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A B S T R A C T   

Self-supervised learning approaches provide a promising direction for clustering multivariate time-series data. 
However, real-world time-series data often include missing values, and the existing approaches require imputing 
missing values before clustering, which may cause extensive computations and noise and result in invalid in
terpretations. To address these challenges, we present a Self-supervised Learning-based Approach to Clustering 
multivariate Time-series data with missing values (SLAC-Time). SLAC-Time is a Transformer-based clustering 
method that uses time-series forecasting as a proxy task for leveraging unlabeled data and learning more robust 
time-series representations. This method jointly learns the neural network parameters and the cluster assign
ments of the learned representations. It iteratively clusters the learned representations with the K-means method 
and then utilizes the subsequent cluster assignments as pseudo-labels to update the model parameters. To 
evaluate our proposed approach, we applied it to clustering and phenotyping Traumatic Brain Injury (TBI) pa
tients in the Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) study. 
Clinical data associated with TBI patients are often measured over time and represented as time-series variables 
characterized by missing values and irregular time intervals. Our experiments demonstrate that SLAC-Time 
outperforms the baseline K-means clustering algorithm in terms of silhouette coefficient, Calinski Harabasz 
index, Dunn index, and Davies Bouldin index. We identified three TBI phenotypes that are distinct from one 
another in terms of clinically significant variables as well as clinical outcomes, including the Extended Glasgow 
Outcome Scale (GOSE) score, Intensive Care Unit (ICU) length of stay, and mortality rate. The experiments show 
that the TBI phenotypes identified by SLAC-Time can be potentially used for developing targeted clinical trials 
and therapeutic strategies.   

1. Introduction 

Multivariate time-series data are frequently observed in many 
healthcare domains where each patient is represented by a set of clinical 
measurements recorded over time and present important information 
spanning the whole course of a patient’s care. Clustering approaches are 
commonly used to extract valuable information and patterns from 
multivariate time-series data [1]. Such clustering approaches can be 
broadly divided into two categories: raw data-based approaches and 
representation-based approaches [2]. Raw data-based approaches 

perform the clustering on raw input data using well-designed similarity 
measures that can address the specificities of the temporal dimension, 
including shifted or stretched patterns (e.g., [3–5]). However, since all 
time points are included, raw data-based clustering approaches are 
highly susceptible to noise and outliers [2]. Representation-based clus
tering approaches, on the other hand, employ clustering methods on the 
representations learned from input time series, which mitigates the ef
fects of noise and outliers in raw input data [2]. Representation learning 
techniques aim to eliminate the time dimension while preserving the 
relationship between nearby data points, or they aim to make the 
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comparison more accurate by aligning time-series data with each other 
[6]. Deep learning architectures have strong representation-learning 
capabilities, making them useful for state-of-the-art supervised and 
unsupervised methods to learn the representations of time series for 
different downstream tasks [7]. Non-linear mappings can be learned 
using deep learning, allowing time-series data to be transformed into 
representations that are more suited for clustering [7]. However, deep 
learning models need to be trained via supervised learning that requires 
a large, annotated dataset [8]. Building such a dataset would be too 
costly or often not feasible in most clinical applications. Considering 
this, self-supervised learning is becoming more common for clustering 
multivariate time-series data [8], where a deep learning model is trained 
on an unlabeled time-series dataset by performing a proxy task, and then 
the learned representations are applied to the clustering task. 

Self-supervision and missingness: Existing self-supervised learning- 
based methods for clustering multivariate time-series data are only 
effective in scenarios with no missing values, while multivariate time- 
series data are rarely complete due to a variety of reasons. There are 
three ways to address the missing values in multivariate time-series 
data: (1) omitting entire samples including missing data, (2) filling in 
the missing data using data imputation or interpolation methods, and 
(3) aggregating the irregularly sampled data into discrete time periods. 

Omitting the samples with missing data and performing the analysis just 
on the available observations is a straightforward method, but it does 
not perform well when the rate of missingness is high and/or when the 
samples are insufficient [6]. Data imputation is another solution that 
involves substituting new values for the ones that are missing. However, 
imputing missing values in multivariate time-series data without having 
domain knowledge about each time-series variable can lead to bias and 
invalid conclusions. Interpolation techniques are straightforward and 
commonly used in real-world settings to address missing values. These 
techniques, meanwhile, may not be able to capture complicated patterns 
of multivariate time-series data since they do not consider correlated 
variables [6]. Additionally, when time-series data are sparser, interpo
lation methods often degrade by adding unwanted noise and additional 
complexity to the model. Another issue associated with multivariate 
time-series data is that they may include different time-series variables 
measured at irregular time intervals. Aggregating measurements into 
discrete time periods is a typical strategy for addressing irregular time 
intervals, but this method results in loss of granular information [9]. To 
address these challenges, we propose a novel Self-supervised Learning- 
based Approach to Clustering multivariate Time-series data with 
missing values (SLAC-Time) that does not rely on any data imputation or 
aggregation methods. We evaluate the proposed approach by applying it 

Fig. 1. A high-level overview of the problem of identifying TBI phenotypes. TBI: Traumatic Brain Injury; GOSE: Glasgow Outcome Scale-Extended; ICU: Intensive 
Care Unit. 
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to the problem of clustering time-series data collected from acute trau
matic brain injury (TBI) patients. TBI patients exhibit considerable 
variability in their clinical presentation, making it challenging to iden
tify effective interventions [10,11]. However, by leveraging an 
advanced clustering technique, TBI patients can be stratified into 
distinct phenotypic groups with greater precision and reliability that 
would allow for targeted interventions or clinical studies [10]. Fig. 1 
shows a high-level overview of our work that addresses this problem. 

Motivated by the shortcomings of the existing state-of-the-art clus
tering approaches, in this work, we make the following contributions:  

• We propose a novel self-supervised learning-based clustering 
approach called SLAC-Time for clustering multivariate time-series 
data with missing values without using any data imputation or ag
gregation methods.  

• We perform time-series forecasting as a proxy task for learning more 
robust representations of unlabeled multivariate time-series data.  

• We demonstrate the ability of SLAC-Time in identifying reliable TBI 
patient phenotypes and their distinct baseline feature profiles using 
TBI clinicians’ domain knowledge and different cluster validation 
methods. 

The rest of this paper is organized as follows. In section 2, we review 
relevant work in TBI clustering and deep learning-based clustering of 
multivariate time-series data. Section 3 presents the problem formula
tion and provides a detailed description of SLAC-Time. Section 4 pre
sents the implementation of SLAC-Time to cluster TBI patients, along 
with the validation of identified phenotypes using different internal and 
external validation methods. Finally, Section 5 concludes our work and 
suggests future directions for research. 

2. Related work 

In this section, we review existing methods for clustering TBI pa
tients as well as state-of-the-art self-supervised learning-based ap
proaches to clustering multivariate time-series data. 

2.1. Clustering TBI patients 

Existing methods for clustering TBI patients are limited to using non- 
temporal features with a need for imputing missing values. Folweiler 
et al. [10] implemented a wrapper framework consisting of two stages. 
In the first stage, generalized low-rank models were used for selecting 
significant TBI variables. Then, in the second stage, the selected vari
ables were used for clustering TBI patients into distinct phenotypes by a 
partitional clustering method. Multivariate imputation by chained 
equations (MICE) was used with the random forest method to impute 
missing values. Si et al. [12] used a sparse hierarchical clustering 
method for subgrouping patients with mild TBI while using the MICE 
method to impute the missing values of the features. Yeboah et al. [13] 
proposed a framework for an explainable ensemble clustering model, 
including K-means, spectral, Gaussian, mixture, and agglomerative 
clustering methods to identify TBI phenotypes. They excluded patients 
with missing data among key features and only included those records 
with<1% missing values and used imputation by mean. As one of the 
first efforts to cluster TBI patients without imputing missing values of 
the features, Akerlund et al. [14] developed an unsupervised learning 
method based on probabilistic graph models of TBI patients’ early 
clinical and laboratory data. Despite clustering without data imputation 
methods, their cluster analysis approach does not incorporate time- 
series features that are commonly measured in the Intensive Care Unit 
(ICU). 

2.2. Self-supervised learning-based approaches for clustering multivariate 
time-series data 

Self-supervised learning-based approaches often include two stages 
for clustering multivariate time-series data: (1) learning feature vectors 
or representations of multivariate time-series data and (2) clustering the 
learned representations. These methods first convert the input multi
variate time-series data into low-dimensional representations; then, the 
clustering techniques are applied to the learned representations. Tava
koli et al. [15] proposed a two-stage autoencoder-based approach to 
cluster time-series data with no labels and features. In the first stage of 
their proposed approach, descriptive metadata were captured as fea
tures. Subsequently, K-means clustering method was applied to the 
extracted features to identify their cluster labels which are then utilized 
as the labels of input time series. Although this approach clusters time- 
series data based on their known and hidden non-linear features, it does 
not handle missingness in time-series data. In another work, Ma et al. 
[16] proposed a self-supervised time-series clustering network (STCN), a 
clustering approach that simultaneously optimizes representation 
learning and clustering. In the representation learning module of this 
approach, a recurrent neural network (RNN) performed a one-step time- 
series prediction, and the parameters of the output layer were regarded 
as model-based representations. Then, these representations were sup
plied into a self-supervised learning module in which a linear classifier 
obtains pseudo-labels initialized by K-means. Furthermore, spectral 
analysis was performed to limit comparable representations to have the 
same pseudo-labels and match the predicted labels with pseudo-labels. 
Due to the lack of a strategy for discovering the correlation between 
the time-series variables, STCN can only be used for clustering univar
iate time-series data. Moreover, this method does not address missing
ness and irregular time intervals in time-series data, making it 
inappropriate for clustering clinical data that usually include multivar
iate time-series data with missing values. To address issues with clus
tering clinical data, Jong et al. [17] proposed a variational deep 
embedding with recurrence (VaDER) approach based on an extended 
Gaussian mixture variational autoencoder for clustering clinical multi
variate time-series data with missing values. However, to handle missing 
values, they integrated a data imputation scheme into model training, 
which can result in unnecessary computations and noise. 

Real-world time-series data often include missing values which can 
be an issue, especially in clinical data analysis [18]. Our literature re
view shows that related clustering approaches learn the representation 
of time series either when there is no missing value or when the missing 
values are imputed beforehand. To the best of our knowledge, there is no 
self-supervised learning-based clustering approach that handles missing 
values in multivariate time-series data without resorting to imputation 
methods. 

3. Methods 

3.1. Preliminaries 

Representation-based clustering approaches necessitate the use of an 
effective representation learning technique that best suits the type of 
input data. SLAC-Time leverages a self-supervised Transformer model 
for time series (STraTS) to learn the representations of multivariate 
time-series data. It maps input multivariate time-series data with 
missing values into a fixed-dimensional vector space without resorting 
to data imputation or aggregation methods [9]. Therefore, unlike 
traditional methods which treat each multivariate time-series data as a 
matrix with specific dimensions, our approach treats each multivariate 
time-series data as a set of observation triplets, avoiding the need for 
data imputation or aggregation. The Transformer-based architecture of 
STraTS uses self-attention to go from one token to another in a single 
step, allowing for parallel processing of observation triplets. Observa
tion triplets are embedded using a novel Continuous Value Embedding 
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(CVE) method, eliminating the necessity for binning continuous values 
before embedding them. By doing so, the fine-grained information that 
is lost when time is discretized is preserved. We denote STraTS mapping 
by fθ with θ being the model’s parameters. We use the term “represen
tation” to refer to the vector that results from applying this mapping to a 
multivariate time-series data. 

Given a training set of N unlabeled samples represented by D =
{(

dk,Tk
)}N

k=1 
where the kth sample includes a non-temporal vector dk ∈

RD and a multivariate time-series data Tk, we determine the optimal 
parameter θ* such that the mapping fθ* yields general-purpose repre
sentations. To do so, drawing from the STraTS model, we define each 
time-series feature as a set of observation triplets where each triplet is of 
the form (t, f , v) where t ∈ R≥0 is the time of measurement, f is the name 
of the variable, and v ∈ R represents the value of the variable. A 
multivariate time-series data Τ of length n is defined as a set of n 
observation triplets where T =

{(
ti, fi, vi

) }n
i=1. To obtain the represen

tation of samples, we use the STraTS model from our prior work in [9]. 
With an input multivariate time-series data T =

{(
ti, fi, vi

) }n
i=1, the 

initial embedding for the ith triplet ei ∈ Rd is calculated by adding the 
three embeddings, including (1) feature embedding ef

i ∈ Rd, (2) value 
embedding ev

i ∈ Rd, and (3) time embedding et
i ∈ Rd [9]. To put it 

another way, ei = ef
i + ev

i + et
i ∈ Rd. Feature embeddings, such as word 

embeddings, are produced using a basic lookup table. Value embeddings 
and time embeddings are obtained by a one-to-many Feed-Forward 
Network (FFN) as follows [9]: 

ev
i = FFNv(vi) (1)  

et
i = FFNt(ti) (2) 

Both FFNs consist of one input neuron, d output neurons, a single 
hidden layer containing ⌊

̅̅̅
d

√
⌋ neurons and a tanh() activation function. 

These networks can be represented as 

FFN(x) = U tanh(Wx+ b) (3)  

where the dimensions of the weight parameters {W, b, U} are deter
mined by the sizes of the hidden and output layers within the FFN. The 
initial embeddings {e1,⋯, en} ∈ Rd are processed by a Transformer [19] 
consisting of M blocks. Each block contains a Multi-Head Attention 
(MHA) layer with h attention heads and an FFN with one hidden layer. 
Each block’s output serves as the input for the subsequent block, with 
the final block’s output yielding the contextual triplet embeddings 
{c1,⋯, cn} ∈ Rd. Then, a self-attention layer is utilized to compute time- 
series embedding eT ∈ Rd [9]. We also obtain the embedding of non- 
temporal variables by passing d through an FFN [9]. 

3.2. SLAC-Time architecture 

The architecture of SLAC-Time is illustrated in Fig. 2. SLAC-Time 
defines its input as a set of observation triplets that pass through 
STraTS model to generate the representation. Considering an unlabeled 
input dataset, SLAC-Time generates pseudo-labels to fine-tune the self- 
supervised model and facilitate performing the target task. In the 
target task, pseudo-labels serve as target classes for unlabeled data as 
though they were actual labels. SLAC-Time contains three modules, 
including (1) self-supervision, (2) pseudo-label extraction, and (3) 
classification module. This approach alternates between the pseudo- 
label extraction and classification modules to update cluster assign
ments and increase the quality of clusters. The following is a detailed 
description of SLAC-Time architecture. 

3.2.1. Self-supervision module 
In the first step of SLAC-Time, we pre-train STraTS by performing 

time-series forecasting as a self-supervision task to learn the represen

tation of the unlabeled multivariate time-series data. To do so, we use a 

larger dataset withN′

≥ N samples given by D
′

=
{(

dk,Tk ,mk, zk) }N′

k=1, 

where mk ∈ R represents the forecast mask, indicating whether a vari
able was observed in the forecast window, and zk ∈ R includes the 
associated values of the variable. We need to mask out the unobserved 
forecasts in the loss function because they cannot be used for training the 
model. The time-series data in the forecast task dataset are created by 
considering various observation windows in the time series. Fig. 3 de
picts how we construct inputs and outputs for the forecast task. 

The time-series forecasting output is obtained by passing the 
concatenation of non-temporal and time-series embeddings through the 
following layer [9]: 

z̃ = Ws
[
ed eT]+ bs ∈ R|F | (4)  

where Ws and bs are the weights, and eT and ed represent the time-series 
embedding and the non-temporal embedding, respectively. 

To address missing values in the forecast outputs, we use a masked 
Mean Squared Error (MSE) loss for training on the forecast task model. 
The self-supervision loss is defined as 

L ss =
1

|N ′
|

∑N′

k=1

∑|F |

j=1
mk

j

(

z̃k
j − zk

j

)2

(5)  

where mk
j = 0 if the ground truth forecast (zk

j ) is not available for the jth 

variable in the kth sample, and mk
j = 1 if otherwise [9]. 

3.2.2. Pseudo-label extraction module 
After pretraining the STraTS model by performing the forecast task, 

the model’s last layer that is specific to the forecast task is removed, and 
then the resulting model is used to compute the non-temporal and time- 
series embeddings of the samples. The concatenation of the non- 
temporal embeddings and time-series embeddings of each sample is 
defined as its representation [9]. Then, K-means clustering analysis is 
performed on the learned representations. K-means takes the learned 
representations as input and divides them into k subgroups using its 
geometric criterion [1]. It simultaneously learns a d × k centroid matrix 
C and the cluster assignment yn of each subject n as follows [20]: 

min
C∈Rd×k

1
N

∑N

n=1
min

yn∈{0,1}k
‖fθ((dn,Tn)) − Cyn‖

2
2 such that y⊤n 1k = 1 (6) 

Optimizing this problem results in a set of optimal cluster assign
ments 

(
y*

n
)

n≤N considered as the pseudo-labels of the subjects. That is, 

each subject (dn,Tn) is associated with a pseudo-label yn in {0,1}k, 
representing the membership of the subject to one of the k possible 
predefined classes. 

3.2.3. Classification module 
The extracted pseudo-labels are leveraged to supervise the training 

of a classifier gW predicting the accurate labels on top of the represen
tations fθ((dn,Tn) ) obtained from the STraTS model. Then, the classi
fier’s parameters W and the STraTS’ parameters θ are simultaneously 
learned from the following optimization problem: 

min
θ,W

1
N

∑N

n=1
l (gW(fθ((dn,Tn) ) ), yn ) (7)  

where l is a negative log-softmax function. 
SLAC-Time is an iterative procedure that alternates between two 

modules: (1) clustering the representations through the K-means algo
rithm and then using cluster assignments to generate pseudo-labels and 
(2) updating classifier’s and STraTS model’s parameters to predict the 
correct labels for each subject by minimizing the loss function. 
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Fig. 2. An overview of the proposed SLAC-time clustering approach.  
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4. Experimental results 

4.1. Dataset 

Our experiments were based on data obtained from the Transforming 
Research and Clinical Knowledge in Traumatic Brain Injury (TRACK- 
TBI) dataset [21]. This dataset, which was collected from 18 academic 
Level I trauma hospitals across the United States, includes detailed 
clinical data on 2996 TBI patients with different severity levels. The data 
used in this study includes 110 variables, including 59 non-temporal 
variables (demographics and one-time-recorded measurements at the 
time of emergency department (ED) visits) and 51 time-series variables 
collected during the first five days of TBI patients’ hospital or ICU stay. 
We included three outcome variables, including the Glasgow Outcome 
Scale-Extended (GOSE) score, ICU length of stay, and mortality rate, to 
evaluate the validity of the identified TBI phenotypes. GOSE is a mea
sure of functional outcome that assesses TBI patients in eight categories: 
(1) dead, (2) vegetative state, (3) lower severe disability, (4) upper se
vere disability, (5) lower moderate disability, (6) upper moderate 
disability, (7) lower good recovery, and (8) upper good recovery 
[22,23]. The ICU length of stay was defined as the duration of time that a 
patient spent in the ICU after admission, and the mortality rate was the 
proportion of patients who died within six months of the injury. We 
excluded the TBI patients with no GOSE score available. Considering 
this, 2160 TBI patients met the inclusion criteria. Non-temporal vari
ables were not available for all the patients, so we performed iterative 
imputation to fill in the missing values in non-temporal variables. Both 
time-series and non-temporal variables were normalized to have zero 
mean and unit variance. 

Proxy task: We perform time-series forecasting as a proxy task to pre- 
train the model and learn the initial representation of the multivariate 
time-series data. To do so, we define the set of observation windows as 
{24, 48, 72, 96, 118} hours and the prediction window as the 2-hour 
time period that comes just after the observation window. It should be 
noted that we only include the records with at least one time-series data 
in both observation and prediction windows. The data for performing 
time-series forecasting is divided into training and validation datasets 
with a ratio of 80 to 20. 

Target task: The target task of SLAC-Time in this study is to subgroup 
TBI patients considering all the variables in the TRACK-TBI dataset that 
meet the inclusion criteria. These TBI patients are divided into training 
and validation datasets with a ratio of 80 to 20. 

4.2. Implementation details 

We implemented SLAC-Time using Keras and TensorFlow backend. 
Table 1 represents the hyperparameters used in our experiments. Proxy 
task and target task models are trained using a batch size of 8 and Adam 

optimizer. Training for the proxy task is stopped when the validation 
loss does not decrease for ten epochs. Training for the target task is 
performed for 500 iterations, each of which is comprised of 200 epochs. 
Training in each iteration is also stopped when the validation loss does 
not decrease for ten epochs. The experiments were carried out on an 
NVIDIA Tesla P100 GPU, which took around four days. 

4.3. Optimal number of clusters 

We evaluated how the quality of the clusters obtained by SLAC-Time 
is affected by the number of clusters, k. We performed the same proxy 
and downstream tasks using the same hyperparameters while changing 
k according to the TBI clinicians’ domain knowledge about the possible 
number of TBI phenotypes. We utilized various intrinsic clustering 
evaluation metrics, including the Silhouette coefficient, Calinski Har
abasz index, Dunn index, and Davies Bouldin index on the data em
beddings to measure the quality of the clusters. 

Silhouette coefficient s for a sample is defined as 

s =
b − a

max(a, b)
(8)  

where a stands for the average distance between a sample in a cluster 
and the rest of the samples in the cluster, and b is the average distance 
between a sample in a cluster and the samples in the closest cluster. The 
Silhouette coefficient for the set of samples used in the clustering 
problem is given as the mean of the Silhouette coefficient for each 
sample. This score ranges from − 1 for incorrect clustering to + 1 for 
dense clustering. We used the Euclidean distance between embeddings 
as the distance metric. The choice of Euclidean distance is consistent 
with the distance metric used in the K-means clustering algorithm, 
which we employed for clustering the learned time-series representa
tions in SLAC-Time. 

Calinski Harabasz (CH) index is the ratio of dispersion between 
clusters to dispersion within clusters for all clusters defined as follows. 
[∑K

k=1nk‖ck− c‖2

K − 1

]/[∑K
k=1

∑nk
i=1‖di − ck‖

2

N − K

]

(9) 

Here, nk and ck are the number of samples and centroid of the kth 

cluster, respectively. c denotes the global centroid, and N is the total 
number of samples. 

Dunn index is the ratio of the shortest distance between the samples 
from different clusters to the longest intra-cluster distance. The Dunn 
index varies from 0 to infinity with a higher index indicating higher 
quality of clusters. Dunn index of clustering with m clusters is repre
sented as follows. 

DIm =
minδ(Ci, Cj)

maxΔk
(10)  

δ(Ci,Cj) is the intra-cluster distance metric between clusters Ci and Cj 
where 1 ≤ i ≤ j ≤ m and m stands for the total number of clusters. Also, 
Δk represents the maximum distance between observations in cluster k 
where 1 ≤ k ≤ m. 

Davies Bouldin index (DB) represents the average similarity between 
clusters where similarity is a metric that relates cluster distance to 
cluster size. This index is defined as 

Fig. 3. An illustration of input and output in the forecasting task.  

Table 1 
Hyperparameters used in the experiment.  

Hyperparameter Value 

M (Number of blocks in Transformer) 2 
d (Number of output neurons in FFNs) 32 
h (Number of attention heads in MHA) 4 
Dropout 0.2 
Learning rate 0.0005  
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DB =
1
k
∑k

i=1
maxRij (11)  

where Rij is the similarity between clusters i and j, and is calculated as 
follows. 

Rij =
si+sj

dij
(12)  

where si and sj are the intra-cluster dispersion of clusters i and j, 
respectively, and dij represents the distance between the centroid of 
clusters. 

We observed that k = 3 results in the best clustering performance 
across all four clustering evaluation metrics (Table 2), suggesting three 
possible TBI phenotypes. 

4.4. Number of cluster reassignments between iterations 

By updating the parameters of the model in each iteration, a record 
may be assigned to a new cluster. Accordingly, the cluster assignments 
may change over iterations. We measure the information shared be
tween the clusters at iteration t-1 and t using the Normalized Mutual 
Information (NMI) defined as follows [24]: 

NMI(A;B) =
I(A;B)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
H(A)H(B)

√ (13)  

where I is the mutual information and H denotes the entropy. If cluster 
assignments in iterations t-1 and t are perfectly dissimilar, the NMI will 
equal 0. If cluster assignments in iterations t-1 and t are perfectly the 
same, the NMI will equal 1. We measure NMI between the clusters at 
iterations t-1 and t to determine the actual stability of SLAC-Time. Fig. 4 
demonstrates the NMI trend during 500 training iterations. As can be 
seen in Fig. 4, the value of NMI significantly increases after about 200 
iterations, indicating a decrease in cluster reassignments and an increase 
in the stability of clusters. NMI, however, stays below 1, meaning that 
several TBI patients are frequently reassigned between iterations. 

4.5. Comparison of SLAC-Time and K-means clustering algorithm 

To demonstrate the effectiveness of SLAC-Time over the common 
clustering methods, we compared the clustering performance metrics of 
SLAC-Time with those of K-means for clustering multivariate time-series 
data in the TRACK-TBI dataset. Since there are no ground-truth labels 
regarding TBI phenotypes, we use different intrinsic clustering evalua
tion measures to quantify the clustering performance. 

K-means is a common method for clustering both non-temporal and 
time-series data. In SLAC-Time, we use the K-means method to extract 
pseudo-labels of multivariate time-series data by clustering the learned 
representations. In order to cluster multivariate time-series data with 
missing values using K-means, it is necessary to handle missing values 
beforehand by imputing or interpolating them. This is because K-means 
requires complete data points for each variable to calculate distances 
and determine cluster membership. To enable a fair comparison be
tween SLAC-Time and K-means, we handled missing values in the data 
using iterative imputation for non-temporal variables and linear inter
polation for time-series variables. This allowed us to create complete 
data points for both types of variables and ensure an unbiased 

evaluation of the performance of both clustering algorithms. The clus
tering evaluation metrics show that SLAC-Time outperforms K-means 
(Table 3), suggesting that clustering multivariate time-series data based 
on the learned representations rather than raw data can be more 
effective. 

4.6. Characteristics of the TBI phenotypes 

To discover distinct characteristics of TBI phenotypes, we examine 
the variables that have been shown to be explanatory in the prediction of 
the 6-month GOSE score [25,26], and those that are significant based on 
TBI clinicians’ domain knowledge. These variables include age, sex, 
overall GCS score, GCS motor score, GCS eye score, pupil reactivity, 
hypoxia, hypotension, intubation, glucose, hemoglobin, white blood cell 
(WBC), hematocrit, international normalized ratio (INR) and activated 
partial thromboplastin time (aPTT). For making comparisons between 
the phenotypes, non-temporal variables were represented by mean and 
standard deviation or numbers and percentages (Table 4). We also 
represent the phenotype-specific average of time-series variables with 
95% confidence intervals and the correlation between them (Figs. 6-13). 
We univariately analyze the important non-temporal and time-series 
variables and test whether there is a significant difference between the 
phenotypes using the Kruskal-Wallis test. The differences between 
phenotypes were considered significant when corresponding p-values 
are < 0.05. 

Using k = 3 (the optimal number of clusters) as the number of TBI 
phenotypes, we performed SLAC-Time for clustering 2160 TBI patients 
in the TRACK-TBI dataset, which resulted in three TBI phenotypes α, β, 
and γ that include 693, 586, and 881 TBI patients, respectively. Each TBI 
phenotype had a distinct baseline feature profile linked to its outcome 
endpoints. 

Comparison of Outcomes across TBI Phenotypes: Evaluating the 
outcome variables of the TBI patients in each phenotype showed that 
phenotypes α, β, and γ significantly differ from one another. Phenotypes 
α and β had the best and worst across all three outcomes, respectively 
(Fig. 5). Phenotype α had the best GOSE score (6.9 ± 1) among TBI 
phenotypes. 68% of TBI patients in phenotype α had a GOSE score of 7 or 
8, while 27% and 47% of the patients in phenotypes β and γ had a GOSE 

Table 2 
SLAC-Time cluster quality for different numbers of clusters.  

Number of 
clusters 

Silhouette 
coefficient 

Dunn 
index 

Davies 
Bouldin index 

Calinski 
Harabasz index 

3  0.06  0.09  1.9  90.3 
4  0.05  0.08  5.3  54.3 
5  0.03  0.06  7.8  34.6  

Fig. 4. NMI trend during 500 training iterations.  

Table 3 
Comparison of SLAC-Time and K-means clustering method based on different 
clustering quality metrics.  

Clustering 
method 

Silhouette 
coefficient 

Dunn 
index 

Davies 
Bouldin index 

Calinski 
Harabasz index 

K-means  0.07  0.11  4.31  131.66 
SLAC-Time  0.13  0.15  1.8  196.31  
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score of 7 or 8, respectively. Phenotype α is also characterized by the 
lowest mortality rate (0.6%) and the shortest ICU length of stay (4 days) 
compared to the other two phenotypes. Phenotype β with the lowest 
GOSE score (5.1 ± 2.2) had the worst recovery compared to the other 
two phenotypes. 15% of the TBI patients in phenotype β had a GOSE 
score of 1 or 2, while only 1% and 4% of the TBI patients in phenotype α 
and γ have such GOSE scores, respectively. Besides having the lowest 
GOSE score, phenotype β is characterized by the highest mortality rate 
(14%) and longest ICU stay (21 days). Even though phenotype γ with an 
average GOSE score of 6.5 ± 1.5 seems to overlap with phenotype α, 
these two phenotypes are significantly different in terms of both GOSE 
score (p < 0.05) and ICU length of stay (p < 0.05). Furthermore, the 
higher mortality rate of phenotype γ (3.5%) compared to that of 
phenotype α (0.6%) emphasizes the higher severity of phenotype γ 
compared to phenotype α. 

Comparison of Sex and Age across TBI Phenotypes: Phenotype α with an 
average age of 28 ± 14 was the youngest group (p < 0.005). 68% of the 
TBI patients in phenotype α were 30 years old or younger, and only 2% 
of the patients in this phenotype were older than 60. On the other hand, 
phenotype γ had the oldest group (48 ± 18). 21% of TBI patients in 
phenotype γ were younger than 30, and 27% were older than 60. Most of 
the TBI patients were male (Table 4), and there is a significant difference 
between TBI phenotypes in terms of their gender (p < 0.005). Phenotype 
α had the highest percentage of females (47%) among all phenotypes, 
whereas only 19% of TBI patients in phenotype γ were female. 

Comparison of ICU Admission Rate across TBI Phenotypes: Of the TBI 
patients in the TRACK-TBI dataset, <1% are discharged from the ED, 
while the vast majority require admission to hospitals for ongoing 
treatment and management following ED care. Those admitted to hos
pitals are transferred to ICUs if they suffer from a serious injury and need 
special care. About 90% of TBI patients in phenotype β were transferred 

Table 4 
Key demographics and non-temporal clinical features of TBI patients included in 
clustering analysis.  

Feature Phenotype α Phenotype β Phenotype γ 

Total subjects, n 693 586 881 
Age    
Age, mean ± SD 28 ± 14 41 ± 18 48 ± 18 
Age ≤ 30, n (%) 471 (68%) 223 (38%) 182 (21%) 
30 < Age ≤ 45, n (%) 139 (20%) 123 (21%) 217 (24%) 
45 < Age ≤ 60, n (%) 69 (10%) 142 (24%) 245 (28%) 
Age > 60, n (%) 14 (2%) 98 (17%) 237 (27%) 
Sex    
Male, n (%) 336 (53%) 426 (72%) 720 (81%) 
Female, n (%) 357 (47%) 160 (28%) 161 (19%) 
Clinical variables    
ED Glucose, mean ± SD 122 ± 32 158 ± 67 138 ± 58 
ED Hemoglobin, mean ± SD 13.7 ± 1.6 13.5 ± 1.8 14.2 ± 1.6 
ED INR, mean ± SD 1.06 ± 0.09 1.22 ± 0.86 1.07 ± 0.17 
Hypoxia, n (%) 19 (2.7%) 37 (6.3%) 13 (1.5%) 
Hypotension, n (%) 17 (2.5%) 51 (8.7%) 14 (1.6 %) 
GCS score    
ED GCS score, mean ± SD 14 0.1 ± 2.1 8.5 ± 5.1 13.9 ± 2.7 
ED GCS motor score    
1 (no response), n (%) 4 (0.6%) 16 (2.7%) 3 (0.3%) 
2 (extension), n (%) 5 (0.7%) 12 (2%) 4 (0.5%) 
3 (flexion abnormal), n (%) 21 (3%) 46 (8%) 8 (1%) 
4 (flexion withdrawal), n (%) 18 (2.6%) 85 (14.5%) 27 (3%) 
5 (localizes to pain), n (%) 581 (84%) 193 (33%) 783 (89%) 
6 (obeys commands), n (%) 2 (0.3%) 33 (5.6%) 5 (0.6%) 
ED Pupil reactivity    
Both pupils react, n (%) 603 (87%) 349 (60%) 730 (83%) 
Only one pupil reacts, n (%) 0 (0%) 22 (3.8%) 8 (1%) 
Neither of the pupils reacts, n (%) 1 (0.14%) 96 (16.38%) 3 (0.34%)  

Fig. 5. Boxplot illustrating GOSE scores and ICU lengths of stay for TBI patients across different phenotypes.  

Fig. 6. Percentage of TBI patients with the lowest and highest GCS motor during the first 120 h of ICU stay.  
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Fig. 7. Percentage of TBI patients with the lowest and highest GCS eye score during the first 120 h of ICU stay.  

Fig. 8. Percentage of TBI patients in each category of pupil reactivity during the first 120 h of ICU stay.  

Fig. 9. Mean hematocrit, hemoglobin, and WBC levels for TBI patients in each phenotype during the first 120 h of ICU stay.  

Fig. 10. Percentage of TBI patients intubated in each phenotype during the first 
120 h of ICU stay. 

Fig. 11. Mean glucose levels for TBI patients in each phenotype during the first 
120 h of ICU stay. 
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to ICUs, which suggests that the patients in this phenotype primarily had 
severe and life-threatening injuries requiring intensive care. Also, 30% 
and 48% of TBI patients in phenotype α and phenotype γ were trans
ferred to ICUs, respectively, meaning that the TBI patients in phenotype 
γ had a more severe injury than those in phenotype α, and are more 
likely to need intensive care after hospital admission. 

Comparison of Level of Consciousness and Pupil Reactivity across TBI 
Phenotypes: Higher severity of phenotype β compared to phenotypes α 
and γ is evident in their GCS motor scores, GCS eye scores, and pupil 
reactivity (Figs. 6-8). More than 40% of the TBI patients in phenotype β 
had no motor response once they are admitted to the ICU, while about 
4% and 10% of TBI patients in phenotype α and γ had no motor response 
upon ICU admission, respectively (Fig. 6). Likewise, about 60% of the 
TBI patients in phenotype β have no eye-opening response once they are 
admitted to the ICU, while only 8% and 20% of the TBI patients in 
phenotypes α and γ have no eye-opening response upon ICU admission, 
respectively (Fig. 7). For all three phenotypes, the percentage of TBI 
patients with no motor response and no eye-opening response sharply 
decreases on the first day of ICU stay. The highest GCS motor score 
(score 6: obey commands) and the highest GCS eye score (score 4: 
response spontaneously) were significantly different among the pheno
types (p < 0.001). Phenotype β had the lowest percentage of TBI patients 
with GCS motor score equal to 6. Only about 24% of the TBI patients in 
phenotype β had the highest GCS motor and eye scores once they are 
admitted to the ICU. Although the percentages of TBI patients in 
phenotype β with the highest GCS scores increases over time, they 

remain much lower than those in phenotypes α and γ during the ICU 
stay. Furthermore, phenotypes α and γ differ significantly in all the 
aforementioned GCS motor and GCS eye score categories (p < 0.001). 
Phenotype α had the lowest percentages of TBI patients with no GCS 
motor or no GCS eye response. On the other hand, it had the highest 
percentages of TBI patients with the best GCS motor and eye scores. 

Pupil reactivity is among the variables with the highest contribution 
to the long-term recovery outcome of TBI patients [25,26]. There are 
significant differences between the pupil reactivity of TBI phenotypes in 
both ED and the ICU (p < 0.001). Phenotype α and phenotype γ differ 
significantly in terms of pupil reactivity (p < 0.001). The percentages of 
TBI patients with no pupil reactivity or with only one reactive pupil are 
less in phenotype α compared to phenotype γ. During ED visits, 
phenotype α had the highest percentage of TBI patients with two reac
tive pupils (87%) (Table 4). On the other hand, during ICU stay, the 
percentage of phenotype α patients with two reactive pupils is slightly 
less than that of phenotype γ (Fig. 8). This difference can be due to the 
missing values in the time-series variable associated with pupil reac
tivity. TBI patients in phenotype β had the worst pupil reactivity among 
the TBI patients in both ED and ICU. Phenotype β had the highest per
centage of TBI patients with no pupil reactivity and the lowest per
centage of TBI patients, both of whose pupils react. 

Comparison of Clinical Variables across TBI Phenotypes: The analysis of 
phenotype-specific averages of clinical variables reveals significant 
differences among the three TBI phenotypes. Phenotype β exhibited the 
highest rates of hypoxia and hypotension compared to the other two 
phenotypes (p < 0.005). Additionally, the rates of hypoxia and hypo
tension in phenotype α were significantly higher than those in pheno
type γ (p < 0.005) (Table 4). 

In Fig. 9, we present the average hematocrit, hemoglobin, and WBC 
values for each TBI phenotype during the first 120 h of ICU stay. 
Phenotype β had the lowest hemoglobin and hematocrit values as well as 
the highest WBC count, indicating more severe blood loss and injury 
compared to the other two phenotypes. This finding is consistent with 
the lowest GCS score in the ED (8.5 ± 5.1) and the worst GCS motor 
response, GCS eye response, and pupil reactivity trajectories during the 
five-day ICU stay (Figs. 6-8). 

In addition, phenotype β had the highest intubation rate. About 60% 
of the TBI patients in phenotype β are intubated once they are admitted 
to the ICU, while phenotype α had the lowest intubation rate and only 
10% of the TBI patients in this phenotype were intubated upon ICU 
admission (Fig. 10). Likewise, phenotype β and phenotype α had the 
highest and lowest levels of glucose levels during ICU stay, accordingly 
(Fig. 11). 

The INR and aPTT tests are used to measure how quickly blood clots 
in different pathways [27]. As can be seen in Fig. 12, phenotype β had 
the highest levels of aPTT and INR among the TBI phenotypes, sug
gesting that phenotype β includes patients suffering from bleeding 

Fig. 12. Mean aPTT and INR levels for TBI patients in each phenotype during the first 120 h of ICU stay.  

Fig. 13. PCA plot of TBI Patients in each phenotype based on two prin
cipal components. 
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disorders due to their TBI. On the other hand, the relatively normal 
coagulation measurements of phenotypes α and γ align with their low 
bleeding rates. 

Comparison of Heterogeneity and Dispersion across TBI Phenotypes: 
Fig. 13 presents a Principal Component Analysis (PCA) plot of TBI pa
tients, emphasizing the high heterogeneity of TBI patients, as there is no 
clear distinction between them in the PCA plot, particularly between 
phenotypes α and γ. The plot shows that phenotype β has a substantially 
larger dispersion than phenotypes α and γ, aligning with our previous 
findings that indicate worse clinical outcomes for phenotype β, such as 
the lowest GOSE scores, highest mortality rates, and longest ICU stays. 
The PCA plot reveals that patients in phenotypes α and γ are located near 
each other, with phenotype γ exhibiting greater dispersion than 
phenotype α. This difference in dispersion highlights the varying levels 
of heterogeneity within each group, suggesting that the broader range of 
underlying pathophysiological features in phenotype γ could contribute 
to its worse clinical outcomes compared to phenotype α. 

Comparison of Correlations between Important Variables across TBI 
Phenotypes: We found that glucose, hematocrit, hemoglobin, and WBC 
values are negatively correlated with the best GCS motor response (obey 
commands), best GCS eye response (response spontaneously), and best 
pupil reactivity (both pupils react) across all three phenotypes. 
Conversely, these variables are positively correlated with the worst GCS 
motor response (no response), worst GCS eye response (no response), 
and worst pupil reactivity (neither pupil reacts) across all three phe
notypes (see Fig. 14). In other words, a decrease in these four time-series 
variables during a TBI patient’s ICU stay may indicate the recovery of 
their impaired consciousness. 

5. Discussion 

We applied SLAC-time to the clustering of TBI patients based on non- 
temporal and time-series clinical variables during the first five days of 
ICU stay. We identified three TBI phenotypes (α, β, and γ) that are 
distinct from one another in terms of clinical variables and outcome 
endpoints. Phenotype β had the worst clinical outcomes. Phenotype α 
had better clinical outcomes than those in phenotype γ, although 
phenotype α had less favorable trends than phenotype γ in some clinical 
variables such as WBC, hematocrit, and hemoglobin as well as hypoxia, 
and hypotension rates. 

WBCs circulate through the bloodstream and tissues to respond to 
the injury and protect the body from infection after trauma [28]. 
Considering this, the more severe the injury, the higher the WBC counts 
[29]. Hematocrit is the percentage of red blood cells in the blood, and 
hemoglobin enables red blood cells to carry oxygen and CO2 throughout 
the body. After trauma, low hemoglobin or hematocrit levels indicate 
that the patient is losing red blood cells because of acute bleeding. 
Comparing the values of WBC, hemoglobin, and hematocrit in TBI 
phenotypes demonstrates that phenotype β had the highest blood loss 
among the TBI phenotypes. Furthermore, phenotype α suffers from more 

blood loss compared to phenotype γ. The amount and intensity of blood 
loss in TBI phenotypes can also be seen in their rates of hypoxia and 
hypotension. Hypoxia is the absence of oxygen in the body tissues, and it 
can be caused due to a low number of blood cells from severe blood loss. 
Hypotension is defined as having a blood pressure of<90/60 mm/Hg i. 
e., low blood pressure. Low blood volume due to severe blood loss can 
cause low blood pressure. The rates of hypoxia and hypotension sub
stantiate that phenotype β had the highest and phenotype γ had the 
lowest blood loss. 

Phenotype α, despite having more blood loss compared to phenotype 
γ, had better recovery outcomes. This might be because the patients in 
phenotype α are much younger than phenotype γ. This supports the 
cluster analysis because it is consistent with the assumption that 
younger age yields better TBI outcomes, especially for more severe 
cases. Gender might be another reason why phenotype α has better 
outcomes compared to phenotype γ. Phenotype α with a higher per
centage of females result in a better outcome. This aligns with clinical 
research that suggests better outcomes and recovery of females 
compared to males after injury [30,31]. The glucose levels might also 
contribute to the slower recovery of phenotype γ compared to phenotype 
α. Over time, a high glucose level, indicative of a high blood sugar level, 
might harm the body’s organs and result in potential long-term effects 
by damaging small and big blood vessels [32]. Clinical studies shows 
that high blood sugar levels harm the brain by raising intracranial 
pressure, and it contributes to poorer outcomes after injury [33]. An 
uncontrolled glucose level may impede or delay the recovery of TBI 
patients. The higher glucose levels of phenotype γ might explain why the 
patients in this phenotype recover more slowly than those of phenotype 
α. All three phenotypes had their highest level of glucose once they are 
admitted to the ICU, which is associated with disturbed cerebrovascular 
pressure reactivity following TBI [33]. 

The potential applicability of SLAC-Time extends beyond the realm 
of TBI to other clinical clustering tasks in areas such as infectious dis
eases, cardiology, oncology, and chronic disease management. For 
instance, it can enable the clustering of patients with infectious diseases 
such as COVID-19 based on symptom progression and treatment re
sponses, helping clinicians identify patient subgroups and tailor 
personalized interventions. SLAC-Time is also well-suited for clustering 
time-series data in other domains such as finance, energy management, 
and environmental monitoring applications. In each of these domains, 
time-series data often presents unique challenges, including complexity, 
non-stationarity, and missing values—similar to those observed in TBI 
datasets. By successfully addressing these challenges in the context of 
TBI data, we demonstrate the potential of SLAC-Time to be readily 
adapted and employed in these diverse fields. The self-supervised 
learning and the ability to handle missing values without imputation 
or aggregation make it a valuable tool for a broad range of applications 
where accurate and efficient clustering of time-series data is essential. 

Finally, we chose to use the K-means method for clustering time- 
series representations within SLAC-Time for its simplicity, efficiency, 

Fig. 14. Correlation analysis of time-series features within each TBI phenotype.  
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and widespread use in the field of time-series analysis. However, SLAC- 
Time is a flexible framework that can accommodate a variety of clus
tering algorithms. The choice of clustering algorithm should depend on 
the specific characteristics of the dataset and the problem domain. For 
instance, density-based clustering algorithms such as DBSCAN may be 
more appropriate when the data exhibits clusters of varying densities or 
when noise is present. By incorporating alternative clustering tech
niques, SLAC-Time can be further customized to address a broader range 
of problems. It is essential for researchers to consider factors such as the 
underlying distribution of the data, the presence of noise, and the 
computational complexity of the algorithm when selecting the most 
appropriate clustering technique for their specific application. 

5.1. Limitations 

There are several limitations to this study. First, we applied SLAC- 
Time to a TBI-specific dataset with longitudinal outcomes. However, 
we may need to evaluate SLAC-Time using a broader clinical multivar
iate time-series dataset. Second, our study was primarily focused on TBI 
patients within the TRACK-TBI dataset, and we acknowledge that one 
limitation is our inability to externally validate the derived phenotypes. 
This constraint mainly stems from the scarcity of alternative datasets 
that possess the requisite temporal data and clinical outcomes necessary 
for effective validation. In addition, challenges in accessing and 
obtaining approvals for using such datasets further contribute to this 
limitation. Third, our study was inevitably limited by the available 
clinical variables. More insights into phenotypical differences can be 
derived if additional clinical variables such as specific CT results, 
neurological symptoms, and genetic profiles of the TBI patients had been 
used in clustering. Finally, SLAC-Time is specifically designed to handle 
missing values in multivariate time-series data, but not in non-temporal 
data. In cases where non-temporal data contains missing values, one 
approach is to represent non-temporal variables as triplets, with a 
default time value. However, this method may affect the model’s per
formance [9]. Therefore, it may be necessary to use data imputation 
methods to fill in the missing values in non-temporal data. 

6. Conclusion 

We proposed a self-supervised learning-based approach to cluster 
multivariate time-series data with missing values without resorting to 
data imputation and aggregation methods. We used time-series fore
casting as a proxy task to learn the representation of unlabeled multi
variate time-series data. SLAC-Time iteratively clusters the 
representations with K-means and updates its parameters by predicting 
cluster labels as pseudo-labels. SLAC-Time outperforms K-means in all 
clustering evaluation metrics, suggesting that using learned represen
tations rather than raw data for clustering multivariate time-series data 
might mitigate the negative influence of noises in raw data on clustering 
performance. SLAC-Time needs limited to no domain knowledge about 
input data, making it an excellent choice for clustering multivariate 
time-series data in fields where data annotations are rare. The perfor
mance of SLAC-Time for clustering TBI patients demonstrates its appli
cability to sparse and irregularly sampled multivariate time-series data. 
We successfully derived TBI phenotypes (α, β, and γ) from the TRACK- 
TBI dataset, revealing significant differences between their outcomes. 
The identification of these distinct TBI phenotypes has significant im
plications for designing clinical trials and developing treatment strate
gies tailored to the specific physiological characteristics of TBI patients. 
By considering the unique features and needs of each TBI phenotype, 
researchers and clinicians can develop more targeted interventions with 
the potential to improve outcomes and reduce the likelihood of inef
fective or harmful interventions. Additionally, a nuanced understanding 
of TBI phenotypes can inform the development of new diagnostic tools 
and treatment approaches designed to address the underlying mecha
nisms of each subtype. We recommend that future research focus on 

external validation by examining cohorts from other TBI datasets to 
ensure the generalizability of the phenotypes. Additionally, exploring 
alternative self-supervision tasks for the STraTS model and developing a 
framework for interpreting self-supervised learning-based clustering of 
multivariate time-series data are recommended avenues for further 
research. 

7. Statement of significance 

Problem: Self-supervised learning is an increasingly popular 
approach for clustering large multivariate time-series datasets in situa
tions where data annotation is prohibitively expensive or not feasible. 
However, real-world time-series data often contain missing values, 
which can complicate the analysis process. Existing approaches for 
imputing missing values can lead to extensive computations, noise, and 
invalid interpretations, posing a challenge for the accurate clustering of 
time-series data. 

What Is Already Known: Existing self-supervised clustering ap
proaches learn the representation of time series either when there is no 
missing value or when the missing values are imputed beforehand. To 
the best of our knowledge, there is no self-supervised learning-based 
clustering approach that handles missing values in multivariate time- 
series data without resorting to imputation methods. 

What This Paper Adds: We propose a novel self-supervised 
learning-based clustering approach called SLAC-Time for clustering 
multivariate time-series data with missing values without using any data 
imputation or aggregation methods. We perform time-series forecasting 
as a proxy task for learning more robust representations of unlabeled 
multivariate time-series data. We also demonstrate the ability of SLAC- 
Time to identify reliable TBI patient phenotypes and their distinct 
baseline feature profiles using TBI clinicians’ domain knowledge and 
different cluster validation methods. 
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