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Deep learning models have demonstrated superior performance in several real-world
application problems such as image classification and speech processing. However, creat-
ing these models in sensitive domains like healthcare typically requires addressing certain
privacy challenges that bring unique concerns. One effective way to handle such private
data concerns is to generate realistic synthetic data that can provide practically acceptable
data quality as well as be used to improve model performance. To tackle this challenge,
we develop a differentially private framework for synthetic data generation using Rényi
differential privacy. Our approach builds on convolutional autoencoders and convolutional
generative adversarial networks to preserve critical characteristics of the generated syn-
thetic data. In addition, our model can capture the temporal information and feature cor-
relations present in the original data. We demonstrate that our model outperforms existing
state-of-the-art models under the same privacy budget using several publicly available
benchmark medical datasets in both supervised and unsupervised settings. The source
code of this work is available at https://github.com/astorfi/differentially-private-cgan.

� 2021 Published by Elsevier Inc.
1. Introduction

Deep learning has been successful in a wide range of application domains such as computer vision, information retrieval,
and natural language processing due to its superior performance and promising capabilities. However, its success is heavily
dependent on the availability of a massive amount of training data. Hence, the progress in deploying such deep learning
models can be crippled in certain privacy critical domains such as healthcare where maintaining data privacy is a stringent
concern.

Hence, to effectively utilize specific promising data-hungry methods, there is a need to tackle the privacy issues involved
in the medical domains. To handle the privacy concerns of dealing with sensitive information, a common method that is
often used in practice is the anonymization of personally identifiable information. But, such approaches are susceptible to
de-anonymization attacks [1]. That made researchers explore alternative methods. To make the system immune to such
attacks, privacy-preserving machine learning approaches have been developed [2]. This particular privacy challenge is usu-
ally compounded by some auxiliary ones due to the presence of complex and often noisy data that, in practice, might typ-
ically consist of a combination of multiple types of data such as discrete, continuous, and categorical.
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1.1. Synthetic Data Generation

One of the most promising privacy-preserving approaches is Synthetic Data Generation (SDG). Synthetically generated data
can be shared publicly without privacy concerns and provides many collaborative research opportunities, including for tasks
such as building prediction models and finding patterns. As SDG inherently involves a generative process, Generative Adver-
sarial Networks (GANs) [3] attracted much attention in this research area, due to their recent success in other domains.

GANs are not reversible, i.e., one may not use a deterministic function to go from the generated samples to the real sam-
ples, as the generated samples are created using an implicit distribution of the real data. However, a naive usage of GANs for
SDG does not guarantee the system being privacy-preserving by just relying on the fact that GANs are not reversible, as GANs
are already proven to be vulnerable [4].

This problem becomes much more severe when such privacy violations can have serious consequences, such as when
dealing with patient sensitive data in the medical domain. Two important questions arise: (1) How private is a system?
(2) How much information is leaked during the training process? Thus, there is a need to measure the privacy of a system –
to be able to judge whether a system is privacy-preserving.
1.2. Differential Privacy

Differential Privacy (DP) [5] provides a mechanism to ensure and quantify the privacy of a system using a solid mathemat-
ical formulation. Differential privacy recently became the de facto standard for statistical exploration of databases that con-
tain sensitive private data. The power of differential privacy is in its accurate mathematical representation, that ensures
privacy, without restricting the model for accurate statistical reasoning. Furthermore, utilizing differential privacy, one
can measure the privacy level of a system.

Differential privacy, as a strong notion of privacy, becomes crucial in machine learning and deep learning as the system by
itself often employs sensitive information to augment the model performance for prediction. Although many different attack
types can jeopardize a machine learning model’s privacy, it is safest to assume the presence of a powerful adversary with
complete knowledge of the pipeline, training, and model [6]. Hence, protecting the system against such an adversary, or
at the very least, measuring the upper bound of the privacy leakage in this scenario, can give assurance regarding the sys-
tem’s privacy. A fully differentially private system guarantees that the algorithm’s training is not dependent on an individ-
ual’s sensitive data.

One of the most adopted approaches to ensure differential privacy, under a modest privacy budget, and model accuracy, is
Differentially Private Stochastic Gradient Descent (DP-SGD), proposed in [7], which is the basis for many different research
studies [8,9]. At its core, DP-SGD (1) bounds the sensitivity of the algorithm on individuals by clipping the gradients, (2) adds
Gaussian noise, and (3) performs the gradient descent optimization step. As of now, SGD under a DP regime is one of the
most promising privacy-preserving approaches.

Due to the rapid rise in utilization of differential privacy, many discussions have addressed practical issue of tracking the
privacy budget. Despite its great advantages, the proposed notion of differential privacy has some disadvantages due to what
is called the composition theorem [5,10]. According to the theorem, for some composed mechanisms, the privacy cost simply
adds up, leading to discussion of privacy budget restriction. This is problematic, especially in deep learning, as the model
training is an iterative process, and each iteration adds to the privacy loss. To tackle the shortcomings of the differential pri-
vacy definition, Rényi Differential Privacy (RDP) has been proposed as a natural relaxation of differential privacy [11]. As
opposed to differential privacy, RDP is a more robust notion of privacy that may lead to a more accurate and numerically
stable computation of privacy loss.
1.3. Challenges with Medical Data

There are four primary challenges regarding synthetic data generation research in the medical domain: (1) Preserving the
privacy. The majority of the existing works do not train the model in a privacy-preserving manner. At best, they only try
to address privacy with some statistical or machine learning-based measurements. (2) Handling discrete data. When dis-
crete data is involved, many of the methods using GANs face some difficulty since GAN models are designed for generating
continuous values, i.e., they fail when there is a mixture of continuous and discrete data. (3) Evaluation of synthetic data
quality. One of the challenging issues regarding the evaluation of GANs and the quality of synthetic data in a real-world
domain is: How can we measure the quality of synthetically generated data? However, this becomes particularly critical
in the medical domain since the use of low-quality synthetic data for building prediction models can have dire consequences
and may even jeopardize human lives. (4) Temporal information and correlated features. The temporal and local correla-
tion between the features is often ignored. Incorporating such information is important in the medical domain since disease
incidents, and individual patient records, often exhibit meaningful temporal/correlation patterns. The quality of the gener-
ated data can be significantly improved by considering such dependencies.
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1.4. Our Contributions

To address the problems described before, we propose a privacy-preserving framework that employs Rényi Differential
Privacy and Convolutional Generative Adversarial Networks (RDP-CGAN). Our work makes the following contributions:

� We track and compute privacy loss with stable numerical computations and have tighter bounds on the privacy loss func-
tion, which leads to better performance under the same privacy budget. We achieve this by employing Rényi differential pri-
vacy in our model.
� Our model can effectively handle discrete data and capture the information from a mixture of discrete–continuous data by
creating a compact, unified representation through Convolutional Autoencoders (CEs) for unsupervised feature learning.
� In addition to measuring the quality of synthetic data with statistical measurements, we also employ a labeled synthetic
data generation mechanism for assessing the quality of the synthetic data in a supervised manner.
� To incorporate temporal and correlation dependencies in the data, we utilize one-dimensional convolutional neural
networks.

We demonstrate that our model generates better quality synthetic data (under the same privacy budget) compared to
existing state-of-the-art approaches (see Table 1, which is explained below). Likewise, it can provide a higher level of privacy
under the same level of synthetic data quality. We also empirically show that, regardless of the privacy considerations, our
proposed architecture generates higher quality synthetic data, since it captures temporal and correlated information.

The rest of this work is organized as follows: Section 2 discusses some prior research efforts related to synthetic medical
data generation, distinguishing that from our work. Section 3 describes preliminary concepts. Section 4 provides structural
and implementation details of the proposed system. Section 5 compares our results regarding privacy and synthetic data
quality, with state-of-the-art alternatives. Finally, Section 6 concludes this paper.
2. Related Works

There are a wide variety of works utilizing Differential Privacy for generating synthetic data. A majority of them use the
mechanism proposed in [7] to train a neural network with differential privacy based upon gradient clipping for bounding the
gradient norms and adding noise. That follows the general mechanism proposed in [5]. One of the most critical contributions
in [7] is introducing the privacy accountant which tracks privacy loss. Motivated by the success of this mechanism, in our
approach, we extend our privacy-preserving framework using Rényi Differential Privacy (RDP) [11] as a new notion of DP
to calculate the privacy loss.

Much of the recent research has addressed challenges regarding synthetic healthcare data generation [16–18]. One of the
early systems generating synthetic medical data is MedGAN [12], in which there is no privacy-preserving mechanism being
enforced. It only uses GAN models to create synthetic data, though it is known that GANs are easy to attack. Hence, despite
its good performance in generating data, it does not provide any kind of privacy guarantee. Nevertheless, MedGAN con-
tributes by generating discrete data through denoising autoencoders [12]. On the other hand, utilization of synthetic patient
population simulators such as Synthea [19] is minimal as they only rely on standard guidelines and do not model factors that
may contribute to predictive analysis [20]. Another work is CorGAN [14] that tries to generate longitudinal event sequences
by capturing feature correlations and temporal information. The TableGAN approach [13] also uses convolutional GANs to
synthesize data by leveraging auxiliary classifier GANs. Another work in this area is the CTGAN model presented in [21] that
addresses tabular data which has a mixture of discrete and continuous features. However, none of these approaches guar-
antees any sort of privacy during the data generation. Hence, there is a good chance that many of these models can compro-
mise the privacy of the original medical data, making these models vulnerable in practice. Accordingly, we will now discuss
various privacy-preserving strategies.

One of the earliest works that addressed the privacy-preserving deep learning in the healthcare domain is [22], that uses
Auxiliary Classifier GANs [23] to generate synthetic data. It assumes having access to labeled data. However, we aim to
develop a model able to create synthetic data from both labeled and unlabeled real data. PATE-GAN [15] is one of the suc-
cessful SDG approaches that use the Private Aggregation of Teacher Ensembles (PATE) [24,25] mechanism to ensure Differential
Privacy. Another framework related to this topic is DPGAN [8], which implements a mechanism similar to the one developed
in [7], with the main difference of clipping weights instead of gradients. We compare our work with PATE-GAN and DPGAN
due to their success and relevance to the medical domain. One of the research efforts associated with utilizing RDP is [26] in
which the authors training a privacy-preserving model on the MNIST dataset build on conditional GANs. The work proposed
in [27] uses RDP to enforce differential privacy. However, they do not consider temporal information. Further, we claim that
their system is not fully-differentially private as they only partially apply differential privacy. A general comparison for
related methods is depicted in Table 1. The rows in Table 1 describe important characteristics. First, we ask if a model pre-
serves the privacy or not. Second, it is crucial to assess the model’s utility by checking if a model requires labels. If a model does
not need labels, it can be used for unsupervised synthetic data generation. Third, we identify approaches that can handle a
mixture of data types. Finally, we consider models that can capture correlated and temporal information.
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Table 1
Comparison of various methods based on different criteria.

Method MedGAN TableGAN CorGAN DPGAN PATE-GAN RDP-CGAN
[12] [13] [14] [8] [15] (Proposed)

Privacy-Preserving � � � U U U

Does Not Require Labels (Annotations) U � U U � U

Can Handle Mixed Data Types U U U � � U

Capture Correlated and Temporal Information � U U � � U
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To assess the privacy-preserving characteristics of our model, we compare our method to two approaches that guarantee
differential privacy in the context of synthetic data generation, namely, DPGAN and PATE-GAN. PATE-GAN uses a modified
version of a PATE mechanism. One issue with the original PATE is that its privacy cost depends on the amount of data it
requires for a labeling process incorporated in the mechanism. That PATE mechanism uses some public dataset (similar
to real private data) for its labeling mechanism. Not only can this increase the privacy loss significantly, but the availability
of such a labeled public dataset is a limiting assumption in a practical, real-world scenario. Although PATE-GAN changed the
PATE training paradigm so that it does not require public data, its basis is to train a student model by employing generator
output that may aggregate the error, and it still needs labeled data. However, the advantage of PATE is that it provides a tigh-
ter privacy upper bound as opposed to the mechanism used in DPGAN. Regarding the privacy, the advantage of our method
compared to both these methods is thatwe use the RDP mechanism which provides a tighter privacy upper bound. Furthermore,
our approach uses convolutional architectures which typically perform better than standard multilayer perceptron models by cap-
turing the correlated features and temporal information. Furthermore, we use convolutional autoencoders that, in an unsuper-
vised manner, create a feature space that can effectively incorporate both discrete and continuous values.

3. Preliminaries

3.1. Autoencoders

Autoencoders are a kind of neural network architecture that consists of two encode and decode functions.
Encð:Þ : Rn ! Rd and Decð:Þ : Rd ! Rn aim to transpose the input x 2 Rn to the latent space I 2 Rd and then reconstruct
x̂ 2 Rn. In an ideal scenario, a perfect reconstruction of the original input data can be achieved, i.e., x ¼ x̂. The autoencoders
usually employ Binary Cross Entropy (BCE) andMean Square Error (MSE) losses for binary and continuous inputs, respectively.
BCEðx; x̂Þ ¼ � 1
m

Xm
i

xilogðx̂iÞ þ ð1� xiÞlogð1� x̂iÞð Þ ð1Þ

MSEðx; x̂Þ ¼ 1
m

Xm
i¼1

xi � x̂ij j2 ð2Þ
We utilize autoencoders in our model for capturing low-dimensional representations for both discrete and continuous
variables.

3.2. Differential Privacy

Differential Privacy establishes a guarantee of individuals’ privacy via measuring the privacy loss (associated with any
information release extracted from a database) by a mathematical definition [10,5]. The most widely adopted definition is
ð�; dÞ-differential privacy.

Definition 1 (ð�; dÞ-DP). The randomized algorithm A : X ! Q, is ð�; dÞ-differentially private for all query outcomes Q and
all neighbor datesets D and D0 if:
Pr½AðDÞ 2 Q� 6 e�Pr½AðD0Þ 2 Q� þ d ð3Þ
Two datasets D;D0 that only differ by one record (e.g., a patient’s record) are called neighbor datasets. The notion of neigh-
boring datasets emphasizes the sensitivity of any individual private data. The parameters ð�; dÞ denote the privacy budget,
i.e., being differentially private does not mean we have absolute privacy. It only indicates our confidence level of privacy,
given the ð�; dÞ parameters. The smaller the ð�; dÞ parameters are, the more confident we become about our algorithm’s pri-
vacy, as ð�; dÞ indicates the privacy loss by definition.

The ð�; dÞ-DP with d ¼ 0 is called �-DP which is the initially proposed definition [10]. It provides a more substantial pro-
mise of privacy as even a tiny amount of d might be a dangerous privacy violation due to the distribution shift [10]. One of
the most important reasons in the usage of ð�; dÞ-DP is the applicability of advanced composition theorems [5,28].
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Theorem 1 (Strong Composition [5]). Let us assume that we execute a k-fold adaptive composition of a mechanism with ð�; dÞ-DP.
Then, the composite mechanism is ð�0; kd0 þ dÞ-DP for d0, in which �0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2klnð1=d0Þ

p
�þ k�ðe� � 1Þ [5]. N
3.3. Rényi Differential Privacy

Strong composition (see Definition 1) enables a tighter upper bound for compositions of ð�; dÞ-DP steps compared to the
basic composition theorem [5]. One particular problem with the advanced composition theorem is that iterating this process
leads to the rapid growth of parameters as each application of the theorem (each step of the iterative process) leads to a
selection of possible ð�ðdÞ; dÞ values. To address some of the shortcomings of the ð�; dÞ-DP definition, the Rényi Differential
Privacy (RDP) has been proposed in [11] based on Rényi divergence (Eq. 2).

Definition 2 (Rényi divergence of order a [29]). The Rényi divergence of order a of a distribution P from the distribution P0 is
defined as:
DaðPjjP0Þ ¼
1

a� 1
log EP0ðxÞ

PðxÞ
P0ðxÞ

� �a� �
ð4Þ
The Rényi divergence, as a generalization of the Kullback–Leibler divergence, is precisely equal to the Kullback–Leibler
divergence for the order a ¼ 1. The special case of a ¼ 1 is:
D1ðPjjP0Þ ¼ log supP0ðxÞ
PðxÞ
P0ðxÞ

� �
ð5Þ
which is the log of the maximum ratio of the probabilities over P0ðxÞ. The order of a ¼ 1 establishes the connection between
the Rényi divergence and �-DP. A randomized mechanism A is �-differentially private if for two neighbor datasets D and D0,
we have:
D1ðAðDÞjjAðD0ÞÞ 6 � ð6Þ
Now, based on these definitions, let us define Rényi differential privacy (RDP) [11] as a new notion of differential privacy.

Definition 3 (Rényi Differential Privacy (RDP) [11]). The randomized algorithm A : D ! U is ða; �Þ-RDP if, for all neighbor
datasets D and D0, we have:
DaðAðDÞjjAðD0ÞÞ 6 � ð7Þ

There are two essential properties of the RDP definition (Definition 3) that are required here.
Proposition 1 (Composition of RDP [11]). IfA : X ! U1 is ða; �1Þ-RDP and B : U1 � X ! U2 is ða; �2Þ-RDP, then the mechanism
ðM1;M2Þ, whereM1 � AðXÞ andM2 � BðM1;XÞ, satisfies the ða; �1 þ �2Þ-RDP conditions.N
Proposition 2. If the mechanism A : X ! U is ða; �Þ-RDP then it also obeys ð�þ logð1=dÞ
ða�1Þ ; dÞ-DP for any 0 < d < 1 [11]. N

The above two propositions form the basis for preserving privacy in our approach. Proposition 1 determines the privacy
cost as a composition of two structures (autoencoder and convolutional GAN). Proposition 2 is applicable when one wants to
calculate the extent to which our system is differentially private based on the traditional ð�; dÞ notion (see Definition 1).

4. Privacy-Preserving Framework

We build a privacy-preserving GAN model using Rényi differential privacy (see Fig. 1). Since it is well known that GAN
models typically have poor performance in generating non-continuous data [30], we utilize autoencoders [31] to aid the
GAN model by creating a continuous feature space to represent the input. At the same time, the GAN aims to generate
high-fidelity synthetic data in a privacy-preserving manner. The autoencoder will transform the input space into a contin-
uous space, whether we have a discrete, continuous, or a mixture of both types as the input. Thus, the autoencoder acts as a
bridge between the GAN model and non-continuous data present in the medical domain.

Furthermore, the majority of existing research efforts in generating synthetic data [12] ignore the features’ local correla-
tions or temporal information. They use multilayer perceptrons, which are inconsistent with real-world scenarios such as
disease progression. To remedy this drawback, for both autoencoder and GAN architecture (generator & discriminator),
we use convolutional neural networks. Specifically, we employ One Dimensional Convolutional Neural Networks (1D-CNNs)
to capture correlated input features’ patterns as well as temporal information and incorporate them within an autoencoder
based framework.
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Fig. 1. The proposed RDP-CGAN framework. In the Autoencoder, the Encoder and Decoder are formed with convolutional layers. The Discriminator and
Generator have architectures similar to that of the Encoder and Decoder, respectively.
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The proposed framework is depicted in Fig. 1. The inputs to the generator G : Rr ! Dd
g and the discriminator D : Rn ! Dd

are the random noise z 2 Rr sampled from Nð0;1Þ and the real data x 2 Rn. Dd
g and Dd are the generator and discriminator

domains which are usually f0;1g and ½�1;1�d, respectively. In RDP-CGAN, as opposed to the regular GAN’s training proce-
dure, the generated fake data is decoded before being fed to the discriminator. The decoding is done by feeding the fake data
to a pre-trained autoencoder.

Algorithm1: Private Convolutional Autoencoder Pre-Training

1: Input: Real data X ¼ fxigNi¼1, learning rate g, network weights h, number of epochs for autoencoder training nae, norm
bound C, and additive noise standard deviation rae.

2: fori ¼ 1 . . .nae do
3: Sample a mini-batch of n examples. X ¼ fxigni¼1.
4: Partition X into X1; . . . ;X r where r ¼ n

k

� �
.

5: forl ¼ 1 . . . r do
6: L ¼ BCEðX l; X̂ lÞ, X̂ l ¼ DecðEncðX lÞÞ
7: gh;l  5hLðh;X lÞ

8: ĝh;l  gh;l=max 1;
gh;lðÞk k2

C

� �

9: end for

10: ĝh  1
r

Pr
l¼1 ĝh;l þNð0;r2

aeC
2IÞ

� �

11: Update: ĥ h� gĝh
12: end for
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Algorithm2: Private 1-D Convolutional GAN Training

1: Input: Real data X ¼ fxigNi¼1, random noise z where zi � Nð0;1Þ, learning rate g, discriminator weights x, generator
weights w, number of epochs for GAN training ngan, norm bound C, additive noise standard deviation rgan, and
number of discriminator training steps per one step of generator training nd.

2: forj ¼ 1 . . .ngan do
3: fork ¼ 1 . . .nd do
4: Take a mini-batch from private data X ¼ fxigni¼1
5: Sample a mini-batch Z ¼ fzigni¼1
6: Partition real data mini-batches into X1; . . . ;X r

7: Partition noise data mini-batches into Z1; . . . ;Zr

8: forl ¼ 1 . . . r do
9: xi 2 X l and zi 2 Zl

10: L= 1
k

Pk
i¼1 DðxiÞ � DðDecðGðziÞÞÞð Þ

11: gx;l  5xLðx;X lÞ

12: ^gx;l  gx;l=max 1;
gx;lðÞk k2

C

� �

13: end for

14: ĝx  1
r

Pr
l¼1 ĝx;l þNð0;r2

ganC
2
IÞ

� �
15: Update: x̂ x� gĝx
16: end for
17: Sample fzigni¼1 from noise prior
18: L= � 1

n

Pn
i DðDecðGðziÞÞÞð Þ

19: gw  5wLðw;ZÞ
20: Update: ŵ w� ggw
21: end for
4.1. Convolutional Autoencoder

We build a one-dimensional convolutional autoencoder (1D-CAE) based architecture. The main goal of such a 1D-CAE is to:
(1) capture the correlation between neighboring features, (2) represent a new compact feature space, (3) transform the pos-
sible discrete records to a new continuous space, and (4) simultaneously model discrete and continuous phenomena (which
is a challenging problem [21]).

We enforce privacy by adding noise, and by clipping gradients of both the encoder and decoder (see Algorithm 1, Autoen-
coder Pretraining Step), as in some previous studies [9,32]. One might claim adding noise to the decoder part should suffice
since the discriminator only has access to the decoder part of the CAE. We assert that such an action might jeopardize the
privacy of the model since we cannot rely on the autoencoder training to be trusted and secure as it has access to the real
data. The details of autoencoder pretraining, demonstrated in Algorithm 1, are as follows:

� We pre-train the autoencoder for nae steps (which will be determined based on the privacy budget �), and hence it varies
by changing the desired level of �.
� We divide a mini-batch into several micro-batches.
� For each micro-batch of size 1, we calculate the loss (line 7), calculate the gradients (line 8), and clip the gradients to bind
the model’s sensitivity to the individuals (line 9). The operation giðÞk k2 indicates the ‘2 norm over the micro-batch gra-
dients, and C is an arbitrary upper bound for the gradients’ norm.
� The Gaussian noise (Nð0;r2

aeC
2
IÞ) will then be independently added to the gradients of each micro-batch and will be

aggregated (line 10).
� The last step is where the optimizer performs the parameter update (line 11).

4.2. Convolutional GAN

The pseudocode for the Convolutional GAN is given in Algorithm 2, under the procedure GAN Training Step. As can be
observed in Algorithm 2, we only enforce differential privacy on the discriminator since it is the only component that has
access to the real data. To avoid the issue of mode collapse [33], we train the CGANmodel, using Wasserstein GAN [34], since
it is an efficient approximation of Earth Mover’s (EM) distance and is shown to be robust to the mode collapse problem during
model training [34].
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The Earth-Mover’s (EM) distance or Wasserstein-1 distance represents the minimum price in transforming the generated
data distribution Pg to the real data distribution Pr:
WðPx;PgÞ ¼ inf
#2PðPx ;Pg Þ

Eðx;yÞ�#½ kx� yk �; ð8Þ
#ðx; yÞ refers to how much ‘‘mass” should be moved from x to y to transform Px to Pg .
However, as the infimum in (8) is intractable, based on the Kantorovich-Rubinstein duality [35], WGAN employs the

Eq. (9) optimization:
WðPx;PgÞ ¼ sup
kfkL61

Ex�Px ½f ðxÞ� � Ex�Pg ½f ðxÞ� ð9Þ
For simplicity of the definition, infimum and supremum indicate the greatest lower bound and the least upper bound,
respectively.

Definition 4 (1-Lipschitz functions). Given two metric spaces ðX; dXÞ and ðY; dY Þ, where d denotes the metric (e.g., distance
metric), the function f : X! Y is called K-Lipschitz if:
8ðx; x0Þ 2 X;9K 2 R : dYðf ðxÞ; f ðx0ÞÞ 6 KdXðx; x0Þ ð10Þ

Using the distance metric and K ¼ 1, Eq. (10) is equivalent to:
8ðx; x0Þ 2 X : jf ðxÞ � f ðx0Þj 6 jx� x0j ð11Þ
It is clear that for computing the Wasserstein distance, we should find a 1-Lipschitz function (see Definition 4 and Eq. 11). The
approach is to build a neural model to learn it. The procedure is to construct a discriminator D without the Sigmoid function,
and output a scalar instead of the probability of confidence.

Regarding the privacy considerations, the generator has no access to real data directly (although it has access to the gra-
dients from the discriminator); only the discriminator will have access to it. We propose to only train the discriminator
under differential privacy for this aim. More intuitively, this approach considers the post-processing theorem in differential
privacy as follows.

Theorem 2 (Post-processing [5]). Assume D : NjXj ! D is an algorithm which is ð�; dÞ-differentially private and G : D! O is
some arbitrary function operates on. Then G � D : NjXj ! O is ð�; dÞ-differentially private as well [5].N

Following the argument above, we consider D and G as discriminator and generator functions, respectively. Since the gen-
erator is an arbitrarily randomized mapping on top of the discriminator, enforcing the differential privacy on the discrimi-
nator suffices to guarantee that the overall system ensures differential privacy, and we do not need to train a private
generator as well. The generator training procedure is given in Algorithm 2, lines 17–20. As can be observed, we do not have
a private generator and the loss function is the regular generator loss function of the WGAN method [34].

4.3. Architecture Details

For the GAN discriminator, we used five convolutional layers similar to the autoencoder (encoder), except for the last
layer. It is another dense layer, of output size 1, for decision making. For all layers, we used PReLU activation [36], except
for the last layer that does not use any activation. For the generator, we used transposed convolutions (also called
fractionally-strided convolutions) similar to the ones in [37]. However, we use 1-D transposed convolutions. The GAN gener-
ator has an input noise of size 100; its output size is set to 128.

In the autoencoder and the encoder, we used an architecture similar to the GAN discriminator, except we discard the last
layer of the discriminator. For the decoder, as in the generator, we used transposed convolutional layers in the reverse order of
the ones used for the encoder. For the encoder, we used PReLU activation layers except for the last layer of the encoder where
Tanh was used to match the generator output. For the decoder, we also used PReLU activation except for the last layer where
a Sigmoid activation function was used to bound the range of output data to ½0;1� to ideally reconstruct the discrete range of
f0;1g aligned with the input data. The decoder input size (encoder output size) is equal to the GAN’s generator output
dimension.

Since our model inputs’ sizes may change for different datasets, we modify the input pipeline of our architecture by vary-
ing the dimensions – of convolution kernels, stride for the GAN discriminator, and the autoencoder – to match the new
dimensionality. The GAN generator does not require any change since, for all experiments, we used the same noise dimension
as mentioned above.

4.4. Privacy Loss

As tracking the RDP privacy accountant [7] is computationally more precise than the regular DP, we based our privacy loss
calculation on RDP. Then, the RDP computations can be transformed to DP according to Proposition 2. The Gaussian noise
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additive procedure is also called Sampled Gaussian Mechanism (SGM) [38]. For tracking privacy loss, we use the following
theorem.

Theorem 3 (SGM privacy loss [38]). Let us suppose D and D0 are two neighbor datasets and G is a SGM applied to a function f with
‘2-sensitivity of one. If we set the following:
GðDÞ � u1¼
D Nð0;r2Þ

GðD0Þ � u2¼
D ð1� qÞN ð0;r2Þ þ qNð1;r2Þ
where u1 and u2 are PDFs, then, the mechanism G satisfies ða; �Þ-RDP for:
� 6 1
a� 1

logðmax Aa;Baf gÞ
where Aa¼D Ex�u1
u2=u1ð Þa

	 

and Ba¼D Ex�u2

u1=u2ð Þa
	 


. N
It can be proven that Aa 6 Ba and the RDP privacy computation can solely be focused on upper bounding Aa which can be

calculated with a closed-form bound and numerical calculations [38]. We use the same numerical calculations here. How-
ever, that bounds � for each step. The overall bound of � for the entire training process can be calculated by
�total ¼ num steps� � for any given a (see Proposition 1). To determine a tighter upper bound, we try multiple a values
and use the minimum ð�Þ and its associated a (obtained by the RDP privacy accountant) to compute the ð�; dÞ-DP employing
Proposition 2.

System privacy budget: One important question is: How do we calculate the ða; �Þ-RDP for the combination of an autoen-
coder and GAN training? Consider Proposition 1, in which X ;U1, and U2 are the input and output spaces of the autoencoder
and the output space of the discriminator. The mechanisms A and B are the autoencoder and discriminator, respectively.
Consider U1 as what the discriminator observes after decoding of the fake samples, and X as the space of real inputs. Then,
Proposition 1 directly results in having the whole system with ða; �ae þ �ganÞ-RDP by fixing the a. But we cannot guarantee
that we can have a fixed a, and the RDP has a budget curve parameterized by it. The procedure for fixing a is as follows.

� Let us assume we have two systems S1 and S2 such that one is the autoencoder, and the other is the GAN. Hence we have
two systems which ða1; �1Þ-RDP and ða2; �2Þ-RDP.
� Without loss of generality, we assume �1 6 �2. We pick atotal ¼ a2. Now, we have system S2 which ðatotal; �2Þ-RDP.
� For S1 we pick atotal ¼ a1 and calculate �0 such that � 6 �0.
� Now, the total system ðS1; S2Þ satisfies ðatotal; �2 þ �0Þ-RDP.

5. Experimental Results

In this section, we present the details of the experimental setup, report results obtained in various experiments, and com-
pare with different methods available in the literature.

5.1. Experimental Setup

We split the dataset to train with Dtr and test with sets Dte. We utilize Dtr to train the models, and then generate synthe-
sized samples Dsyn using the trained model. We set jDsynj ¼ jDtr j. Recall from Section 4 that although for different datasets we
alter the architectures associated with the input size, the encoder output space (decoder input space) and the generator out-
put space will always have the same dimensionality. Furthermore, the encoder input space, the decoder output space, and
the discriminator input space will also have the same dimensionality. It is worth noting that all of the reported � values are
associated with the ð�; dÞ-DP definition with d ¼ 10�5, unless otherwise stated.

Both the convolutional autoencoder and convolutional GAN were trained with the Adam optimizer [39] with learning rate
0:005, with a mini-batch size of 64. For both generator and discriminator we used Batch Normalization (BN) [40] to improve
the training. We used one GeForce RTX 2080 NVIDIA GPU for our experiments.

We compare our framework with various different methods. Depending on the experiment, some of those methods may
or may not be used for comparison, according to their characteristics. For further details, see Table 1.

5.2. Datasets

To evaluate performance, we used the following datasets:

1. MIMIC-III [41]: This dataset consists of the medical records from around 46 K patients.
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2. Kaggle Cervical Cancer [42]: This dataset covers patient records and is used to classify cervical cancer. There are multiple
attributes in the dataset of discrete and continuous types, and one attribute associated with the class label (e.g., Biopsy as
the target for classification).

3. UCI Epileptic Seizure Recognition [43]: Here the task is to classify seizure activity. The features are the values of Elec-
troencephalogram (EEG) records at various time points.

4. PTB Diagnostic ECG [44]: The electrocardiograms (ECGs) are used to classify the heart activity as normal or abnormal.
This dataset contains 14552 samples, out of which 4046 are classified as normal, while 10506 are abnormal activities.

5. Kaggle Cardiovascular Disease [45]: This dataset is used to determine if a patient has cardiovascular disease or not, from
a variety of features such as age, systolic blood pressure, and diastolic blood pressure – with continuous as well as these
discrete features.

6. MIT-BIH Arrhythmia [46]: This database includes ambulatory ECG recordings, created from 47 subjects. The records
were obtained from a mixed group of inpatients (requiring overnight hospitalization) and outpatients (usually not requir-
ing overnight hospitalization) at Boston’s Beth Israel Hospital. Unlike other datasets in this set of experiments, this data-
base is used in a multicategory classification task. The ECG signals correspond to normal (negative) and abnormal
(positive) cases. There are a total of five classes. Class zero is associated with normal cases. The rest of the classes are asso-
ciated with different arrhythmias and myocardial infarction, which we call abnormal.

5.3. Baseline Comparison Methods

We compare our model with different benchmark methods (see Table 1). Depending on the nature of the experiments,
various models are used as benchmarks. Thus, if the experiments are associated with different privacy settings, models that
do not preserve privacy will not be used for comparison.

1. MedGAN [12]: MedGAN’s architecture is designed to generate discrete records, e.g., for unsupervised synthetic data gen-
eration. It has an autoencoder and a vanilla GAN. MedGAN does not preserve privacy. We used an open-source
implementation1.

2. TableGAN [13]: TableGAN consists of three components: a generator, a discriminator, and an auxiliary classifier that aims
to augment the semantic integrity of synthesized data. Similar to our method, TableGAN uses Convolutional Neural Net-
works. TableGAN requires labeled training data and will be used in experiments with a supervised setting. We used an
open-source implementation2.

3. PATE-GAN [15]: PATE-GAN proposes a differentially private model, based on a modification of the PATE mechanism. We
utilized our own implementation of PATE-GAN as its code was not available publicly.

5.4. Unsupervised Synthetic Data Generation

We chose electronic health records after converting them to a high-dimensional binary discrete dataset to demonstrate

the privacy-preserving potential of the proposed model. Here, we have Dtr 2 f0;1gR�jT j;Dte 2 f0;1gT�jT j, and Dsyn 2 f0;1gS�jT j,
where jT j represents the feature size. The goal is to capture the information from a real private dataset, and use that to syn-
thesize a dataset with similar distribution in a privacy-sensitive manner. In this section, we compare our method with mod-
els that do not require labeled data (for unsupervised synthetic data generation) and are also privacy-preserving (see
Table 1). In the experiments of this section, to pretrain the autoencoder, we used Eq. (1) as the loss function.

Dataset Construction: We used the MIMIC-III dataset [41] as an example high-dimensional and discrete dataset. From
MIMIC-III, we extracted and used 1071 unique ICD-9 codes. The dataset has different discrete variables (e.g., diagnosis codes,
procedure, etc.). Assuming there are jVj discrete variables, we can represent the patient’s record using a binary vector

v 2 f0;1gjV j. The ith variable is set to one if it is available in the patient’s record. In our experiments, jVj ¼ 1071.
Evaluation Metrics: To assess the quality of synthetically generated data, we used two evaluation metrics:

1. Maximum Mean Discrepancy (MMD): This indicates the extent to which the model captures the statistical distribution
of the real data. In a recent study [47], MMD demonstrated most of the desired features of an evaluation metric, especially
for GANs. MMD is used in an unsupervised setting since there are no labeled data for statistical measurements. To report
MMD, we compared two samples of real and synthetic data, each of size 10000.

2. Dimension-wise prediction: This setting aims to illustrate the inter-connection between features, i.e., if we can predict
missing features using the features available in the dataset. We select top-10 and top-50 most frequent features (ICD-9
codes in the patients’ history) from training, test, and synthetic sets. In each run, one testing dimension (k) from Dsyn and

Dtr will be selected as Dsyn;k 2 f0;1gN�1 and Dtr;k 2 f0;1gN�1. The remaining dimensions (Dsyn;nk 2 f0;1gN�1 and

Dtr;nk 2 f0;1gN�1) will be utilized to train a classifier that aims to predict Ste;k 2 f0;1gN�1 from the test set. We employed
1 https://github.com/mp2893/medgan
2 https://github.com/mahmoodm2/tableGAN
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Fig. 3. The prediction accuracy of models trained on synthetic data, with varying privacy budget. The number of top features used for training are ‘10’ and
‘50’. The averaged F-1 score of all models to train on the real data is 0.44 and 0.35 for picking top-10 and top-50 features, respectively.

Fig. 2. The comparison of generated and real data distributions. Lower MMD score indicates a higher distribution similarity and hence, a better model.
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Random Forests [48], XGBoost [49], and Decision Tree [50]. We report the averaged performance over all predictive mod-
els (trained on synthetic data) and for all features using the F1-score (Fig. 3). We compare models by considering different

privacy budgets by fixing d ¼ 10�5 and varying �.

As can be observed in Fig. 2 and Fig. 3, without enforcing privacy (�), our model performs better compared to DPGAN. This
is due to the fact that by using 1-D convolutional architecture, our model captures the correlated information among adjacent ICD-
9 codes in the MIMIC-III dataset. Top-features indicate the most frequent features in the database.

To further investigate the effect of CGANs and CAEs in capturing correlated features, we conduct some experiments with-
out enforcing any privacy and compare our method with existing methods. As can be observed in Table 2, our method out-
performs other methods. Note that when the number of top features is increased, our method shows even better
performance compared to other methods since capturing correlation for higher number of features becomes more feasible
with convolutional layers.

5.5. Supervised Synthetic Data Generation

In this part, we consider a supervised setting and generate labeled synthetic data. For the experiments of this part, we
need labeled data. The supervised setting here includes various classification tasks on different datasets. In the experiments
of this section, to pretrain the autoencoder, we used Eq. (2) as the loss function.

Data Processing: For all the datasets except for MIMIC, we follow the same data processing steps that are described in
Section 5.2. For the MIMIC-III dataset, we used one of the top three codes across hospital admissions [41], which is 414.01
(associated with coronary atherosclerosis) and extracted patients diagnosed with that specific medical code. The classification
task is mortality prediction. We used 12,127 unique admissions and a total of 31 variables such as demographic information
(marital status, ethnicity, and insurance status), admission information (e.g., days of admission), treatment information (car-
diac defibrillator implant with/without cardiac catheterization), diagnostic information (respiratory disorder, cancer, etc.),
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Table 2
Comparison of different methods using F-1 score for the dimension-wise prediction setting. Except for the Real Data column, the classifiers are trained on the
synthetic data. The closer the results are to the real data experiments, the higher is the quality of synthetic data; hence the model is better.

Top Features Real Data MedGAN DPGAN RDP-CGAN

10 0.51 ± 0.043 0.41 ±0.013 0.36 ± 0.010 0.44 ±0.017
50 0.45 ± 0.037 0.24 ± 0.017 0.21 ± 0.017 0.35 ±0.056
100 0.36 ± 0.051 0.15 ± 0.016 0.12 ± 0.009 0.25 ±0.096
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and lab results (kidney function tests, creatine kinase, etc.). Each admission is considered as one data sample. Since multiple
admissions might be associated with one patient, we will have multiple samples per patient. This comes from the fact that, in
a 1-year interval, a patient may survive, but within the next few years and with new medical conditions, the same patient
may not survive in the 1-year observation window.

Evaluation: Let us consider the following two settings: (A) Train and test the model on the real data as the baseline (re-
sults shown in Table 3). (B) Train on the generated data and test on the real data (this setting is used to quantify the quality of
synthetic data). Note that the class distribution of the generated synthetic data must be identical to the real data. Setting (B) can
demonstrate howwell the model has performed the task of synthetic data generation. The closer the performance of setting (B)
is to setting (A), the better the model is in terms of the quality of the generated synthetic data. We conducted different sets of
experiments. We conduct ten runs (E = 10), for each experiment, and report the averaged AUROC (Area Under the ROC curve)
and AUPRC (Area Under the Precision-Recall Curve) for the models’ evaluations. The AUPRC metric is being utilized here since
it operates better than AUROC for an imbalanced classification setting.

5.5.1. The effect of architecture
In order to investigate the effect of convolutional GANs and convolutional autoencoders in our model, we perform some

experiments with no privacy enforcement. The case � ¼ 1 corresponds to the setup where we do not enforce any privacy. The
AUROC and AUPRC results are reported in Table 4 and Table 5, respectively. In the aforementioned tables, the best and sec-

ond best results are indicated with bold and underline text, respectively. The classifiers are trained on the synthetic data. The
closer the results are to the real data experiments, the higher is the quality of synthetic data; hence, we have a better model.
As can be observed from those tables, for the challenging datasets where there is a mixture of continuous and discrete vari-
ables, our model outperforms others since it not only captures feature correlations but also utilizes convolutional autoen-
coders which allow our approach to learn robust representations for the mixture of data types. For other datasets,
TableGAN closely competes with our model. This is because TableGAN also uses convolutional GANs as well as auxiliary clas-
sifiers [23] for improving the performance of the GANs. We could incorporate auxiliary classifiers to improve our model,
however, it would narrow down the scope of our work since using such auxiliary models would make it infeasible for unsu-
pervised synthetic data generation.

5.5.2. The effect of differential privacy
We next describe how well different methods perform in the differential privacy setting. The base model is when we train

using setting (A), which will have the highest accuracy as expected. So the question we investigate here is: How much will the
accuracy drop for different models at the same level of privacy budget ð�; dÞ?We compare our model with privacy-preserving
models (see Table 1). Table 6 shows these results for the supervised setting described above. In the majority of the exper-
iments, the synthetic data generated by our model demonstrates higher quality for classification tasks compared to other
models under the same privacy budget.

5.5.3. The effect of privacy budget
We also investigate how models will perform under different privacy budgets. Fig. 4 demonstrates the trade-off between

the privacy budget and the synthetic data quality. RDP-CGAN consistently shows better performance compared to other
benchmarks in all of the datasets. Our approach demonstrates it is particularly effective in lower privacy budgets. As an
example, for the Kaggle Cervical Cancer dataset with � ¼ 100;10;1;0:1, our model achieves significantly higher AUPRC com-
pared to the PATE-GAN.

5.5.4. Ablation study
We also describe an ablation study to investigate the effect of each component of our model. In particular, we are inter-

ested in assessing the importance and impact of utilizing autoencoders and convolutional architectures. The results of our
ablation study are reported in Tables 7,8. The various scenarios reported are described below:

� W/O CAE: without convolutional architecture in autoencoder.
� W/O AE: without autoencoder.
� W/O CG: without convolutional architecture in GAN’s generator.
� W/O CD: without convolutional architecture in GAN’s discriminator.
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Table 3
Summary statistics of the datasets used in this paper along with the performance of the base model.

Dataset Samples Features Positive Labels AUROC AUPRC

MIMIC-III 12,127 31 3272 (27%) 0.81 ± 0.005 0.74 ±0.007
Kaggle Cervical Cancer 858 36 52 (6%) 0.94 ± 0.011 0.69 ±0.003
UCI Epileptic Seizure 11,500 178 2300 (20%) 0.97 ±0.008 0.94 ±0.014

PTB Diagnostic 14,552 118 10506 (62%) 0.97 ±0.006 0.96 ±0.003
Kaggle Cardiovascular Disease 70,000 14 35000 (50%) 0.80 ±0.017 0.78 ±0.011

MIT-BIHArrhythmia 109,444 188 18606 (17%) 0.94 ±0.006 0.89 ±0.014

Table 4
Performance comparison of different methods using AUROC metric under no privacy constraints.

Dataset MedGAN TableGAN DPGAN PATE-GAN RDP-CGAN

MIMIC-III 0.71 ± 0.011 0.72 ± 0.017 0.71 ±0.014 0.70 ±0.007 0.74 ±0.012

Kaggle Cervical Cancer 0.89 ± 0.010 0.90 ± 0.012 0.90 ±0.016 0.89 ± 0.009 0.92 ±0.009

UCI Epileptic Seizure 0.87 ± 0.013 0.91 ±0.019 0.88 ±0.024 0.85 ± 0.014 0.90 ± 0.011
PTB Diagnostic 0.86 ± 0.018 0.94 ±0.009 0.88 ± 0.018 0.91 ± 0.006 0.93 ± 0.016

Kaggle Cardiovascular Disease 0.71 ± 0.031 0.73 ± 0.016 0.71 ± 0.019 0.72 ± 0.008 0.76 ±0.014

MIT-BIHArrhythmia 0.90 ± 0.021 0.89 ± 0.019 0.88 ± 0.012 0.86 ± 0.014 0.90 ±0.009

Table 5
Performance comparison of different methods using AUPRC metric under no privacy constraints.

Dataset MedGAN TableGAN DPGAN PATE-GAN RDP-CGAN

MIMIC-III 0.68 ± 0.011 0.71 ± 0.007 0.69 ± 0.006 0.70 ± 0.019 0.72 ±0.009

Kaggle Cervical Cancer 0.55 ± 0.012 0.60 ± 0.019 0.59 ± 0.008 0.58 ± 0.020 0.62 ±0.017

UCI Epileptic Seizure 0.79 ± 0.013 0.86 ±0.016 0.82 ± 0.015 0.81 ± 0.012 0.84 ± 0.020
PTB Diagnostic 0.88 ± 0.006 0.93 ±0.008 0.90 ± 0.007 0.88 ± 0.014 0.92 ± 0.012

Kaggle Cardiovascular Disease 0.69 ± 0.021 0.73 ± 0.011 0.73 ± 0.021 0.72 ± 0.017 0.75 ±0.009

MIT-BIHArrhythmia 0.77 ± 0.016 0.85 ± 0.013 0.82 ± 0.008 0.81 ±0.005 0.86 ±0.013

Table 6
The comparison of different models under the ð1;10�5Þ-DP setting. For � ¼ 1, we used our RDP-CGAN model without enforcing privacy. We used synthetic data
for training all models. The best and second best results are indicated with bold and underline text, respectively.

AUROC AUPRC

Dataset � ¼ 1 DPGAN PATE-GAN RDP-CGAN � ¼ 1 DPGAN PATE-GAN RDP-CGAN

MIMIC-III 0.74 ± 0.012 0.59 ± 0.009 0.62 ± 0.011 0.67 ±0.010 0.72 ± 0.009 0.55 ± 0.013 0.58 ± 0.017 0.62 ±0.015

Kaggle Cervical Cancer 0.92 ± 0.009 0.86 ± 0.009 0.91 ±0.005 0.89 ± 0.005 0.62 ± 0.017 0.53 ± 0.008 0.54 ± 0.014 0.57 ±0.007

UCI Epileptic Seizure 0.90 ± 0.011 0.72 ± 0.009 0.74 ± 0.014 0.84 ±0.008 0.84 ± 0.020 0.57 ± 0.003 0.63 ± 0.016 0.69 ±0.019

PTB Diagnostic ECG 0.93 ± 0.016 0.71 ± 0.012 0.75 ± 0.012 0.79 ±0.009 0.92 ± 0.012 0.71 ± 0.018 0.76 ± 0.011 0.80 ±0.008

Kaggle Cardiovascular 0.76 ± 0.014 0.61 ± 0.019 0.66 ± 0.006 0.69 ±0.013 0.75 ± 0.009 0.60 ± 0.001 0.63 ± 0.007 0.66 ±0.016

MIT-BIHArrhythmia 0.90 ± 0.009 0.69 ± 0.004 0.73 ± 0.006 0.77 ±0.003 0.86 ± 0.013 0.68 ± 0.023 0.73 ± 0.016 0.78 ±0.008
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� W/O CDCG: a standard GAN architecture with MLP.

The results shown in Table 7 and Table 8 demonstrate the importance of convolutional architectures. The interesting find-
ing here is that, for the datasets with only continuous values like UCI Epileptic Seizure, PTB Diagnostic ECG, and MIT-
BIHArrhythmia (as opposed to a mixture of continuous-discrete variables), the use of autoencoders actually downgraded
the system performance. Hence, we can conclude that autoencoders are very useful in the presence of discrete data or a mix-
ture of both continuous and discrete data types.

6. Conclusion

In this work, we proposed and developed a differentially private framework for synthetic data generation using Rényi Dif-
ferential Privacy. The model aimed to capture the temporal information and feature correlation using convolutional neural
networks. We empirically demonstrated that by employing convolutional autoencoders we can effectively handle variables
that are continuous, discrete, or a mixture of both. We argue that we will need to secure both encoder and decoder parts of
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Fig. 4. The effect of privacy budget on the synthetic data quality measured by AUPRC. The baseline is associated with � ¼ 1 for which we trained each
model with no privacy constraint (see Table 5). Higher AUPRC is associated with higher quality of synthetic data and hence represents. a better model.
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the autoencoder since there is no guarantee that the autoencoder’s training is being done by a trusted third-party. We show
that our model outperforms other models under the same privacy budget. This phenomenon may come in part from report-
ing a tighter bound and, in part, from utilizing convolutional networks. We reported the performance of different models by
replacing real data with synthetic data for training our machine learning models.
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Table 7
Ablation study results. For the baseline � ¼ 1, we used our RDP-CGAN model without enforcing privacy. Each column corresponds to a change in the core RDP-
CGAN architecture. The reported results are AUROC.

Dataset � ¼ 1 W/O CAE W/O AE W/O CG W/O CD W/O CDCG

MIMIC-III 0.74 ± 0.012 0.73 ± 0.017 0.69 ± 0.031 0.72 ± 0.023 0.71 ± 0.027 0.70 ± 0.016
Kaggle Cervical Cancer 0.92 ± 0.009 0.90 ± 0.019 0.86 ± 0.027 0.92 ± 0.031 0.90 ± 0.014 0.88 ± 0.021
UCI Epileptic Seizure 0.90 ± 0.011 0.89 ± 0.016 0.91 ± 0.021 0.88 ± 0.022 0.86 ± 0.008 0.85 ± 0.026
PTB Diagnostic ECG 0.93 ± 0.016 0.91 ± 0.011 0.94 ± 0.015 0.92 ± 0.029 0.91 ± 0.027 0.89 ± 0.014

Kaggle Cardiovascular 0.76 ± 0.014 0.74 ± 0.012 0.71 ± 0.041 0.43 ± 0.015 0.72 ± 0.021 0.71 ± 0.026
MIT-BIHArrhythmia 0.90 ± 0.009 0.88 ± 0.013 0.90 ± 0.014 0.88 ± 0.012 0.86 ± 0.017 0.84 ± 0.041

Table 8
Ablation study results. For the baseline � ¼ 1, we used our RDP-CGAN model without enforcing privacy. Each column corresponds to a change in the core RDP-
CGAN architecture. The reported results are AUPRC.

Dataset � ¼ 1 W/O CAE W/O AE W/O CG W/O CD W/O CDCG

MIMIC-III 0.72 ±0.009 0.70 ±0.032 0.67 ± 0.054 0.70 ± 0.076 0.69 ± 0.023 0.66 ± 0.065
Kaggle Cervical Cancer 0.62 ± 0.017 0.61 ± 0.031 0.58 ± 0.017 0.59 ± 0.036 0.59 ± 0.041 0.55 ± 0.023
UCI Epileptic Seizure 0.84 ± 0.020 0.82 ± 0.034 0.86 ± 0.041 0.79 ± 0.024 0.81 ± 0.012 0.80 ± 0.018
PTB Diagnostic ECG 0.92 ± 0.012 0.90 ± 0.028 0.94 ± 0.031 0.89 ± 0.022 0.88 ± 0.022 0.88 ± 0.029

Kaggle Cardiovascular 0.75 ± 0.009 0.73 ± 0.052 0.71 ± 0.017 0.72 ± 0.033 0.71 ± 0.041 0.70 ± 0.014
MIT-BIHArrhythmia 0.86 ± 0.013 0.83 ± 0.019 0.87 ± 0.026 0.85 ± 0.038 0.84 ± 0.023 0.82 ± 0.032
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	3.3 Rényi Differential Privacy

	4 Privacy-Preserving Framework
	4.1 Convolutional Autoencoder
	4.2 Convolutional GAN
	4.3 Architecture Details
	4.4 Privacy Loss

	5 Experimental Results
	5.1 Experimental Setup
	5.2 Datasets
	5.3 Baseline Comparison Methods
	5.4 Unsupervised Synthetic Data Generation
	5.5 Supervised Synthetic Data Generation
	5.5.1 The effect of architecture
	5.5.2 The effect of differential privacy
	5.5.3 The effect of privacy budget
	5.5.4 Ablation study


	6 Conclusion
	Declaration of Competing Interest
	Acknowledgements
	References


