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Identifying the genes that change their expressions between two conditions (such as normal

versus cancer) is a crucial task that can help in understanding the causes of diseases. Differential

networking has emerged as a powerful approach to detect the changes in network structures and

to identify the differentially connected genes among two networks.However, existing differential

network-based methods primarily depend on pairwise comparisons of the genes based on their

connectivity. Therefore, these methods cannot capture the essential topological changes in the

network structures. In this paper,we propose a novel algorithm,DiffRank, which ranks the genes

based on their contribution to the differences between the two networks. To achieve this goal, we

define twonovel structural scoringmeasures: a local structuremeasure (differential connectivity)

and a global structure measure (differential betweenness centrality). These measures are opti-

mized by propagating the scores through the network structure and then ranking the genes based

on these propagated scores. We demonstrate the effectiveness of DiffRank on synthetic and real

datasets. For the synthetic datasets, we developed a simulator for generating synthetic differ-

ential scale-free networks, andwe comparedourmethodwith existingmethods.The comparisons

show that our algorithm outperforms these existingmethods. For the real datasets, we apply the

proposed algorithm on several gene expression datasets and demonstrate that the proposed

method provides biologically interesting results.

Keywords: Differential analysis; differential networking; connectivity; centrality; shortest

paths; co-expression networks; differential hubs.

1. Introduction

Microarray studies are used to measure the expression level of thousands of genes

under different conditions. These conditions could be different tissue types (normal

versus cancerous),1,2 different stages of cancer (early stage versus developed stage)3

or different time points.4 Differential analysis of networks has led to important

results in studying the phenotypic differences across different conditions.5 The set of

genes that causes network topological changes may serve as biomarkers6 and it can

provide insights into disease-specific alterations.7
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The goal of differential network analysis is to identify the differentially connected

genes (or differential hubs). Although this type of analysis focuses on identifying

single genes as differential hubs, the correlation between each gene and with the

other genes is considered rather than testing each gene individually as in the

differential expression (DE)8 and the differential variability (DV)9 methods. Both

DE and DV methods depend on statistically testing each gene individually using the

t-test and the F-test, respectively. Therefore, these methods do not capture the

relationships between the genes. To overcome these problems, networks have been

successfully used to model the gene activities and their interactions. These networks

consist of genes as the nodes and the interactions between them as the edges.

Studying the topology and functionality of these networks can provide valuable

knowledge for understanding the roles of genes in several diseases.7

The main challenge in the differential network analysis is to identify the

important differences between two networks. A naive solution is to transfer this

problem to solving the subgraph isomorphism problem. Unfortunately, it was shown

that solving the subgraph isomorphism problem is an NP-complete problem.10

To compare the genes between two gene networks, several differential measures

such as differential connectivity have been defined in Refs. 5, 11 and 12, some

methods are based on performing permutations and statistical tests such as the

MDA test.4 However, most of these methods depend on pair-wise comparisons of the

genes based on their degrees. Therefore, we propose an efficient algorithm to capture

all the local and global changes between two networks.

In this paper, we propose a new differential network analysis algorithm

(DiffRank) that can overcome these drawbacks. The proposed method captures

the changes in the edges (local changes) and the change in the centrality of each

gene (global changes). As an example, two networks are shown in Fig. 1. In this

example, it can be seen that gene 4 should be identified as the differential gene

when comparing network A and network B. However, this gene has the same

degree (which is 3) in both networks. Therefore, depending only on the comparison

of the degree of each gene cannot capture all the differences between two gene

Fig. 1. A simple illustration of differential hubs.
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networks. Using the proposed method, gene 4 will be the top-ranked differential

gene in Fig. 1.

In this paper, we propose DiffRank as an efficient and approximate solution to

rank the genes based on their contribution in the differences between two gene

networks. We propose two new measures for each node: differential connectivity and

differential centrality. These measures are propagated through the network and are

optimized to capture the topological changes between two networks. We show the

performance of the proposed algorithm on some synthetic examples, and we develop

a simulator for generating synthetic differential scale-free networks to evaluate the

proposed algorithm and to compare it with other methods. For the real-world

datasets, we use four cancer datasets and show the functional enrichment analysis on

all the four datasets. We also illustrate the significance of the proposed algorithm by

showing the overlap between our results and some results published in the literature.

2. Method

2.1. Preliminaries

Given two gene networks, represented by graphs GAðV ;EAÞ and GBðV ;EBÞ, where
V is the set ofN nodes and Ec is the set of edges in Gc, c 2 fA;Bg. An edge between

two genes u and v, with a weight wcðu; vÞ in Gc, determines the strength of the

interaction between the genes. The weight of each edgemust be a non-negative value,

0 if the nodes are not connected to each other, or 1 in unweighted graphs. We denote

the degree of gene v in network c as kc
v. The proposed algorithm can be applied on

both directed and undirected networks. In this work, we focus our discussion on

undirected networks.

Given two networks, GA and GB, the goal is to find the top differential genes that

best explain the differences between the networks. The output is a vector

� ¼ h�1; �2; . . . ; �Ni, where �v denotes the rank of the differential gene v.

2.2. Differential measures

The proposed model is composed of two measures: differential connectivity and

differential betweenness centrality. These measures are optimized to capture the

changes in the local structure and the changes in the global structure between two

the networks, respectively.

2.2.1. Differential connectivity

Genes with the highest number of edges, known as hubs, play central roles in the

analysis of networks. Differential connectivity measures the local differences

between two networks, GA and GB, by considering the actual weights of all the

edges, and it is defined as follows:

�CiðvÞ ¼
XN
u¼1

jwAðu; vÞ � wBðu; vÞj � � i
uPN

z¼1 jwAðu; zÞ � wBðu; zÞj ; ð1Þ
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where � i
v is the differential scores (or rank) of node v at the ith iteration. It is

initialized to 1
N and will be updated in each iteration (it can also be used to incor-

porate prior knowledge). If a given gene has the same set of edges in both networks

with the same weights, then the differential connectivity of that node will be 0. On

the other hand, when a node has different sets of edges (such as gene 4 in Fig. 1), it

will get a high value for the differential connectivity. In addition to the number of

edges and their weights, the differential connectivity of each gene also depends on

the differential scores of the neighbors it is connected to. A gene will be assigned a

higher score if it is connected to many differential genes. Given two genes, u and v,

the propagation of the differential score from u to v depends on three factors:

(1) The weight of the edge ðu; vÞ in both networks, denoted by jwAðu; vÞ � wBðu; vÞj.
(2) The current score of the gene u, denoted by � i

u.

(3) The weights of all the edges connected to u, denoted by
PN

z¼1 jwAðu; zÞ�
wBðu; zÞj.

2.2.2. Differential centrality

Centrality is an important measure in understanding biological networks because it

is difficult to detect the changes in the expression level of the central genes by single

gene analysis. However, these changes could significantly alter the topology of the

network.13 Hence, we integrate the notion of gene centrality into the proposed

algorithm.

Betweenness Centrality (BC) can be used to measure the centrality of each node,

which is proportional to the sum of the shortest paths passing through it.14 If Pst is

the number of the shortest paths from node s to node t, where s 6¼ t, and PstðvÞ is the
number of the shortest paths from s to t that pass through a node v, where s 6¼ v and

t 6¼ v, then the BC of the node v can be computed as BCðvÞ ¼ P
s6¼t

PstðvÞ
Pst

.13 In gene

co-expression networks, the weights of the edges represent the correlation between

the genes. Therefore, distance values should be calculated from the correlation

values in order to calculate the shortest paths. For example, if wðu; vÞ is the cor-

relation between two genes, then the distance between the two genes could be

computed as 1� wðu; vÞ.
Comparing the values of BC may not detect the topological changes. For

example, the shaded gene in Fig. 2 has the same value of BC (which is 6) in both

networks. However, the shortest paths that pass through that gene are different.

Therefore, we propose to consider the shortest paths in our method. Let SP c
v be a

binary N �N matrix, such that SP c
v ðs; tÞ ¼ 1 if one of the shortest paths from s to t

passes through the node v in network c ¼ fA;Bg, where s 6¼ t, and it is 0 otherwise.

We define differential betweenness centrality of a node v as follows:

�BCðvÞ ¼
XN
s¼1

XN
t¼1

jSP A
v ðs; tÞ � SP B

v ðs; tÞj: ð2Þ
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2.3. The DiffRank algorithm

We propose DiffRank algorithm, which iteratively optimizes an objective function

that is a linear combination of differential connectivity and differential betweenness

centrality (parameterized by �) within a PageRank-style framework,15 such that

the rank of each node v is computed as follows:

� i
v ¼ ð1� �Þ � �BCðvÞPN

u¼1 �BCðuÞ þ � ��CiðvÞ: ð3Þ

The parameter � controls the trade-off between differential connectivity and

differential betweenness centrality. It can be assigned any value in the range ½0; 1�.
When � ¼ 0, the ranking depends only on the differential betweenness centrality,

and when � ¼ 1, the ranking depends only on the differential connectivity. Any

other value of � combines both terms in the ranking. In this paper, we set � to 0:75

based on some of the preliminary experiments we performed. The integration of

the �BC term into Equ. (3) adds significant global topological information to the

differential analysis of networks.

2.4. Condition-specific analysis

It is important to find the genes that are differentially rewired in the cancer cells.

For this purpose, we introduce a second version of the proposed algorithm based on

the particular network of interest. To find the differential nodes in network B, the

differential connectivity (�C) for each gene can be redefined as follows:

�C 0 iðvÞ ¼
XN
u¼1

maxðwBðu; vÞ � wAðu; vÞ; 0Þ � � i
uPN

z¼1 maxðwBðu; zÞ � wAðu; zÞ; 0Þ
: ð4Þ

This new definition excludes any edge in the network of interest if the corresponding

edge in the other network has a higher weight. Similarly, the new definition of

differential betweenness centrality, �BC, includes the unique shortest paths that

(a) Network A (b) Network B

Fig. 2. A simple illustration for differential betweenness centrality.
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are in the network of interest and excludes the unique shortest paths in the other

network.

�BC 0ðvÞ ¼
XN
s¼1

XN
t¼1

maxðSP v
Bðs; tÞ � SP v

Aðs; tÞ; 0Þ: ð5Þ

The second version of DiffRank is modified as follows:

� i
v ¼ ð1� �Þ � �BC 0ðvÞPN

u¼1 �BC 0ðuÞ þ � ��C 0 iðvÞ: ð6Þ

These two versions of DiffRank can solve the following problems:

(1) Find the top differential genes; this can be solved by the first version of

DiffRank. In this version, we solve the phenotypic distinction problem.

(2) Find condition-specific differential genes; this can be solved by the second

version of DiffRank. In this type of analysis, we focus on the set of genes that are

active in the cancer networks (identifying disease-causing genes).

2.5. Preservation and convergence

To begin with, all the nodes are initialized to 1
N (uniform distribution), so that the

sum of the rankings is 1 i.e.
PN

v¼1 �
i
v ¼ 1. The rankings will be updated in each

iteration. There is no need to normalize after each step since the sum of the rankings

is preserved to unity.

Lemma 1. The sum of the node ranks �� obtained by DiffRank is preserved

to unity.

Proof. Let us assume that the algorithm is at the iteration i and
PN

v¼1 �
i
v ¼ 1. Now,

we will show that the sum of the rankings is preserved for the next iteration ðiþ 1Þ:

XN
v¼1

� iþ1
v ¼

XN
v¼1

ð1� �Þ:�BCðvÞXN

u¼1
�BCðuÞ

þ � �
XN
u¼1

�DCiðvÞ
0
@

1
A

¼ ð1� �Þ �
XN

v¼1
�BCðvÞXN

u¼1
�BCðuÞ

0
@

1
A

þ� �
XN
v¼1

XN
u¼1

jwAðu; vÞ � wBðu; vÞj:� i
uXN

z¼1
jwAðu; zÞ � wBðu; zÞj

0
@

1
A

¼ ð1� �Þ þ � �
XN
u¼1

� i
u

XN

v¼1
jwAðu; vÞ � wBðu; vÞjXN

z¼1
jwAðu; zÞ � wBðu; zÞj

0
@

1
A
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¼ ð1� �Þ þ � �
XN
u¼1

� i
u

¼ ð1� �Þ þ � ¼ 1:

One issue that needs to be resolved is handling the sinks (or isolated nodes). These

nodes will be assigned uniform weighted edges to each other node in the network in

order to ensure the convergence of the DiffRank algorithm.16

Theorem 1. The result from the DiffRank model converges to a unique rank vector.

Proof. Let us define MN�N as a square matrix, such that

Muv ¼
jwAðu; vÞ � wBðu; vÞjPN
z¼1 jwAðu; zÞ � wBðu; zÞj :

We replace all rows with zeros by 1
N . Now,M is considered to be a stochastic matrix

in which the sum of each row is 1:
PN

v¼1 Muv ¼ 1, 1 � u � N . Let P denote a vector

of length N, such that

Pv ¼
�BCðvÞPN
u¼1 �BCðuÞ ;

then we will have
PN

v¼1 Pv ¼ 1. Finally, we define a new matrix M 0 as follows:

M 0 ¼ � �M þ ð1� �Þ � P T :

The combination of the stochastic matrix M, and the vector P reduces the effect

of the isolated nodes � 2 ½0; 1�. Now, the rank vector �� can be computed by solving

the following eigenvector problem:

��
TM 0 ¼ ��

T :

Since M 0 is a stochastic matrix, the DiffRank model is reduced to a personalized

PageRank model for which a unique solution is guaranteed.15,16

2.6. Scalability

While the differential connectivity is computed in a linear time, computing the

differential centrality is time-consuming because it requires finding the shortest

paths between the genes. Using the traditional Dijkstra’s algorithm, computing the

shortest paths between two nodes requires Oðmþ n logðnÞÞ, where m is the number

of links and n is the number of nodes in the graph and solving all-pairs shortest paths

requires Oðnmþ n2 lognÞ time and Oðn2Þ space.17 However, some recent methods

have been proposed to reduce the computational overhead by using approximation

methods,17 which can potentially help in efficiently applying DiffRank on large-scale

networks. In our previous work, we applied the DiffRank algorithm in other

domains such as the co-authorship networks.18
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3. Experiments on Synthetic Datasets

Given the ith gene, kAðiÞ and kBðiÞ are the connectivity of the ith gene in networks

A and B, respectively;

(1) (�PR): As a baseline method, we used the difference between the scores com-

puted by the PageRank algorithm19 in the two networks and is defined as follows:

�PRðvÞ ¼ jPRAðvÞ � PRBðvÞj; ð7Þ
where PRKðvÞ is the score for the gene v obtained by applying PageRank on

network K.

(2) (DH): Differential Hubbing was defined based on the degrees of each gene as

follows12:

DHðvÞ ¼ KA
i �KB

i : ð8Þ
(3) (DC): Differential Connectivity was defined based on the degrees of each gene as

follows11:

DCðvÞ ¼ log10
KA

i

KB
i

� �
: ð9Þ

(4) (DiffK) is defined as follows5:

DiffKðvÞ ¼ jKAðvÞ �KBðvÞj; ð10Þ
where KAðvÞ ¼ kAðvÞ

maxðkAÞ and KBðvÞ ¼ kBðvÞ
maxðkBÞ.

3.1. Synthetic differential scale-free networks

We developed a simulator to generate synthetic differential scale-free networks.

Initially, we started with a small network as a seed and then followed the pre-

ferential attachment rule20 in adding new nodes. This rule assumes the probability

of receiving new edges increases with the increase in node degree. To generate

two differential networks of size n, we start with the same seed for each network of

size m; then we generate the remaining n�m nodes for each network separately.

3.2. Evaluation measures

Since there is no standard measure for comparing two networks, we developed two

evaluation measures, and we used the Kendall’s Tau statistic21 to measure the

correlation between the evaluation measures and the ranking algorithms.

Local structure measure (ML): This measure depends on comparing the edges

of each node to find the differential genes. It is a local measure which is defined as

follows:

MLðvÞ ¼
XN
u¼1

½wAðu; vÞ � wBðu; vÞ�2: ð11Þ

O. Odibat & C. K. Reddy

1240002-8



Global structure measure (MG): This measure captures the global changes in

the gene networks and it uses the shortest paths in the computation as follows: Let

us define dist(u; v;Gc) to be the distance between the nodes u and v in graph Gc

computed through the shortest path between them, and let Gc 0
z be the same as Gc

except that all the edges for node z are removed. Then, we define �zdistðu; v;GcÞ ¼
½distðu; v;GcÞ � distðu; v;Gc 0

z Þ�2. Finally, MG is defined as follows:

MGðzÞ ¼
XN
u¼1

XN
v¼1

½�distðu; v;GAÞ ��distðu; v;GBÞ�2: ð12Þ

MG measures the importance of each node to all other nodes in the network. It

captures the contribution of each gene in the global structure of the network by

considering the changes in the shortest paths between each pair of genes.

3.3. Results on the simulated network datasets

Figure 3 shows the results on the simulated data for different network sizes: 50, 200

and 500 evaluated using ML. These results are the average of 10 runs. As shown in

Fig. 3, it is obvious that as the value of � increases from 0 to 1, better results are

obtained. This is because the ML measure depends only on the connectivity and

does not include the centrality component. However, regardless of the value of �,

the DiffRank algorithm outperforms the other methods in all of the cases. Figure 4

shows the results of the simulated data for different network sizes: 50, 200 and 500

evaluated using MG. These results are the average of 10 runs. Again, regardless the

value of �, the DiffRank algorithm outperforms the other methods in all the cases.

4. Experiments on Real Datasets

Table 1 shows the four real-world datasets used in our experiments. For each

dataset, we built a network for each class; then, we ran the proposed method on the

two networks.

Fig. 3. Results on simulated networks evaluated based on the local measure (ML).
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4.1. Constructing the gene co-expression network

Mutual Information (MI) can be used to measure the correlation between different

genes, and it outperforms Pearson correlation and other linear measurements

because it can capture nonlinear dependencies.24 Therefore, we used MI to construct

the gene networks. To find the threshold for the MI values, we followed the rank-

based approach that was proposed in Ref. 25. The MI between each gene and all

other genes are computed and ranked; then, each gene will be connected to the top d

genes that are similar to it. Based on this approach, the minimum degree is d, the

mean degree is between d and 2d and the maximum degree can be N � 1. There are

two main advantages of this approach over the other value-based approaches25:

First, the network will contain only reliable edges. Second, there will be no isolated

nodes in the networks. We used d ¼ 5, and the resulting networks for each class are

given in Table 2. This table shows the minimum, the mean and the maximum of the

degrees. However, it is worth mentioning that the proposed algorithm can be

applied on any network regardless of the construction method used.

4.2. Biological evaluation

To evaluate the results of proposed algorithm, we used the DAVID functional

annotation tool26 to identify enriched biological GO terms and biological pathways

of the top 100 ranked genes in each dataset, and we showed the top five biological

Fig. 4. Results on simulated networks evaluated based on the global measure (MG).

Table 1. Description of the four gene expression datasets used in our experiments.

Class A Class B

Dataset Genes Description Samples Description Samples

Leukemia22 3051 AML 11 ALL 27

Medulloblastoma23 2059 Metastatic 10 Non-metastatic 13

Lung cancer2 1975 Normal 67 Tumor 102

Gastric cancer1 7192 Normal 8 Tumor 22

O. Odibat & C. K. Reddy

1240002-10



terms ranked based on their corrected p-values. In addition, we compared the top

100 ranked genes with the previously published results in the original papers from

which we obtained the datasets.

4.3. Results on gene expression datasets

The top three differential genes from each dataset are shown in Table 3. In this

table, we present the degrees of each gene in network A, network B and the common

edges between the two classes. Table 4 shows the top five enriched biological terms

for each dataset using the DAVID tool.26

(i) The Leukemia Dataset: The leukemia data contains the expression profiles

of 3051 genes in 38 tumor samples. In this dataset, there are 27 acute lymphoblastic

leukemia (ALL) samples and 11 acute myeloid leukemia (AML) samples.22 For this

dataset, we applied the version 1 of the proposed DiffRank algorithm. In addition to

the functional enrichment analysis, we compared our results with the previously

published results, and we found some differential genes, such as M80254 at (CyP3)

and M27891 at (Cystatin C), were reported in Ref. 22 among the most highly

correlated genes with AML-ALL class distinction.

Table 2. Degree distribution of the networks built for our

experiments.

Dataset Class Min Mean Max

Leukemia AML 5 8.7 96

ALL 5 8.8 120

Medulloblastoma Metastatic 5 8.5 66

Non-metastatic 5 9.0 743

Lung cancer Normal 5 9.9 878

Tumor 5 9.9 858

Gastric cancer Normal 5 9.4 288

Tumor 5 8.5 248

Table 3. Top 3 differential genes obtained from the gene expression datasets.

Degree in Degree in Common

Dataset Rank Gene Name Class A Class B Edges

Leukemia 1 M26692 s at 21 92 1

2 X03934 at 120 5 1

3 D87459 at 6 96 0

Medulloblastoma 1 196 s at 5 743 3

2 2008 s at 5 709 2

3 664 at 25 678 6

Lung cancer 1 MTHFR 15 659 11

2 BAI1 84 492 52

3 CSF1 530 851 496

Gastric cancer 1 HG1751HT1768 s at 22 248 0

2 M10098 5 at 123 224 7

3 M11722 at 62 181 2

Ranking Differential Hubs in Gene Co-Expression Networks
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(ii) The Medulloblastoma Dataset: Medulloblastoma is a common malig-

nant brain tumor of childhood. The medulloblastoma dataset23 contains gene

expression profiles of primary medulloblastomas clinically designated as either

metastatic or non-metastatic. For this dataset, we applied the version 1 of the

proposed DiffRank algorithm and found some statistically significant pathways such

as: pathways in cancer, chemokine signaling pathway and mitogen-activated

protein kinase (MAPK) signaling pathway, which have p-values ¼ 1:7E � 06; 4:0

E � 04 and 1:0E � 02, respectively. The MAPK signal transduction pathway was

reported as an upregulated pathway in the metastatic tumors that is relevant to the

study of the metastatic disease.23 In addition, some of the top differential genes were

reported in Ref. 23 among the genes differentiating metastatic from non-metastatic

tumors, such as 2042 s at, 311 s at and 1001 at.

(iii) The Lung Cancer Dataset: This dataset2 contains the expression profiles

of 1975 genes in normal and lung cancer samples. For this dataset, we applied the

version 2 of the proposed DiffRank algorithm. When compared with the previously

published results on the same dataset, we found that some of the top-ranked genes,

such as fCLDN14, PAX7, SDCBP, TADA3L, ITGA2Bg, were also reported in the

differential patterns discovered by the subspace differential co-expression analysis

proposed in Ref. 2.

(iv) The Gastric Cancer Dataset: The gastric cancer dataset1 contains the

expression profiles of 7192 genes in normal and gastric cancer samples. For this

dataset, we applied the version 2 of the proposed DiffRank algorithm and found

Table 4. Top five enriched biological terms obtained from the gene expression datasets.

Fold Corrected

Dataset Term Enrichment p-value

Leukemia transmembrane protein 4:51 2:9E � 03
GO:0005829 cytosol 2:66 1:1E � 02

GO:0033273 response to vitamin 15 1:8E � 02

GO:0002520 immune system development 5:98 2:3E � 02

GO:0048534 lymphoid organ development 6:35 2:8E � 02

Medulloblastoma hsa05200:Pathways in cancer 4:83 1:7E � 06

kinase 5:47 4:8E � 06

ATP 9:75 1:3E � 05
domain:Protein kinase 6:64 1:9E � 05

nucleotide-binding 3:22 1:9E � 05

Lung cancer acetylation 2:73 2:3E � 06

Proto-oncogene 10:14 3:2E � 06

disease mutation 3:30 4:1E � 06

phosphoproteinr 1:71 4:5E � 06
nucleus 2:13 4:9E � 06

Gastric cancer GO:0005576 extracellular region 2:57 1:3E � 04

signal peptide 2:21 1:3E � 03
GO:0005615 extracellular space 3:59 3:1E � 03

disulfide bond 2:10 3:5E � 03

GO:0044459 plasma membrane part 2:0 4:1E � 03

O. Odibat & C. K. Reddy
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some of the top ranked genes such as X51441 s at and Y07755 at had been reported

as highly expressed genes in gastric tumors in Ref. 1.

4.4. The relationships between DiffRank and other approaches

The relationships between the top ranked genes from the DiffRank algorithm, DE

(represented by the t-test) and DV methods (represented by the F-test) are shown

in Fig. 5. The numbers in this figure are the averages of the rankings from the four

datasets. As shown in Fig. 5, most of the genes identified by one approach cannot be

identified by the other approaches. This fact explains why we found a few number of

genes that were previously published and were top-ranked by our algorithm. Fur-

thermore, some of the top-ranked genes have not been annotated yet. For example

the top-ranked gene from the gastric dataset, HG1751HT1768 s at, has no anno-

tations according to the NCBI.a As shown in Table 3, this gene has 22 edges in the

normal network and 248 different edges in the tumor network. From these numbers,

one can observe that this gene may be involved in important biological processes

relevant to the gastric cancer. Such genes can further be investigated.

5. Conclusion

In this paper, we proposed a novel differential networking algorithm to find the

differential genes in gene networks that represent two biological conditions such as

normal and cancer. The proposed algorithm, DiffRank, can effectively capture the

local and the global changes in the topological structures between two given gene

(a) Top 100 genes. (b) Top 200 genes.

Fig. 5. The overlap between the results of the DiffRank algorithm, the t-test and the F-test. The

numbers are the averages of the four datasets (a) based on the top 100 genes in each method and (b) based

on the top 200 genes in each method.

ahttp://www.ncbi.nlm.nih.gov/
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networks. The experiments on synthetic datasets show that the proposed algorithm

is effective and outperforms various baseline methods, and the results on the gene

expression datasets were evaluated using the DAVID functional annotation tool.

The proposed method is independent of the network construction procedure and can

be applied on both directed and undirected networks. Prior knowledge can be

incorporated into our algorithm by assigning high scores to the set of relevant

genes27 rather than using a uniform distribution for the initialization of the ranking

vector. We also plan to study DiffRank in the context of gene regulatory networks.
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