 -.13 -.08 .021 -.06 -.01 .100 -.01 -.02 .095 -.01 .105 .074 -.01 .146 -.01 .089 .116 .013 .221
SALAM .036 .396 -.12 .068 -.09 .050 .285 -.08 .068 .000 .066 .422 .202 .072 .159 -.01 .072 .155 .015 .168

F1 mBERT .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
XLM -.01 -.11 -.06 -.01 -.04 -.01 -.01 -.01 -.01 -.00 .000 .022 .050 .006 .068 -.01 -.01 .024 .019 .099
PEBL .018 -.01 -.23 .006 -.00 .008 .089 -.16 .002 .038 .008 .122 -.03 .014 .085 -.01 .098 .137 .041 .147
SALAM .038 .327 -.07 .027 .060 .040 .292 .006 .037 .095 .057 .412 .275 .061 .193 -.02 .090 .158 .034 .119

France (FR) Italy (IT) Spain (ES) Netherlands (NL)
E S CI E SCI E S CI E SCI E S CI E SCI E S CI E SCI

P mBERT .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
XLM .013 -.17 -.03 .009 -.07 .013 -.08 .057 .024 -.02 .006 -.09 .016 .029 .019 -.01 -.20 -.04 .016 -.06
PEBL .011 -.11 -.03 .017 .001 .021 -.01 .089 .033 .031 .014 -.04 .038 .040 .073 .026 -.11 -.01 .058 .008
SALAM .052 -.02 .270 .049 .026 .043 .055 .394 .046 .099 -.00 .021 .023 .022 .099 .050 .085 .090 .059 .080

R mBERT .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
XLM -.03 .100 .052 -.03 .068 -.02 .080 .012 -.03 .079 -.02 .041 .009 -.00 .099 -.05 .000 -.01 -.05 .051
PEBL -.01 .046 .004 -.01 .102 .004 .094 .032 .004 .093 -.01 .058 .041 .019 .129 -.02 .021 .058 -.01 .120
SALAM -.01 .486 .314 -.01 .276 .033 .288 .087 .038 .117 .000 -.01 .039 .034 .067 .019 .319 .113 .042 .109

F1 mBERT .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
XLM -.01 -.02 .010 -.01 .003 -.00 .002 .035 -.00 .027 -.01 -.03 .012 .013 .058 -.03 -.10 -.03 .005 -.04
PEBL -.04 .195 .057 .005 .055 -.01 .140 .018 .018 .062 -.01 .049 .061 .029 .101 -.03 .048 .074 .046 .023
SALAM -.02 .507 .380 .019 .152 .020 .280 .178 .042 .108 -.01 .046 .052 .028 .083 -.00 .319 .153 .075 .053

Turkey (TR) United Arab Emirates (AE) Mexico (MX) Brazil (BR)
E S CI E SCI E S CI E SCI E S CI E SCI E S CI E SCI

P mBERT .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
XLM .003 -.17 -.01 .032 -.04 .001 -.16 -.04 .014 -.05 .013 -.10 .033 .034 -.03 .002 -.09 -.02 .018 -.01
PEBL .028 -.04 .025 .058 .037 .002 -.12 -.03 .019 .011 .023 -.05 .047 .049 .024 .012 -.03 .010 .034 .048
SALAM .053 -.04 .058 .057 .068 .000 -.05 .064 .001 .056 .017 .015 .192 .033 .079 -.01 .014 .093 .025 .044

R mBERT .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
XLM -.04 .035 -.02 -.04 .065 -.04 .008 -.03 -.03 .038 -.02 .054 .030 -.03 .090 -.04 .005 -.00 -.02 .031
PEBL .002 .025 .053 .017 .100 -.02 .014 -.04 .002 .042 .003 .086 .029 .002 .117 -.00 .012 .008 .032 .050
SALAM .000 .091 .115 .040 .095 .002 .096 -.05 .031 -.00 .024 .237 .011 .038 .069 .014 .039 -.02 .031 .036

F1 mBERT .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
XLM -.02 -.07 -.01 -.03 .023 -.02 -.08 -.03 .062 -.05 -.00 -.02 .032 .026 -.07 -.02 -.04 -.01 .030 -.02
PEBL -.00 .053 .058 .006 .080 -.02 .019 -.05 .084 -.01 -.01 .174 .008 .050 -.04 -.00 .006 .008 .063 .023
SALAM .004 .085 .107 .017 .094 -.01 .099 -.02 .090 -.01 -.00 .295 .065 .060 -.03 -.00 .041 .034 .058 .014
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