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Abstract A fundamental problem in data mining is to effectively build robust classifiers
in the presence of skewed data distributions. Class imbalance classifiers are trained specifi-
cally for skewed distribution datasets. Existing methods assume an ample supply of training
examples as a fundamental prerequisite for constructing an effective classifier. However,
when sufficient data are not readily available, the development of a representative classifica-
tion algorithm becomes even more difficult due to the unequal distribution between classes.
We provide a unified framework that will potentially take advantage of auxiliary data using a
transfer learning mechanism and simultaneously build a robust classifier to tackle this imbal-
ance issue in the presence of few training samples in a particular target domain of interest.
Transfer learning methods use auxiliary data to augment learning when training examples
are not sufficient and in this paper we will develop a method that is optimized to simulta-
neously augment the training data and induce balance into skewed datasets. We propose a
novel boosting-based instance transfer classifier with a label-dependent update mechanism
that simultaneously compensates for class imbalance and incorporates samples from an aux-
iliary domain to improve classification. We provide theoretical and empirical validation of
our method and apply to healthcare and text classification applications.

Keywords Rare class · Transfer learning · Class imbalance · AdaBoost · Weighted majority
algorithm · HealthCare informatics · Text mining

1 Introduction

One of the fundamental problems in machine learning is to effectively build robust classifiers
in the presence of class imbalance. Imbalanced learning is a well-studied problem and many
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sampling techniques, cost-sensitive algorithms, kernel-based techniques, and active learning
methods have been proposed in the literature [1]. Though there have been several attempts to
solve this problem, most of the existing methods always assume an ample supply of training
examples as a fundamental prerequisite for constructing an effective classifier tackling class
imbalance problems. In otherwords, the existing imbalanced learning algorithmsonly address
the problemof “Relative Imbalance”where the number of samples in one class is significantly
higher compared to the other class and there is an abundant supply of training instances.
However, when sufficient data for model training is not readily available, the development
of a representative hypothesis becomes more difficult due to an unequal distribution between
its classes.

Many datasets related to medical diagnoses, natural phenomena, or demographics are nat-
urally imbalanced datasets and will typically have an inadequate supply of training instances.
For example, datasets for cancer diagnosis in minority populations (benign or malignant), or
seismic wave classification datasets (earthquake or nuclear detonation) are small and imbal-
anced. “Absolute Rarity” refers to a dataset where the imbalance problem is compounded by
a supply of training instances that is not adequate for generalization. Many of such practical
datasets have high dimensionality, small sample size and class imbalance. The minority class
within a small and imbalanced dataset is considered to be a “Rare Class”. Classification
with “Absolute Rarity” is not a well-studied problem because the lack of representative data,
especially within the minority class, impedes learning.

To address this challenge, we develop an algorithm to simultaneously rectify for the skew
within the label space and compensate for the overall lack of instances in the training set by
borrowing from an auxiliary domain. We provide a unified framework that can potentially
take advantage of the auxiliary data using a “knowledge transfer” mechanism and build a
robust classifier to tackle this imbalance issue in the presence of fewer training samples in
the target domain. Transfer learning algorithms [2,3] use auxiliary data to augment learning
when training examples are not sufficient. In the presence of inadequate number of samples,
the transfer learning algorithms will improve learning on a small dataset (referred to as target
set) by including a similar and possibly larger auxiliary dataset (referred to as the source
set). In this work, we will develop one such method optimized to simultaneously augment
the training data and induce balance into the skewed datasets.

This paper presents the first method for rare dataset classification within a transfer learn-
ing paradigm. In this work, we propose a classification algorithm to address the problem of
“Absolute Rarity” with an instance transfer method that incorporates the best-fit set of aux-
iliary samples that improve balanced error minimization. Our transfer learning framework
induces balanced error optimization by simultaneously compensating for the class imbal-
ance and the lack of training examples in “Absolute Rarity”. To achieve this goal, we utilize
ensemble-learning techniques that iteratively construct a classifier that is trained with the
weighted source and target samples that best improve balanced classification. Our transfer
learning algorithm will include label information while performing knowledge transfer.

This paper effectively combines two important machine learning concepts: the concept of
compensating for the skew within the label space (which belongs to the domain of “Imbal-
anced Learning”) and the concept of extracting knowledge from an auxiliary dataset to
compensate for the overall lack of samples (which belongs to a family of methods known as
“instance-based transfer learning”). We aim to construct a hypothesis and uncover the sepa-
rating hyperplane with only a handful of training examples with data that is complex in both
the feature and label spaces. The complexity of the data skewness and the rarity of training
examples prohibit hypothesis construction by human experts or standard algorithms, and thus
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we present a solution that can be applied when nothing else suffices. The main contributions
of this paper are as follows:

1. Present a complete categorization of several recent works and highlight the need for a
new type of specialized algorithms to solve a niche but important problem that is not
addressed in the current literature.

2. Propose a novel transfer learning algorithm, Rare-Transfer, optimized for transfer within
the label space to effectively handle rare class problems.

3. Provide theoretical and empirical analysis of the proposed Rare-Transfer algorithm.
4. Demonstrate the superior performance of the proposed algorithm compared to several

existing methods in the literature using various real-world examples.

The rest of the paper is organized as follows: In Sect. 2, we describe the different types
of datasets and briefly discuss the related methods suitable for each type. Section 3 presents
the motivation for a unified balanced optimization framework. Section 4 describes our algo-
rithm, “Rare-Transfer”, which addresses the “Absolute Rarity” problem. Section 5 presents
the theoretical analysis of the proposed algorithm. For further validation, Sect. 6 presents
empirical analysis of our framework and is followed by experimental results on real-world
data in Sect. 7. Finally, we discuss possible extensions and conclude our work.

2 Characterization of existing machine learning domains

To describe datasets in terms of both size and imbalance, we use the “Label-Dependent” view
in Fig. 1. The sub-figures present a binary classification problem with normally distributed
samples within each class1 (thus we describe it as label-dependent since the distributions are
normal within each label). Figure 1 illustrates the different datasets with an overview of the
related machine learning fields2 that can improve learning.

1. Standard dataset Figure 1a depicts a standard dataset with a relatively equal number of
samples within each class (balanced class distribution) and an adequate number of sam-
ples for generalization. To learn from balanced datasets, equal importance is assigned to
all classes and thusmaximizing the overall arithmetic accuracy is the chosen optimization
objective. A variety of standard machine learning and data mining approaches can be
applied for standard datasets as such methods serve as the foundation for the algorithms
that are modified for any peculiar feature set or distribution.

2. Imbalanced dataset The dataset in Fig. 1b is a relatively imbalanced dataset. It is rela-
tively imbalanced because there is a between-class imbalancewhere one class encompass
the majority of the training set. The balance is relative since both minority and majority
training subsets contain adequate training samples. For example, email spam classifica-
tion is a relatively imbalanced problem since 97% (majority) of emails sent over the net
are considered unwanted emails [4] and with around 200 billion messages of spam sent
per day [5], the number of non-spam emails (minority) is also a large dataset. A dataset
where the number samples belonging to different classes is highly disproportionate is
considered to be an “imbalanced dataset” with the postulation that the imbalance is rela-
tive [1]. Because the majority class overwhelms the minority class, imbalanced learning
models are biased to improve learning on the minority class (without any consideration
to the availability of training examples).

1 The terms class and label are used interchangeably in our discussion.
2 Only concepts that are relevant for “Absolute Rarity” are discussed.
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Fig. 1 Label-dependent view of different type of datasets. a Standard. b Imbalanced. c Small. d Absolute
rarity

3. Small dataset The dataset in Fig. 1c is a balanced dataset with a training sample size
that is inadequate for generalization. One method to determine the number of samples
required for training is to rely on the “Probably Approximately Correct (PAC)” learning
theory [6]. PAC is applied to determine whether the ratio of the dimensions of the data
to the number of training samples is too high where the hypothesis space would thus be
exceedingly large. If that ratio is too high, learning becomes difficult and prone to model
over-fitting. PAC gives a theoretic relationship between the number of samples needed
in terms of the size of hypothesis space and the number of dimensions. The simplest
example is a binary dataset with binary classes and d dimensions with hypothesis space
of size 22

d
, requiring O (2n) samples [7].

4. Rare Dataset (Dataset with “Absolute Rarity”) The dataset in Fig. 1d is imbalanced as
well as small and thus its imbalance is termed as “Absolute Rarity”. Weiss [8] presents a
good overview of the problems encounteredwhen analyzing and evaluating such datasets.
Different solutions are outlined for handling “Absolute Rarity” with a discussion of
solutions for segmentation, bias and noise associated with these datasets. In [9], an end-
to-end investigation of rare categories in imbalanced datasets in both the supervised and
unsupervised settings is presented.

3 Learning with “Absolute Rarity”

A “Rare Dataset”3 is a label-skewed and small dataset and presents a set of challenges that
are not studied in existing literature. This section examines the parameters that are relevant
for the study of “Rare Datasets”.

3 In this paper, a “Rare Dataset” refers to a dataset with “Absolute Rarity”.
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3.1 Effect of data size on learning

3.1.1 Balanced dataset

The first impediment to learning with “Absolute Rarity” is the fact that the small size of
the training set, regardless of imbalance, impedes learning. When the number of training
examples is not adequate to generalize to instances not present in the training data, it is not
theoretically possible to use a learning model as the model will only overfit the training set.
The term “adequate” is a broad term as many factors including data complexity, number of
dimensions, data duplication, and overlap complexity have to be considered [1]. Computa-
tional learning theory [7] provides a general outline to estimate the difficulty of learning a
model, the required number of training examples, the expected learning and generalization
error and the risk of failing to learn or generalize.

A study in [10] found that the size of training set is the factor with the most significant
impact on classification performance. Figure 2 depicts 4 different algorithms that are trained
at different training set sizes and demonstrates that increasing the training sets’ size improves
the classification performance of all the algorithms. To assert that increasing the number of
training examples, combined with an error minimizing classifier, yields results where the
training and the generalization errors are similar is an intuitive and crucial finding as it
demonstrates that the choice of a classification model is less important than the overall size
of the training set.

3.1.2 Imbalanced dataset

The second impediment to learning with “Absolute Rarity” is the between-class imbalance
where a majority of samples belong to an overrepresented class and a minority of samples
belong to an underrepresented class [1]. The imbalanced classification study in [11] found

Fig. 2 Learning curves for confusion set disambiguation [10]
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Fig. 3 AUC for imbalanced datasets at different training sample sizes [11]. a Adult. b Covertype

that the most significant effect on a classifier’s performance in an imbalanced classification
problem is not the ratio of imbalance, but it is the number of samples in the training set. This
is an important finding as it demonstrates that the lack of data in “Absolute Rarity” intensifies
the label imbalance problem. As the number of the training examples increased, the error
rate caused by imbalance decreased [12] and thus increasing the number of training samples
makes the classifiers less sensitive to the between-class imbalance [11].

Figure 3 demonstrates how the lack of training examples degrades learning in an imbal-
anced dataset [11]. The ROC curve illustrates the performance of a binary classifier where
the x-axis represents the False Positive Rate (1-Specificity) and the y-axis represents the True
Positive Rate and is an accepted metric in imbalanced learning problems. Figure 3 presents
the Area Under the ROC curve (AUC) [13] results in [11] where a classifier was trained
for two imbalanced datasets [14] with different subsets of training sets (with a total of n
samples). AUC is a simple summary of the ROC performance and can be calculated by using
the trapezoidal areas created between ROC points and is thus equivalent to the Wilcoxon–
Mann–Whitney statistic [15]. The results demonstrate that increasing the size of the training
set directly improves learning for imbalanced datasets.

4 The proposed rare-transfer algorithm

4.1 Notations

Consider a domain (D) comprised of instances (X ∈ R
d) with d features. We can specify

a mapping function, F , to map the feature space to the label space as “X → Y ” where
Y ∈ {−1, 1}. If no source or target instances are defined, then n will simply refer to the
number of instances in a dataset; otherwise, we will denote the domain with n auxiliary
instances as the source domain (Dsrc) and define (Dtar ) as the target domain with m � n
instances. Instances that belong to themajority class will be defined as Xmajority and those that
belong to the minority class will be defined as Xminority. nl is the number of source samples
that belong to label l, while εl is the error rate for label l and denotes the misclassification
rate for samples with true label l. N defines the total number of boosting iterations, w is a

weight vector. A weak classifier at a given boosting iteration (t) will be defined as
..

f t , and
its classification error is denoted by εt . I is an indicator function and is defined as:
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I
[
y �= f̈

] =
{
1 y �= f̈
0 y = f̈

(1)

4.2 Boosting-based transfer learning

Boosting-based transfer learning algorithms apply ensemble methods to both source and
target instances with an update mechanism that incorporates only the source instances that
are useful for target instance classification. These methods perform this form of mapping
by giving more weight to source instances that improve target training and decreasing the
weights for instances that induce negative transfer.

TrAdaBoost [16] is the first and most popular transfer learning method that uses boosting
as a best-fit inductive transfer learner. TrAdaBoost trains a base classifier on the weighted
source and target set in an iterative manner. After every boosting iteration, the weights of
misclassified target instances are increased and the weights of correctly classified target
instances are decreased. This target update mechanism is based solely on the training error
calculated on the normalized weights of the target set and uses a strategy adapted from the
classical AdaBoost [17] algorithm. The weighted majority algorithm (WMA) [18] is used
to adjust the weights of the source set by iteratively decreasing the weight of misclassified
source instances by a constant factor and preserving the current weights of correctly classified
source instances. The basic idea is that the weight of source instances that are not correctly
classified on a consistent basis would converge and would not be used in the final classifier’s
output since that classifier only uses boosting iterations N

2 → N for convergence [16].
TrAdaBoost has been extended to many transfer learning problems. A multi-source learn-

ing [19] approach was proposed to import knowledge from many sources. Having multiple
sources increases the probability of integrating source instances that are better fit to improve
target learning and thus this method can reduce negative transfer. A model-based transfer
in “TaskTrAdaBoost” [19] extends this algorithm to transferring knowledge from multiple
source tasks to learn a specific target task. Since closely related tasks share some common
parameters, suitable parameters that induce positive transfer are integrated from multiple
source tasks. Some of the prominent applications of TrAdaBoost include multi-view surveil-
lance [19], imbalanced classification [20], head-pose estimation [21], visual tracking [22],
text classification [16] and several other problems [2].

TransferBoost [23] is an AdaBoost based method for boosting when multiple source tasks
are available. It boosts all source weights for instances that belong to tasks exhibiting positive
transferability to the target task. TransferBoost calculates an aggregate transfer term for every
source task as the difference in error between the target-only task and the target plus each
additional source task. AdaBoost was extended in [24] for concept drift as a fixed cost is
pre-calculated using Euclidean distance (as one of two options) as a measure of relevance
between source and target distributions. This relevance ratio thus gives more weights to data
that is near in the feature space and share a similar label. This ratio is finally incorporated to
the update mechanism via AdaCost [25].

Many problems have been noted when using TrAdaBooost. The authors in [26] reported
that there was a weight mismatch when the size of source instances is much larger than that
of target instances. This required many iterations for the total weight of the target instances
to approach that of the source instances. In [27], it was noted that TrAdaBoost yielded a
final classifier that always predicted one label for all instances as it substantially unbalanced
the weights between the different classes. Even the original implementation of TrAdaBoost
in [16] re-sampled the data at each step to balance the classes. Finally, various researchers
observed that beneficial source instances that are representative of the target concept tend
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to have a quick and stochastic weight convergence. This quick convergence was examined
by Eaton and desJardins [23] as they observed that in TrAdaBoost’s reweighing scheme,
the difference between the weights of the source and target instances only increased and
that there was no mechanism in place to recover the weight of source instances in later
boosting iterations when they become beneficial. TrAdaBoost was improved in [28] where
dynamic reweighing separated the two update mechanisms of AdaBoost andWMA for better
classification performance.

4.3 The proposed rare-transfer algorithm

To overcome the limitations in boosting-based transfer learning and simultaneously
address imbalance in “Absolute Rarity”, we present the “Rare-Transfer” algorithm (shown
in Algorithm 1). The algorithm exploits transfer learning concepts to improve classification
by incorporating auxiliary knowledge from a source domain to a target domain. Simultane-

Algorithm 1 Rare-Transfer Algorithm
Require:

• Source domain instances Dsrc = {(
xsrci , ysrci

)}

• Target domain instances Dtar = {(
xtari , ytari

)}

• Maximum number of iterations : N

• Base learner : ..
f

Ensure: Target Classifier Output :
{ .

f : X → Y
}

.
f = sign

⎡

⎢
⎣

N∏

t= N
2

(

β
t
tar

−
..

f t
)

−
N∏

t= N
2

(

β
t
tar

− 1
2

)⎤

⎥
⎦

Procedure:
1: Initialize the weights w for all instances D = {Dsrc ∪ Dtar }, where:

wsrc = {wsrc1 , . . . , wsrcn

}
, wtar = {wtar1 , . . . , wtarm

}
, w = {wsrc ∪ wtar }

2: Set βsrc = 1

1+
√

2 ln(n)
N

3: for t = 1 to N do
4: Normalize Weights: w = w∑n

i wsrci +∑m
j wtar j

5: Find the candidate weak learner
..

f t : X → Y that minimizes error for D weighted according to w

6: Calculate the error of
..

f t on Dsrc: εt
src =∑n

j=1

[
w

j
src

]
·I
[

ysrc j �=
..

f t
j

]

∑n
i=1

[
wi

src

]

7: Calculate the error of
..

f t on Dtar : εt
tar =∑m

j=1

[
w

j
tar

]
·I
[

ytar j �=
..

f t
j

]

∑m
i=1

[
wi

tar

]

8: Set Cl =
(
1 − εl

src

)

9: Set βtar = 1 − εt
tar

εt
tar

10: wt+1
srci = Clwt

srci
β

I

[
ysrci �=

..

f t
i

]

src where i ∈ Dsrc

11: wt+1
tar j

= wt
tar j

β

I

[
ytar j �=

..

f t
j

]

tar where j ∈ Dtar

12: end for
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ously, balanced classification is improved as the algorithm allocates higher weights to the
subset of auxiliary instances that improve and balance the final classifier. The framework
effectively combines the power of two boosting algorithms with AdaBoost [17] updating the
target instances’ weights and the weighted majority algorithm (WMA) [18], modified for
balanced transfer, updating the source instances’ weights to incorporate auxiliary knowledge
and skew for balanced classification via transfer from the source domain.

The two algorithms operate separately and are only linked in:

1. Line 4 (normalization): Both algorithms require normalization. The combined normal-
ization causes an anomaly that we will address in subsequent analysis.

2. Line 5: Infusing source with target for training is how transfer learning is induced from
the auxiliary dataset.

The target instances are updated in lines 7, 9, and 11 as outlined by AdaBoost [17]. The weak
learner in line 5 finds the separating hyperplane that forms the classification boundary and is
used to calculate the target’s error rate

(
εt

tar < 0.5
)
in line 7. This error is used in line 9 to

calculate (βtar > 1) which will then be used to update the target weights in line 11 as:

wt+1
tar j

= wt
tar j

β
I

[
ytar j �=

..

f t
j

]

tar (2)

Similar to AdaBoost, a misclassified target instance’s weight increases after normalization
andwould thus gainmore influence in the next iteration.Once boosting is completed, (t = N ),

the weak classifiers (
..

f t ) weighted by βtar are combined to construct a committee capable
of nonlinear approximation.

The source instances are updated in lines 2 and 10 as done by the weighted majority
algorithm [18]. The static WMA update rate (βsrc < 1) is calculated on line 2 and updates
the source weights as:

wt+1
srci

= wt
srci

β
I

[
ysrci �=

..

f t
i

]

src
(3)

Contrary to AdaBoost, WMA decreases the influence of an instance that is misclassified and
gives it a lower relative weight in the subsequent iterations. This property is beneficial for
transfer learning since the source instance’s contribution to the weak classifiers is dependent
on its classification consistency. A consistently misclassified instance’s weight converges,4

and its influence diminishes in subsequent iterations. In Algorithm 1, the WMA update
mechanism in Eq. (3) is actually modified in line 10 to incorporate the cost Cl for label-
dependent transfer. This dynamic cost is calculated in line 8, and it promotes balanced
transfer learning. Starting with equal initial weights and using standard weak classifiers that
optimize for accuracy, these classifiers achieve low error rates for the majority and high error
rate for the minority as they are overwhelmed with the majority label. The label-dependent
cost, Cl , controls the rate of convergence of the source instances and hence the weights
converge slower5 for labels with high initial error rates (minority classes). As minority labels
get higher normalized weights with each successive boosting iteration, the weak classifiers
would subsequently construct more balanced separating hyperplanes. The N

2 → N weak
classifiers are used for the final output with the expectation that the most consistent and
balanced mix of source instances would be used for learning the final classifier.

4 All mentions of “convergence” refer to a sequence (weight) that converges to zero.
5 Slower or decreased convergence rate means that a weight converges to zero with higher number of boosting
iterations.
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5 Theoretical analysis of the rare-transfer algorithm

We will refer to the cost
(
Cl
)
on line 9 as the “Correction Factor” and prove in Sect. 5.1

that it prevents the source instances’ weights from early convergence. This improves transfer
learning and addresses the lack of training data in a rare dataset. In Sect. 5.2, we provide
the motivation for balanced optimization and modify this “Correction Factor” to incorporate
balanced optimization to simultaneously compensate for the lack of sufficient data and the
class imbalance within a rare dataset.

5.1 Correction for transfer learning

Definition 1 Given k instances at iteration t with normalized weight w and update rate β,
the sum of the weights after one boosting iteration with error rate (εt ) is calculated as:

k∑

i=1

wt+1 = kwt (1 − εt ) + kwt (εt )β (4)

Wewill now explain this inmore detail with the help of an example. Given k = 10 instances at
iteration t with normalized weights w = 0.1, assume that weak learner f̈ correctly classifies
6 instances (εt = 0.4). Sum of correctly classified instances at boosting iteration t + 1 is
calculated as:

∑

y= f̈ t

wt+1 = 0.1β0 + 0.1β0 + 0.1β0 + 0.1β0 + 0.1β0 + 0.1β0

= 6(wt )β0 {since
(
wt = 0.1

)}

= 10(0.6)(wt )

= kwt (1 − εt )
{
since

(
k = 10, εt = 0.4

)}
(5)

On the other hand, the sum of misclassified instances at boosting iteration t + 1 is:
∑

y �= f̈ t

wt+1 = 0.1β1 + 0.1β1 + 0.1β1 + 0.1β1

= 4(wt )β1 {
since

(
wt = 0.1

)}

= 10(0.4)(wt )β

= kwt (εt )β
{
since

(
k = 10, εt = 0.4

)}
(6)

Thus, the sum of weights at boosting iteration “t + 1” is calculated as:

k∑

i=1

wt+1 =
∑

y= f̈ t

wt+1 +
∑

y �= f̈ t

wt+1

= kwt (1 − εt ) + kwt (εt )β (7)

Proposition 1 All source instances are correctly classified by the weak learner:

ysrci = f̈ t
i , ∀i ∈ {1, . . . , n} (8)

Equation (8) is analogous to:

n∑

i=1

wt+1 = nwt
src

(
1 − εt

src

)+ nwt
src

(
εt

src

)
βsrc = nwt

src (9)
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This proposition is held true in subsequent analysis to theoretically demonstrate that even
under ideal conditions with perfect auxiliary instances that consistently fit the classifiers,
knowledge from these source instances is lost as their weights converge. A “Correction
Factor” is calculated to conserve such instances, and it will be later demonstrated that this
correction is inversely proportional to classifier’s error and approaches unity (no correction
needed) as error increases and the analysis deviates from this proposition.

Theorem 1 will examine the effect of the combined (source + target) normalization in line
4 of Algorithm 1.

Theorem 1 If no correction is included in Algorithm 1, source weights will improperly
converge even when all instances are correctly classified.

Proof In the weighted majority algorithm, the weights are updated as:

wt+1
src =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

wt
src∑

{yi = fi } wt
src+

∑
{yi �= fi } βsrcwt

src
ysrc =

..

f t

βsrcw
t
src∑

{yi = fi } wt
src+

∑
{yi �= fi } βsrcwt

src
ysrc �=

..

f t

(10)

Equation (10) demonstrates that the weights for source instances that are correctly classified
should not change after normalization as:

wt+1
src = wt

src∑n
i=1 wt

srci

= wt
src (11)

Without correction, the normalized source weights in Algorithm 1 are updated as:

wt+1
src = wt

src

∑n
i wt

srci
+∑m

j wt
tar j

β
I

[
ytar j �=

..

f t
j

]

tar

(12)

Equation (12) shows that, without correction, correctly classified source weights would still
converge as:

m∑

j

wt
tar j

β

[
ytar j �=

..

f t
j

]

tar =
m∑

j

wt
tar j

(
1 − εt

tar

εt
tar

)I

[
ytar j �=

..

f t
j

]

(13)

Since all source weights persistently converge, all target weights would inversely increase
since (nwt

src + mwt
tar ) = 1. This will be referred to as “Weight Drift” since weight entropy

drifts from source to target instances. “Weight Drift” negates transfer since the final classifier
is comprised of the cascade of weak learners constructed in boosting iterations N

2 → N
(where the source instances’ weights could have already converged). With converged source
weights, Algorithm 1 becomes analogous to the standard AdaBoost algorithm with target
instances and no transfer learning. �	
Theorem 1 examined the cause of “Weight Drift” and Theorem 2 will outline the factors that
control it.

Theorem 2 For n source instances, the number of target training samples (m) affects the
convergence rate and thus the “Weight Drift”. “Weight Drift” is also stochastic since the
rate of convergence at iteration t (without correction) is determined by that iteration’s target
error rate (εt

tar ).
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Proof The fastest rate6 of convergence is achieved by minimizing the weight for each sub-
sequent boosting iteration (wt+1

src ) as:

min
m,n,εt

tar

(
wt+1

src

) = wt
src

max
m,n,εt

tar

{
∑n

i=1 wt
srci

+∑m
j=1 wt

tar j

(
1−εt

tar
εt

tar

)I
[

ytar j �=
..

f t
j

]} (14)

Equation (14) shows that two factors can slow down the rate of convergence of correctly
classified source instances:

1. Maximizing the weak learner’s target error rate with εt
tar → 0.5 (choosing an extremely

weak learner or one that is only slightly better than random). Since the weak learner is
weighted differently for each iteration, its error cannot be controlled and this factor will
induce a stochastic effect.

2. Decreasing the number of target samples m, since rate of convergence accelerates when
m/n → ∞. Attempting to slow the improper rate of convergence by reducing the number
of target instances is counterproductive as the knowledge from the removed instances
would be lost. �	

Theorem 2 demonstrated that a fixed cost cannot control the rate of convergence since the
cumulative effect of m, n, and εt

tar is stochastic. A dynamic term has to be calculated to
compensate for “Weight Drift” at every iteration. The calculation of a dynamic term is
outlined in Theorem 3.

Theorem 3 A correction factor of 2
(
1 − εt

tar

)
can be applied to the source weights to

prevent their “Weight Drift” and make the weights converge at a rate similar to that of the
weighted majority algorithm.

Proof Un-wrapping the WMA source update mechanism of Eq. (14), yields:

wt+1
src = wt

src

∑n
i=1 wt

srci
+∑m

j=1 wt
tar j

(
1−εt

tar
εt

tar

)I
[

ytar j �=
..

f t
j

] = wt
src

nwt
src + A + B

(15)

where A and B are defined as:

A = Sum of correctly classified target weights at boosting iteration “t + 1”

= mwt
tar

(
1 − εt

tar

)
(16)

B = Sum of misclassified target weights at boosting iteration “t + 1”

= mwt
tar

(
εt

tar

)
β t

tar = mwt
tar

(
εt

tar

) (1 − εt
tar

εt
tar

)I

[
ytar j �=

..

f t
j

]

= mwt
tar

(
1 − εt

tar

)
(17)

Substituting for A and B, the source update is:

wt+1
src = wt

src

nwt
src + 2mwt

tar
(
1 − εt

tar
) (18)

6 Faster or increased convergence rate means that a weight converges to zero with lower number of boosting
iterations.
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We will introduce and solve for a correction factor Ct to equate (wt+1
src = wt

src) for correctly
classified instances (as per the WMA).

wt
src = wt+1

src = Ctwt
src

Ct nwt
src + 2mwt

tar
(
1 − εt

tar
) (19)

Solving for Ct :

Ct = 2mwt
tar

(
1 − εt

tar

)

(1 − nwt
src)

= 2mwt
tar

(
1 − εt

tar

)

mwt
tar

= 2
(
1 − εt

tar

)
(20)

�	
Adding this correction factor to line 10 of Algorithm 1 equates its normalized update
mechanism to the weighted majority algorithm and subsequently prevents “Weight Drift”.
Theorem 4 examines the effect this factor has on the update mechanism of the target weights.

Theorem 4 Applying a correction factor of 2
(
1 − εt

tar

)
to the source weights prevents

“Weight Drift” and subsequently equates the target instances’ weight update mechanism
in Algorithm 1 to that of AdaBoost.

Proof In AdaBoost, without any source instances (n = 0), target weights for correctly
classified instances would be updated as:

wt+1
tar = wt

tar

∑m
j=1 wt

tar j

(
1−εt

tar
εt

tar

)I
[

ytar j �=
..

f t
j

]

= wt
tar

A + B
= wt

tar

2mwt
tar
(
1 − εt

tar
) = wt

tar

2(1)
(
1 − εt

tar
) (21)

Applying the “Correction Factor” to the source instances’ weight update prevents “Weight
Drift” and subsequently equates the target instances’ weight update mechanism outlined in
Algorithm 1 to that of AdaBoost since

wt+1
tar = wt

tar

nwt
src + 2mwt

tar
(
1 − εt

tar
) = wt

tar

Ct nwt
src + 2mwt

tar
(
1 − εt

tar
)

= wt
tar

2
(
1 − εt

tar
)

nwt
src + 2mwt

tar
(
1 − εt

tar
)

= wt
tar

2
(
1 − εt

tar
)
(nwt

src + mwt
tar )

= wt
tar

2
(
1 − εt

tar
)
(1)

(22)

�	
It was proven that a dynamic cost can be incorporated into Algorithm 1 to correct for weight
drifting from source to target instances. This factor would ultimately separate the source
instance updates which rely on the WMA and βsrc, from the target instance updates which
rely on AdaBoost and εt

tar . With these two algorithms separated, they can be joined for
transfer learning by infusing “best-fit” source instances to each successive weak classifier.

The “Correction Factor” introduced in this section allows for strict control of the source
weights’ rate of convergence, and this property will be exploited to induce balance to
“Absolute Rarity”. Balanced classifiers will be dynamically promoted by accelerating the
rate of weight convergence of the majority label and slowing it for the minority label.
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5.2 Correction for learning with “Absolute Rarity”

Instance transfer methods improve classification on a small dataset, but they also exacer-
bate the imbalance problem by constructing imbalanced classifiers. This outcome was even
observed in generally balanced instance-transfer methods. It was noted by [27] that boosting
for transfer learning sometimes yielded a final classifier that always predicted a single label.
Dai et al. [16] re-sampled the data at each step to balance the class weight since they observed
similar behavior. In this section, we examine the cause of this induced imbalance.

Proposition 2 For a class imbalance problem, a standard classifier yields lower error rate
for the majority label as compared to that of the minority since it optimizes:

min
ε

(nε) = min
εl

(
∑

∀l∈Y

nlεl

)

(23)

In a class imbalanced problem, where (nl=majority � nl=minority), a traditional classifier opti-
mizing Eq. (23) can achieve high accuracy if it classifies all instances as majority instances.
This proposition serves as a foundation for all imbalanced learning methods [1,29,30].

Theorem 5 In an imbalanced problem, the weighted majority algorithm, WMA, constructs
a classifier where the minority instances’ weights decrease exponentially with every boosting
iteration.

Proof Amisclassified source instance at boosting iteration t is updated via theWMA update
mechanism, and its t + 1 weight is adjusted to: wt+1

src = βsrcw
t
src. The source update mech-

anism is set by βsrc which is set to:

0 <

⎡

⎣βsrc = 1

1 +
√

2 ln(n)
N

⎤

⎦ < 1 (24)

Since βsrc < 1, a misclassified source instance’s weight would converge after normaliza-
tion. Since weak classifiers at initial boosting iterations, with equally initialized weights,
yield high error rates for minority labels (Proposition 2), the minority label’s weights would
subsequently have less influence on the t + 1 classifier and would accelerate the rate of
convergence as

wt+1
src ≥ wt

src i f
(

ysrc =
..

f t
)

wt+1
src < wt

src i f
(

ysrc �=
..

f t
)

(25)

Ignoring normalization, the minority label’s weights decrease exponentially as:

wt+1
src ≈ βsrcw

t
src

wt+2
src ≈ βsrcw

t+1
src ≈ βsrcβsrcw

t
src

...

wt+k
src ≈ βk

srcw
t
src (26)

Since the final classifier in Algorithm 1 is computed from the cascade of learners constructed
in iterations N

2 → N , where the minority source weights could have already converged, the
final output would be extremely imbalanced as it will have added only majority weights. �	
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Conversely, updating the target instances via the AdaBoost update mechanism improves
the performance on an imbalanced dataset particularly if the final classifier is computed
using only the N

2 → N boosting iterations. A misclassified target instance at boosting
iteration t is updated via the AdaBoost update mechanism, and its t + 1 weight is adjusted
to: wt+1

tar = βtarw
t
tar . The target update for a misclassified instance’s weight is dependent on

βtar where

1 <

[
βtar = 1 − εt

tar

εt
tar

]
< ∞ (27)

Since βtar > 1, a misclassified target instance’s weight would increase after normalization
and the minority label’s weights would in turn have more influence on the t + 1 classifier
and bias the classifier to improve learning on the minority as:

wt+1
tar < wt

tar i f
(

ytar =
..

f t
)

wt+1
tar ≥ wt

tar i f
(

ytar �=
..

f t
)

(28)

Since the final classifier is computed from the cascade of learners constructed in iterations
N
2 → N , where the minority label’s instances have increased weights to compensate for the
lack of its samples, the final output would be more balanced.

5.3 Label space optimization

Instance-transfer can improve learning with “Absolute Rarity” as it compensates for the
lack of training examples with a selective set of samples from an auxiliary domain. Since
instance-transfer can also induce imbalance (as proved in the previous section), intuitive
results will require a balanced optimization technique to address the class imbalance in
“Absolute Rarity”. Figure 4 motivates for optimization with balanced measures to improve
classification in imbalanced datasets. The two classifiers in Fig. 4 are optimizedwith different

Fig. 4 a Algorithmminimizing arithmetic error. b Algorithmminimizing geometric/balanced/harmonic error
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types of accuracy measures7 where Fig. 4a minimizes the Arithmetic error while Fig. 4b
minimizes the (Geometric [31]/ Balanced [32]/Harmonic [33]) errors. This example shows
that given a constrained classifier (linear classifier in this example), the algorithm in Fig. 4b
obtains more intuitive results with a degraded arithmetic accuracy and an improved balanced
(Geometric/Balanced/Harmonic) accuracy. Theorems 6, 7, and 8 prove that minimizing a
label-dependent measure improves balanced statistical measures while Theorem 9 shows
that a label-dependent optimization can improve the balanced statistics for “Absolute Rarity”
in Algorithm 1.

Theorem 6 Maximizing the Balanced Accuracy (BAC) is equivalent to minimizing the sum
of label-dependent errors independent of the number of samples within each class:

max
εl

(B AC) = min
εl

∑

l∈Y

εl
src

Proof To prove theorem 6, we will start with a binary labeled example and extend to gen-
eral form. With no optimization of the prediction threshold of a binary classifier (classifier
threshold at a pre-set level), the Area under the ROC Curve (AUC) is equivalent to Balanced
Accuracy (BAC) [34]. This Balanced Accuracy is the average accuracy of each class and in
turn equates to the average of sensitivity and specificity. It is calculated as follows:

AUC = B AC = 1

2
(Sensitivity + Specificity)

= 1

2

[(
TruePositive

TruePositive + FalseNegative

)
+
(

TrueNegative

TrueNegative + FalsePositive

)]

=
∑

l∈Y

0.5
(∑n

i=1

(
yl

i = f l
i

))

∑n
i=1

(
yl

i = f l
i

)+∑n
i=1

(
yl

i �= f l
i

) =
∑

l∈Y

0.5
(
nl
(
1 − εl

))

nl
(
1 − εl

)+ nl
(
εl
) = 0.5

(
∑

l∈Y

(
1 − εl

)
)

(29)

Equation (29) can be maximized as follows:

max
εl

(B AC) = max
εl

(

0.5

(
∑

l∈Y

(
1 − εl

)))

= min
εl

(
∑

l∈Y

εl

)

(30)

�	
The optimization problem in Eq. (30) is a constrained optimization problem which is mini-
mized as follows:

min
εl

∑

l∈Y

εl

s.t.
∑

∀l∈Y

nlεl = ε (31)

Theorem 7 Maximizing the Geometric Mean (G-Mean) is equivalent to minimizing the
product of label-dependent errors and is independent of the number of samples within each
class:

max
εl

(G − Mean) = min
∏

l∈Y

εl
src

7 The Up/Down arrow next to each error measure signifies that an algorithm produced better/worse results in
comparison with the other algorithm.
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Proof Similar to Theorem 6, we start with a binary labeled example and extend to general
form:

G − Mean = √(Sensitivity) (Specificity)

=
√(

TruePositive

TruePositive + FalseNegative

)(
TrueNegative

TrueNegative + FalsePositive

)

=
√√
√
√∏

l∈Y

∑n
i=1

(
yl

i = f l
i

)

∑n
i=1

(
yl

i = f l
i

)+∑n
i=1

(
yl

i �= f l
i

)

=
√
∏

l∈Y

nl
(
1 − εl

)

nl
(
1 − εl

)+ nl
(
εl
) =

√∏

l∈Y

(
1 − εl

)

(32)

Maximizing the statistic in Eq. (32), we have

max
εl

(G − Mean) = max
εl

(√∏

l∈Y

(
1 − εl

)) = min
εl

(
∏

l∈Y

εl

)

(33)

�	

Similar toEq. (31), the optimization problem inEq. (33) is a constrainedoptimization problem
and is minimized by

min
εl

∏

l∈Y

εl

s.t.
∑

∀l∈Y

nlεl = ε (34)

Since both Eqs. (31) and (34) are constrained by the classifier’s error rate, modifying the
weak learner to improve classification on one label can degrade classification on the other
label (Fig. 4).

Theorem 8 An improved G-Mean coupled with no degradation in the BAC will improve the
F-Measure.

Proof The harmonic mean of sensitivity and specificity is a particular realization of the
F-measure [33] and is maximized as

f − measure =
[
2 (Sensitivity) (Specificity)

Sensitivity + Specificity

]

=
⎡

⎢
⎣

∏
l∈Y

nl
(
1−εl

)

nl(1−εl)+nl(εl)
∑

l∈Y
0.5(nl(1−εl))

nl(1−εl)+nl(εl)

⎤

⎥
⎦ =

[ ∏
l∈Y

(
1 − εl

)

0.5
(∑

l∈Y

(
1 − εl

))

]

(35)
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Equation ( 35) can be optimized as

max
εl

( f − measure) = max
εl

[ ∏
l∈Y

(
1 − εl

)

0.5
(∑

l∈Y

(
1 − εl

))

]

= max
εl

[
(G − Mean)2

B AC

]

= min
εl

[(∏
l∈Y εl

)

∑
l∈Y εl

]

(36)

�	
Equation (36) proves a classifier that improves G-Mean (via balance) with no degradation in
BAC (via Transfer) improves the F-measure.

Theorem 9 In an imbalanced dataset, a label-dependent update mechanism can improve
the G-Mean without degrading the BAC performance.

Proof In a balanced learning problem, all labels have an equal effect on BAC and G-Mean

but as the label space gets more imbalanced, nl=majority

nl=minority → ∞, the contribution of the minority
label’s error rate to the classifier’s overall accuracy can thus be approximated as:

∑

∀l∈Y

nlεl ≈
∑

l∈majori ty

nlεl (37)

Equation (37) demonstrates that biasing the classifier to favor theminimization of theminority
label, in an imbalanced dataset, has minimal effect on the overall accuracy and the balanced
arithmetic mean will not be degraded since the increased error of the majority label is negated
by the decreased error of the minority label. On the other hand, G-Mean is the balanced
geometric mean and is significantly improved if balance is induced. �	

5.3.1 Optimization for “Absolute Rarity”

Using definition 1, the sum of source instances’ weight is monotonically decreasing as:

nwt+1
src = nwt

src

[
1 + εt

src (βsrc − 1)
]

nwt+1
src ≤ nwt

src since
(
βsrc < 1, εt

src ≥ 0
)

(38)

Similarly, the target instances’ weights are monotonically increasing:

mwt+1
tar = mwt

tar

[
1 + εt

tar (βtar − 1)
]

mwt+1
tar ≤ mwt

tar since
(
βtar > 1, εt

tar ≥ 0
)

(39)

Line 4 of “Rare Transfer” normalizes the sum of all weights and thus, all source weights are
monotonically converging. On the other hand, Theorem (5) demonstrated that the minority
sources’ weights converge faster than the majority sources’ weights. To improve balanced
classification, we include a “Label-Dependent Correction Factor” to dynamically slow the
convergence of the source instances’ weights while simultaneously reducing the differential
in the error between the minority and majority label. It is set to:

Cl =
(
1 − εl

src

)
(40)

This factor dynamically slows convergence for the label with a higher error since the con-
vergence rate is inversely correlated to the error. Biasing each label’s weights allows “Rare
Transfer” to steer for the construction of a final classifier that includes a best-fit set of auxiliary
samples and has an equal error on all labels.
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6 Empirical analysis

In this section, we provide empirical validation of our theorems. The first experiment demon-
strates how a “Correction Factor” fixes the problemof “WeightDrift”. The second experiment
examines the effect of “Label-Dependent” optimization on imbalanced learning.

6.1 “Weight Drift” and “Correction Factor”

The first experiment demonstrates the effect of “Weight Drift” on source and target weights.
In Fig. 5a, the number of instances was constant (n = 10,000, m = 200), the source error
rate was set to zero (as per Proposition 1) and the number of boosting iterations was set to
N = 20. According to the WMA, the weights should not change when εt

src = 0. The ratio of
the weights (with and without correction) to the weights of the WMA are plotted at different
boosting iterations and with different target error rates εt

tar ∈ {0.1, 0.2, 0.3}. This experiment
validates the following theorems:

1. With correction, source weights converge even when correctly classified.
2. Applying our “Correction Factor” equates theweight update of Algorithm 1 to theWMA.
3. If correction is not applied, strong classifiers cause weights to converge at a faster rate

than weak ones (Theorem 2).

The figure also demonstrates that for a strong learner with εt
tar ≈ 0.1, if no correction is

applied, an “un-corrected” update mechanism would not transfer knowledge from all 10,000
source instances although they were never misclassified. The final classifier uses boosting
iterations N/2 → N , or 10 → 20, where the weights of ideal source instances would have
already lost over 85% of their value. Correction conserved these instances’ weights and thus
helpful source instances would improve classification.

The second experiment validates the effect of the number of target instances, m, on the
convergence rate (Theorem 2). The number of source instances was set (n = 1000), while the
number of target instances was varied m

n ∈ {1, 2, 5%} and plotted for εt
tar ∈ {0.1, . . . , 0.5}.

The plot in Fig. 5b shows how the source weights converge after a single boosting iteration
and it can be observed that the rate of convergence is affected by m/n and the error rate εtar

(which is also related to m). It can also be observed that as the error rate increases (ε → 0.5),
less correction is required as the improper convergence rate approaches the correctWMArate.
This is expected since the “Correction Factor”

(
C = 2

(
1 − εt

tar

))
is inversely proportional

to εt
tar and its impact reaches unity (No Correction) as the target error rate increases.

lim
εt

tar →0.5
{C} = lim

εt
tar →0.5

{
2
(
1 − εt

tar

)} ≈ lim
εt

src→0.5

{
2
(
1 − εt

src

)} = 1 (41)

Fig. 5 The weights (relative to the WMA) for ideal source instances. a For 20 iterations with different error.
b For 1 iteration with different target instances and error. (NC no correction)
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Fig. 6 The effect of “Rare Correction” using various evaluation metrics. a Label accuracy. b BAC. c G-mean.
d F-measure

This is an important property because “Weight Drift” is most detrimental to learning at low
error rates (where Proposition 1 was set).

It should be noted that for both plots in Fig. 5, the weight lost by the source instances
is drifting to the target instances. The plots for the target weights would look inversely
proportional to the plots in Fig. 5 since

∑n
i=1 wt

srci
+∑m

j=1 wt
tar j

= 1.

6.2 “WMA Imbalanced Drift” and “Rare Correction Factor”

This section presents an empirical validation of Theorems 5, 6, 7, 8, and 9. A binary labeled
classification problem was simulated with 900 majority instances, 100 minority instances
and the weak classifier error rate was set to (ε = 0.2). Since this an imbalanced dataset and
the weak classifier is weighted, error rate (εl ) was correlated with the label’s relative weight

as follows: εl = ε
∑

i∈l wi
∑

w
.

In Fig. 6a, we plot the accuracy for both labels and demonstrate that applying a label-
dependent correction factor to the weight update mechanism induces balance, while the
un-corrected WMA update mechanism minimizes only the majority label’s error and causes
imbalance. This is reflected in the statistical measures as Fig. 6b shows that inducing balance
causes no change in BAC while significantly improving G-Mean in Fig. 6c. The improved
G-Mean coupled with no degradation in BAC is reflected in the improved F-Measure in
Fig. 6d.

7 Real-world experimental results

We will now provide the details on the performance of various algorithms under different
evaluation metrics using real-world datasets.
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7.1 Dataset description

A Detailed description of the datasets used in our experiments is provided in Table 1.

(i)Healthcare demographicsWecollectedHeart Failure (HF) patient data from theHenry
Ford Health System (HFHS) in Detroit. This dataset contains records for 8913 unique
patients who had their first hospitalization with primary HF diagnosis. The goal is to
predict if a patient will be re-admitted within 30 days after being discharged from the

Table 1 Description of the datasets used in our experiments

Dataset Features Source Source Target Target
Majority Minority Majority Minority

AA AA CA CA

HF Nu: 2 NReH ReH NReH ReH

(Race) No: 20 4468 (78.0%) 1026 (17.9%) ≈183 (3.2%) ≈ 50 (0.9%)

Over 50 Over 50 Under 50 Under 50

HF Nu: 1 NReH ReH NReH ReH

(Age) No: 21 4513 (75.4%) 1182 (19.8%) ≈ 241 (4.0%) ≈ 50 (0.8%)

Male Male Female Female

HF Nu: 2 NReH ReH NReH ReH

(Gender) No: 20 3366 (75.7%) 818 (18.4%) ≈211 (4.8%) ≈50 (1.1%)

Muslim Muslim Non-Muslim Non-Muslim

Emp Nu: 5 Un-employed Employed Un-employed Employed

(Rel) No: 955 (74%) 298 (23%) 15 (0.02%) 7 (0.006%)

Male Male Female Female

Park Nu: 19 UPDRS ≥ 10 UPDRS< 10 UPDRS ≥ 10 UPDRS< 10

(Gender) No: 0 3732 (89%) 276 (8%) 112 (0.03%) 13(0.003%)

REC rec talk rec talk

vs Nu: 500 .autos .politics.guns .sports.baseball .politics.mideast

TALK No: 0 .motorcycles .politics.misc .sports.hockey .religion.misc

1009 20,50,101 472,453,393 10,23,39

2, 5, 10% 2, 5, 10% 2, 5, 10%

REC rec sci rec sci

vs Nu: 500 .autos .sci.crypt .motorcycles .sci.electronics

SCI No: 0 .sports.baseball .sci.space .sports.hockey .sci.med

1187 24,59,119 486,518,543 10,26,55

2, 5, 10% 2, 5, 10% 2, 5, 10%

SCI sci talk sci talk

vs Nu: 500 .sci.med .politics.misc .sci.crypt .politics.guns

TALK No: 0 .sci.electronics .religion.misc .sci.space .politics.mideast

840 17,42,84 513,529,507 10,26,51

2, 5, 10% 2, 5, 10% 2, 5, 10%

For brevity, we used several acronyms which are explained here
Nu numeric,No nominal,CACaucasian,AAAfricanAmerican,NReH not re-hospitalized,ReH re-hospitalized,
Emp employment, Rel religion, Park parkinson
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hospital and to apply the model to rural hospitals or to demographics with less data
[35]. Re-hospitalization for HF occurs in around one-in-five patients within 30 days of
discharge and is disproportionately distributed across the US population with significant
disparities based on gender, age, ethnicity, geographic area, and socioeconomic sta-
tus [36]. Other non-demographic features included length of hospital stay, ICU stay and
dichotomous variables for whether a patient was diagnosed with diabetes, hypertension,
peripheral vascular disease, transient ischemic attack, heart failure, chronic kidney dis-
ease, coronary artery disease, hemodialysis treatment, cardiac catheterization, right heart
catheterization, coronary angiography, balloon pump, mechanical ventilation or general
intervention. The average results with 50 minority samples (patient was re-hospitalized)
is reported.
(ii) Employment dataset This dataset is a subset of the 1987 National Indonesia Con-
traceptive Prevalence Survey [37]. We used the dataset [14] to predict if a non-Muslim
woman is employed based on her demographic and socio-economic characteristics. In
the training set, only 22 of the 1275 were not Muslim and only 7 of them were employed.
(iii) Parkinson dataset This dataset [38] is composed of a range of biomedical voice
measurements from people with early-stage Parkinson’s disease. The goal is to predict
if a female patient’s score on the Unified Parkinson’s Disease Rating Scale [39] is high
(UPDRS≥ 10) or low (UPDRS<10). In the training set, only 125 of the 3732 participants
were female and only 13 of them had a low UPDRS score.
(iv) Text dataset 20 Newsgroups8 is a popular text collection that is partitioned across
20 groups with 3 cross-domain tasks and a two-level hierarchy as outlined in [40]. We
usedTermFrequencyInverseDocument Frequency (TF-IDF) [41] tomaintain around 500
features and imbalanced the dataset to generate a high-dimensional, small and imbalanced
dataset.

7.2 Experiment setup

AdaBoost [17] was used as the standard baseline algorithm for comparison. We applied
SMOTE [42], with 5 nearest neighbors (k = 5), before boosting to compare with an imbal-
anced classification method (SMOTE-AdaBoost). TrAdaBoost [16] was used as the baseline
transfer learning algorithm. The non-transfer reference algorithms were trained with the
target-only set and with the combined (target+source) set. Thirty boosting iterations were
experimentally proven sufficient for training.

Base learner
( ..

f
)
We did not use decision stumps as weak learners since most data belong

to the source and it was not possible to keep the target error below 0.5 (as mandated by
AdaBoost) for more than a few iterations. A strong classifier, full classification tree without
pruning, is applied with a top-down approach where the tree is trimmed at the first level to
achieve εt

tar < 0.5.
Cross validation Small datasets are prone to over-fit and terminate boosting and thus all
algorithms were restarted with a new cross validation fold when any algorithm terminated
before reaching 30 iterations. Random sub-sampling cross validation [43] was applied, and
each statistic was tabulated with the macro-average [44] of 30 runs. Plots with two imbalance
ratios across a variable size of minority samples are also presented.

8 http://people.csail.mit.edu/jrennie/20Newsgroups/.
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7.3 Experimental results

This section presents the classification results for the different balanced learning measures.

7.3.1 BAC results

The BAC results presented in Table 2 show that Rare-Transfer improved the Balanced Accu-
racy. The improved performance is consistent evenwhen the addition of auxiliary data seemed
to degrade the performance as evident in the 20 Newsgroups dataset. This is proof that the
“transfer learning” objective in our algorithm improved learning with only the best set of aux-
iliary instances. Figure 7 demonstrates that the improved performance is consistent across
different datasets, imbalance ratios and absolute number of minority samples.

7.3.2 G-mean results

The results presented in Table 3 confirm that Rare-Transfer significantly improved the
Geometric Mean. The results on the 20 Newsgroups (2%) dataset demonstrate improved

Table 2 Comparison of balanced accuracy values on real-world datasets

AdaBoost
(Target)

AdaBoost
(Src+Tar)

SMOTE
(Target)

SMOTE
(Src+Tar)

TrAda
Boost

Rare
Transfer

HF(Gender) 0.518 0.512 0.524 0.549 0.502 0.562

HF(Race) 0.521 0.509 0.529 0.547 0.504 0.563

HF(Age) 0.526 0.511 0.538 0.535 0.503 0.556

Rec-Sci(2%) 0.564 0.571 0.566 0.569 0.558 0.594

Sci-Talk(2%) 0.544 0.541 0.544 0.540 0.543 0.571

Rec-Talk(2%) 0.569 0.534 0.577 0.547 0.561 0.610

Rec-Sci(5%) 0.635 0.622 0.635 0.645 0.608 0.664

Sci-Talk(5%) 0.602 0.591 0.607 0.596 0.582 0.632

Rec-Talk(5%) 0.635 0.569 0.642 0.602 0.609 0.672

Rec-Sci(10%) 0.696 0.680 0.699 0.706 0.649 0.706

Sci-Talk(10%) 0.662 0.639 0.672 0.647 0.620 0.679

Rec-Talk(10%) 0.714 0.628 0.722 0.673 0.640 0.736

Employment 0.506 0.509 0.510 0.523 0.524 0.513

Parkinson 0.649 0.659 0.761 0.762 0.862 0.885

Fig. 7 BAC values when the number of minority samples is varied. a REC-VS-SCI (2%). b REC-VS-TALK
(10%)
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Table 3 Comparison of G-mean values on real-world datasets

AdaBoost
(Target)

AdaBoost
(Src+Tar)

SMOTE
(Target)

SMOTE
(Src+Tar)

TrAda
Boost

Rare
Transfer

HF(Gender) 0.336 0.212 0.444 0.459 0.117 0.518

HF(Race) 0.366 0.178 0.467 0.478 0.145 0.540

HF(Age) 0.346 0.141 0.447 0.357 0.164 0.478

Rec-Sci(2%) 0.324 0.362 0.338 0.379 0.384 0.430

Sci-Talk(2%) 0.270 0.271 0.277 0.292 0.339 0.380

Rec-Talk(2%) 0.343 0.221 0.378 0.293 0.387 0.460

Rec-Sci(5%) 0.500 0.492 0.501 0.561 0.512 0.592

Sci-Talk(5%) 0.433 0.423 0.446 0.464 0.471 0.541

Rec-Talk(5%) 0.502 0.340 0.516 0.450 0.491 0.591

Rec-Sci(10%) 0.615 0.605 0.623 0.671 0.581 0.674

Sci-Talk(10%) 0.563 0.531 0.584 0.575 0.531 0.637

Rec-Talk(10%) 0.647 0.483 0.661 0.597 0.569 0.702

Employment 0.422 0.452 0.467 0.483 0.331 0.378

Parkinson 0.518 0.570 0.715 0.741 0.841 0.874

Fig. 8 G-mean values when the number of minority samples is varied. a REC-VS-SCI (2%). b REC-VS-
TALK (10%)

performance with severe label imbalance and an extremely high features/samples ratio (10
minority samples, ≈500 majority samples, 500 features). Figure 8 shows that Rare-Transfer
consistently yield superior results even after the non-transfer algorithms construct represen-
tative hypotheses with more training samples.

7.3.3 F-measure results

The F-Measure results are presented in Table 4 and demonstrate that Rare-Transfer constructs
a more balanced classifier. The improvements are consistent at different imbalance ratios and
sample sizes as shown in Fig. 9. The figures also demonstrate that the classification models
can construct classifiers that are more balanced when the overall size of the training set
increases.

7.4 Discussion and possible extensions

Traditional imbalanced modifications including SMOTEBoost [45], over or under sam-
pling [46] followed by transfer [47] or cost-sensitive learning [25] are a straight-forward
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Table 4 Comparison of F-measure values on real-world datasets

AdaBoost
(Target)

AdaBoost
(Src+Tar)

SMOTE
(Target)

SMOTE
(Src+Tar)

TrAda
Boost

Rare
Transfer

HF(Gender) 0.217 0.088 0.375 0.384 0.307 0.478

HF(Race) 0.256 0.062 0.412 0.418 0.055 0.519

HF(Age) 0.228 0.039 0.372 0.238 0.063 0.411

Rec-Sci(2%) 0.208 0.240 0.218 0.258 0.266 0.331

Sci-Talk(2%) 0.225 0.115 0.256 0.174 0.223 0.363

Rec-Talk(2%) 0.149 0.144 0.152 0.164 0.254 0.275

Rec-Sci(5%) 0.405 0.393 0.408 0.490 0.434 0.534

Sci-Talk(5%) 0.407 0.228 0.424 0.349 0.382 0.527

Rec-Talk(5%) 0.324 0.309 0.343 0.365 0.405 0.473

Rec-Sci(10%) 0.550 0.541 0.560 0.638 0.512 0.645

Sci-Talk(10%) 0.590 0.389 0.609 0.536 0.472 0.671

Rec-Talk(10%) 0.484 0.445 0.514 0.513 0.520 0.600

Employment 0.276 0.408 0.325 0.457 0.188 0.378

Parkinson 0.404 0.504 0.552 0.733 0.702 0.749

Fig. 9 F-measure values when the number of minority samples is varied. a REC-VS-SCI (2%). b REC-VS-
TALK (10%)

extension to Algorithm 1 and can further improve classification. Improvements, even minor,
from methods optimized specifically for “Absolute Rarity” can have significant practical
impact within real-world domains where only human expertise are currently applicable. For
example, rare diseases are a substantial public health burden as extremely low percentage
of people have a rare disease at some point and currently no global registry or classification
codes exist. Rare methods can improve learning and encourage data collection and ware-
housing. Future work will test our approach using multi-resolution methods in distributed
environments with multiple source sets [48,49].

8 Conclusion

Learning with “Absolute Rarity” is an important and understudied area of research which
is investigated in this paper. We discussed the impediments and proposed the first classifi-
cation method optimized specifically for the problem of “Absolute Rarity”. Our framework
simultaneously compensated for the lack of data and the presence of class imbalance using
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a transfer learning paradigm with a balanced statistics objective. We theoretically analyzed
and empirically verified our work and demonstrated its effectiveness with several real-world
domains. We proposed possible extensions and motivated for more research for a problem
with significant social and financial impact.
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