

 184 Int. J. Data Mining and Bioinformatics, Vol. 12, No. 2, 2015

 Copyright © 2015 Inderscience Enterprises Ltd.

Predicting gene functions from multiple biological
sources using novel ensemble methods

Chandan K. Reddy* and Mohammad S. Aziz
Department of Computer Science,
Wayne State University,
Detroit, MI, 48084, USA
Email: reddy@cs.wayne.edu
Email: maziz@wayne.edu
*Corresponding author

Abstract: The functional classification of genes plays a vital role in molecular
biology. Detecting previously unknown role of genes and their products in
physiological and pathological processes is an important and challenging
problem. In this work, information from several biological sources such as
comparative genome sequences, gene expression and protein interactions are
combined to obtain robust results on predicting gene functions. The
information in such heterogeneous sources is often incomplete and hence
making the maximum use of all the available information is a challenging
problem. We propose an algorithm that improves the performance of prediction
of different models built on individual sources. We also develop a
heterogeneous boosting framework that uses all the available information even
if some sources do not provide any information about some of the genes. We
demonstrate the superior performance of the proposed methods in terms of
accuracy and F-measure compared to several imputation and integration
schemes.

Keywords: gene function prediction; data integration; ensemble methods;
boosting.

Reference to this paper should be made as follows: Reddy, C.K. and Aziz,
M.S. (2015) ‘Predicting gene functions from multiple biological sources using
novel ensemble methods’, Int. J. Data Mining and Bioinformatics, Vol. 12,
No. 2, pp.184–206.

Biographical notes: Chandan K. Reddy is an Associate Professor in the
Department of Computer Science at Wayne State University. He received his
PhD from Cornell University and MS from Michigan State University. His
primary research interests are data mining and machine learning with
applications to healthcare analytics, bioinformatics and social network analysis.
His research is funded by NSF, NIH, DOT, and the Susan Komen for the Cure
Foundation. He received the Best Application Paper Award at SIGKDD
conference in 2010, and was finalist of the INFORMS Franz Edelman Award
Competition in 2011. He is a senior member of IEEE and member of ACM.

Mohammad S. Aziz completed his Masters in Computer Science from Wayne
State University. His research interests include data mining and machine
learning with applications to bioinformatics.

 Predicting gene functions from multiple biological sources 185

This paper is a revised and expanded version of a paper entitled ‘Robust
prediction from multiple heterogeneous data sources with partial information’
presented at the ‘18th ACM Conference on Information and Knowledge
Management (CIKM)’, Toronto, Canada, October 2010.

1 Introduction

In the field of functional genomics, the functional classification of genes that are
unannotated and improving the existing gene functional annotation catalogs is an
important and challenging problem. Due to its ability to detect previously unknown role
of genes and their products in physiological and pathological processes, functional
classification plays a vital role in molecular biology (Re and Valentini, 2010).
Nevertheless, the development of an automatic model for such a classification task is still
limited by the intrinsic difficulty of the task and lack of a reliable mechanism that can
effectively leverage partial sources of information. However, researchers from different
domains are extracting some task specific information for the same model organism and
its genes. This lead to the availability of different types of biomolecular data, ranging
from expression profiles to phylogenetic gene-specific evolution rates and many others.
Such vast amounts of data can, in principle, provide useful information for the automated
assessment of the functional role of genes. The extent to which the presence of a specific
type of experimental data could improve the classification performance significantly
varies for specific gene and the particular biomolecular process under investigation.
Though the availability of multiple sources have a tremendous potential for improving
the performance of functional classification, it also poses some challenges which include
heterogeneous non-compatible features and unavailability of information for all the genes
in different datasets. In this paper, we primarily focus on improving the performance on
the functional classification by utilising multiple sources of information about a set of
genes.

Recently, a systematic evaluation of classification performance using different
combination rules suitable to merge the output of gene function classifiers trained on
different data sources is presented (Re and Valentini, 2010). Due to the heterogeneous
nature of different data sources, it is possible that different types of classification models
may perform better on different datasets. In this work, we build ensemble models to
combine the information from different sources and evaluate the performance of such
ensemble models. The intuition behind combining the predictions of different classifier
comes from the fact that different base classifier may perform better for different
samples. Combining the final decisions of a number of classifiers can obtain a strong
classification model that (on an average) performs well for most of the genes.

The availability of multiple sources of information have a tremendous potential
for improving the performance of functional classification. Though the integration
approaches discussed above demonstrate good potential to produce a robust model, they
suffer from one limitation. They can be only applied to the common genes that are
available across all the sources. One of the key challenges in this domain is that many
sources contain only partial information and one can rarely see all the information
available in a given source. Some of the sources potentially consist of information about

 186 C.K. Reddy and M.S. Aziz

certain genes that is not available in some of the other sources. Using only the common
information implies that we are not using all the available information which might be
vital for building a better prediction model. Furthermore, when the prediction model is
used on a particular test case, it is unlikely that the testing gene will have information for
all the sources. In such cases, the prediction model generated from a model built on
common set of genes will be suboptimal. Thus, the need for a general framework which
can use all the available information and also capable of making prediction for the test
case for which not all the information is available is required. This motivated us to build
a generalised framework for the integrated predictive modelling in the presence of
uncommon data objects. Though some kernel-based methods try to handle this problem
via imputation at the early stage, a systematic and generalised framework which exploits
the partial information that is available in multiple sources in a better manner is not
available in the literature. This is precisely the main objective of the work that is being
proposed in this paper. Generally, in such cases, only the common samples are taken for
the study thereby leading to a significant loss of potential information during integration.
There are some works that impute the data to make it complete and then using the
complete datasets for further integration process (Williams and Carin, 2005). These
works typically make a few reasonable assumptions and integrate the information
analytically calculating the kernel matrix from incomplete data. In case of very few
missing elements, semi-definite programming can be used to complete the kernel matrix
(Graepel, 2002). In this paper, we develop a new approach to solve this problem of
integration from multiple sources in the presence of only a portion of samples that are
common across all the sources. In other words, majority of the samples are available only
in fewer sources. Here, we refer to a data point as ‘uncommon’ when it is not available in
all the sources.

The rest of the paper is organised as follows: Section 2 describes some of the related
works related to our problem. Section 3 describes proposed algorithms for dealing with a
set of common genes and with partial information. Section 4 discusses the experimental
setup and explains the sources from which different datasets were extracted. The
results of the functional classification task are given in Section 5 and finally, Section 6
concludes our discussion.

2 Related background

2.1 Notations used

Table 1 gives the notations used in this paper.

2.2 Types of data integration

Three basic approaches for data integration for the task of class prediction have been
proposed in the literature:

1 Early integration: Methods such as Vector Space Integration (VSI), which basically
integrate all the data sources into a single data file and predict classes with all the
features available. Early integration produces a single, potentially more informative
dataset which can then be used for the prediction task (des Jardins et al., 1997).

 Predicting gene functions from multiple biological sources 187

Other such methods were based on modelling networks of functional relationships
between proteins where graphical models provide a probabilistic framework for data
integration (Karaoz et al., 2004).

2 Intermediate integration: which is typically based on Kernel Fusion (KF) methods.
The integration is done during the training phase itself. Individual kernels on
different sources are learned first and the final classifier is built on the composite
kernel that is built after combining the individual ones (Lanckriet et al., 2004). To
exploit the heterogeneity of the data, weighted functional linkage graph is generated
using different sources of information (Zhao et al., 2008).

3 Late integration: This typically models individual sources and then combines
the knowledge from these individual models and builds a final classifier (Kuncheva
et al., 2001; Roli et al., 2001). Methods such as decision templates, different types
of weighted majority voting using linear or logarithmic weight combination and
ensemble methods like bagging, boosting and random forests fall into this category
(Dietterich, 2000; Polikar, 2006; Krishnaraj and Reddy, 2008). The methods that are
being proposed in this paper fall into this category.

Table 1 Notations used in this paper

Notation Description

N Number of datasets

m Number of total data points

Di i-th dataset

mi Number of data points in Di

dk k-th data point

wki Weight of the data point dk for Di

Cij Weak classifier at j-th iteration for Di

Mi Strong classifier generated from Di

 Indicator matrix

ki Indicator variable for data dk in Di

i Indicator variable for test data in Di

cij Weight of the weak classifier Cij

2.3 Ensemble methods for integration

Recently, ensembles of classifiers have been gaining a lot of interest because of their
excellent generalisation performance. The intuition for using the ensemble technique is
that, if the base classifiers composing the ensemble are diverse, then they are expected to
make different errors and hence, the ensemble output produced by these classifiers is
expected to reduce the error through some form of weighted averaging (Kuncheva and
Whitaker, 2003).

Weighted majority voting (Kittler et al., 1998): Weighted majority voting is the most
widely used late integration method because of its inherent simplicity, natural mapping to
the problem and superior generalisation performance. There are many general and
problem specific majority voting schemes that can be used for the problem that are

 188 C.K. Reddy and M.S. Aziz

addressed in this paper. Let, a trained classifier from i-th dataset and j-th type (any base
classifier) computes a function k

ijd for a specific class k such that : [0,1]k
ijd X  . An

ensemble combines the outputs of T base learners using a suitable combining function g
to compute the posterior probability k for a given class k.

11 12()= ((), (),...., ())k k k
k Ncx g d x d x d x (1)

where N is the number of information sources and c is the number of the base classifiers.
In this paper, we made the ensemble decision using the different schemes described
below. Please note that these methods are being used as baseline methods for comparison
purposes.

Ensemble linear: In Ensemble Linear, the combined result is generated using a
weighted combination of the decisions of base classifiers, where the weight of the base
classifier in the consensus is calculated linearly using the following equation:

()= (), =k t
k t it t

t t
t

C
x d x where

C
   

 (2)

where Ct is the accuracy of the t-th base classifier, when optimising for accuracy
(or F-measure).

Ensemble logarithmic: Ensemble Logarithm is similar to Ensemble Linear except that
the weights of the base classifiers are calculated logarithmically as follows:

= , =

 1
t t

t t
t t

t

p ln C
where p ln

p ln C

 


 
 
  

 (3)

where  is a small constant value which avoids the indeterminate form.
Ensemble of similar classifiers: Ensemble of similar classifiers is a popular method.

In this case, the combined decision is produced using the same type of classifiers. i.e.
SVM ensemble is generated by m base (SVM) classifiers trained on m different datasets.
The consensus decision is obtained as follows:

()= ()k
ki t it

t

x d x  (4)

where ki(x) is the i-th Ensemble of similar classifier for the class k. For example, it is
composed of the i-th model from each dataset.

Ensemble of the best classifier: The best classification model on different datasets can
be ensembled to produce a better result compared to the ensemble of similar classifiers.
The consensus decision in this case is given as follows:

'()= (), =k
k t ts j j

t

x d x where s argmax   (5)

where ’s are calculated for the base classifier models for a particular dataset as
explained earlier. However, in the end, N such classifiers will be chosen when the
previous normalisation will not hold anymore. ’s are the weights normalised across the
N best classifiers from these datasets.

 Predicting gene functions from multiple biological sources 189

Decision templates (Kuncheva et al., 2001): Decision template is an approach which
makes use of all the base classifiers trained on each of the m datasets. The decision
profile DP(x) for an instance x is a matrix composed by the , [0,1]t jd  elements

representing the support given by the t-th classifier to class j. Decision templates DTj are
the averaged decision profiles obtained from Xj, the set of training instances belonging to
the class j:

1
= ()j

x Xj j

DT DP x
X 

 (6)

The similarity S between the decision template DTj for a class j and the decision profile
for a given test instance x is:

2

,
=1 =1

1
()=1 (,) ()

T C

j j t k
t k

S x D t k d x
T C

     (7)

and the final decision of the ensemble is calculated by assigning the test instance to the
class with the largest similarity:

()= ()j jD x argmax S x (8)

2.4 Data imputation for partial data

In the literature, there were only a few attempts that were made on incorporating
information in the presence of several uncommon data points. Most of the work on
handling such scenarios is available in the kernel fusion methods where the kernel matrix
is integrated to combine the information from multiple sources. Most of these methods
treat this as a missing data problem to calculate the missing features with the help
of observed features to subsequently compute the kernel matrix. There are few
propositions that fill the missing entries in the kernel matrix directly. In our study, we
comprehensively compared the proposed method with the following kernel fusion
alternatives:

1 Unconditional mean imputation (UMI): For a data point that is not in a particular
source, the feature values are imputed with the average of the feature values of the
points that are present in that source. After getting all the feature values, we
aggregate the kernel matrix to get a single kernel matrix and use SVM classifier on it
to make the prediction.

1
=j j

d dk
d S

f f
S 
 (9)

where S is the set of data that has the value for feature j-th feature.

2 Weighted summation imputation (WSI): The feature values for the data are not
imputed in the source. Rather, for a data point that is missing in a source, the kernel
matrix entries of that point for this kernel are imputed as a weighted combination of
the average of the entries of that particular kernel matrix and the average of the
entries for that samples in other kernel matrices where the gene is present. In our
experiment, we used 50% weight for both these values.

 190 C.K. Reddy and M.S. Aziz

3 Nearest neighbour imputation (NNI): In this method, the kernel matrix entries are
directly imputed rather than imputing the feature values. First, the kernel matrices
for the different sources are generated from the genes present in those sources. At
this juncture, for a gene that is not present in a particular source does not have any
kernel matrix entry. Using the other sources where the feature values are present for
that gene, the nearest neighbour is obtained. Then, in the source where that gene was
missing, the kernel matrix entry of the nearest neighbour is replicated. However,
there was no entry of the nearest neighbour for the new gene which is filled by the
current highest entry of the matrix that originally corresponds to the most similar
genes in the source.

3 Proposed methods for data integration

We will now describe the details of the two algorithms that are proposed to handle the
integration of multiple heterogeneous datasets. The first algorithm, ‘DecBoost’, is
developed for the case where complete information is available. In other words, the
information about all the genes are available in all the data sources. For the partial data
case, we develop ‘HeteroBoost’ which can handle the integration in the presence of
partial information. In this case, some genes are available in only few data sources and
hence will not have information from the rest of the data sources. When all the data is
integrated, the matrix will become incomplete.

3.1 Decision boosting

Typically, different classifiers work well on different sources and their corresponding
classification models show superior performance compared to others (Caruana and
Niculescu-Mizil, 2004). In this objective, we will build boosting-based integration
framework for solving the prediction problem in the presence of multiple heterogeneous
data sources. ‘Heterogeneous’ refers to different types of data stored in different sources
such as categorical, numerical, string, network data etc. Appropriate features along with
their similarity measures relevant to the prediction task at hand will be decided before the
integration step and the data is stored in a matrix format. Our approach falls into the
category of late integration where we combine the decisions of different classifiers (Aziz
and Reddy, 2010). After building individual models for each data source, we take the
decisions made on individual genes and use them as features for the next stage. We will
then apply boosting method using the new feature representation which is comprised of
these individual classifiers. Even if strong classifiers are used to build local models for
individual sources, they are considered to be weak learners for the final classification
model that is being built in the latent integration space. This is because, most of the
times these sources are considered to be weak sources of information for the final
prediction task.

Such a two-level integration scheme can provide optimal results since the first level
(local modelling) can produce reliable models for individual sources and the second level
can produce the most optimal combination of such models. Since there is no single
classifier model that is optimal for all the datasets, we will use many different classifiers
for individual sources and create individual features from the decisions (or probabilities)
of each of the classifiers. In the second level, one can then use a standard classification

 Predicting gene functions from multiple biological sources 191

algorithm (boosting in our case) with this new feature representation. Though some of
the steps in this process appear to be available in the literature, such an approach has not
been rigorously investigated in the context of integrating information from multiple
heterogeneous sources.

The effectiveness of an ensemble method depends on the diversity of the base
classifiers being used. In other words, if different base classifiers make error on different
genes, then the combined result can get rid of some errors and improve the final accuracy
of the ensemble models. To ensure the improved accuracy when combining models from
multiple sources, we propose to boost the decisions from these individual sources using
AdaBoost. The AdaBoost algorithm (Freund and Schapire, 1996) is an efficient, simple
and easy to manipulate additive modelling technique that can potentially use any
available weak learner. Boosting algorithms combine weak learning models that are
slightly better than random models. It is an ensemble method that generates multiple
classifiers from a base learner and ensembles them for building the best classifier (Freund
and Schapire, 1997). The basic idea of boosting is to repeatedly apply the weak learner to
modified versions of the data, thereby producing a sequence of weak classifiers for
t =1,2,,T, where T denotes predefined number of iterations. Each boosting iteration
performs the following steps: (a) Fits a weak learner to the weighted training set and (b)
Computes the error and updates the weights for every data point. The final model
obtained by boosting algorithm is a linear combination of several weak learning models.

For a particular gene, we will consider all the decisions from the base classifier
models as different feature values and construct a vector of these decisions. We improve
the quality of these decisions by applying a boosting algorithm on such a decision matrix.
We thus call the proposed algorithm as ‘DecBoost’. In simple terms, we boost the
decisions made from individual data sources and provide a much robust prediction result.
The details of the DecBoost are shown in Algorithm 1. It is a modification of AdaBoost
where the weak learners are the different types of classifiers that are run on various
sources. It should be noted that this method is effective only when each source contains
enough information to make a decision about a given gene.

3.2 Heterogeneous boosting for integration with partial information

In practice, one can not obtain all the required information about a particular gene from
all the sources. Often, some sources deliver information about some of the genes whose
information is not available from other sources. In other words, when all the sources are
combined, there will be some missing information about certain genes with respect to
some sources. Most of the current research work in data integration primarily focuses on
integrating information when all the sources contain the information about a gene. That
is, for the sake of convenience, researchers primarily deal with common genes that are
available in all the data sources. In certain cases, utilising only the common information
will potentially produce inferior prediction result when there are several genes with
partial information. Some work on handling partial information is available in the kernel
methods literature (Sharpe and Solly, 1995; Smola et al., 2005; Chechik et al., 2008)
where the kernel matrix is integrated to combine the information from multiple sources.
Most of these methods treat it as a missing data problem to calculate the missing features
with the help of observed features to subsequently compute the kernel matrix (Graepel,
2002; Williams and Carin, 2005). Though some kernel-based methods can handle this
problem via imputation at the early stage, they only work well when there is less amount

 192 C.K. Reddy and M.S. Aziz

of incomplete data (Little and Rubin, 2002). However, in practice, when several sources
are being integrated, the amount of information about a particular gene vastly differs and
we will find significant amount of missing information. In such cases, imputation
methods do not work well during integration and will yield suboptimal solutions. Most
importantly, when the prediction model is used on a particular test case, it is unlikely that
the test case will have information for all the sources. Hence, our idea is to rely only on
particular sources available for those uncommon genes and thus, give more importance
(or weight) to that source during the training phase for that particular gene.

Algorithm 1: DecBoost

1: Input: Datasets D1,DN with the common data points x1,xN

2: Output: Final strong classifier h(x)

3: Procedure:

4: From each dataset Di, generate M weak classifiers Ci,1,Ci,M. [Generating
the classifier pool]

5: Initialise weight 1,

1
=iw

n
 [Boosting starts here]

6: For t = 1T:

 (a) Find the best classifier Ct from the pool using the weighted error
criterion ,= ()t t i t i ii

w C x y 

 (b) Update the weights 1, ,= * . ()t i t i t t i iw w exp c C x y     where
(1)

= t
t

t

c log




 (c) Normalise 1,
1,

1,

= t i
t i

t ii

w
w

w





7: Return classifier ()= . ()t tt
h x c C x

We propose a heterogeneous boosting-based integration framework that will exploit all
the available (including partial) information from multiple data sources. To achieve this
goal, we propose a novel objective criterion which will emphasise the importance of
genes with partial information compared to the common ones. We will also modify the
re-weighting scheme in the following manner: if a gene is present in only one source out
of c sources, the importance of it will be increased by c times while modelling that gene.
We plan to use weighted classifiers and incorporate the penalty term that takes into
account the information about the importance of each gene. The increase of weight of the
misclassified gene will be inversely proportional to the number of datasets that contain
the information about the gene. The basic intuition here is that the algorithm will give
more importance to a gene if it is available only in one source compared to one being
available in many sources. At the end of each boosting iteration, the instances are
re-weighted in such a way that the misclassified objects get a higher weight so that the
next weak classifier gives more importance to those objects that were misclassified in the
previous iteration.

 Predicting gene functions from multiple biological sources 193

In boosting algorithm, a strong classifier is built as a combination of a number of
weak classifiers, where each classifier is chosen at every iteration if its accuracy is
greater than 50%. At the end of each iteration, the samples are re-weighted in such a way
that the misclassified samples get a higher weight so that the next weak classifier shows a
better performance on those samples that were misclassified in the previous iteration. We
modified the boosting algorithm to build a strong model out of a dataset using all its data
points in such a way that increment in all the misclassified samples is not equal. We use
the term ‘weak classifier’ to refer to the classifier chosen in each iteration during the
boosting process of a particular dataset, the term ‘strong classifier’ to refer to the
classifier that is generated out of a Heterogeneous dataset and the term ‘stronger
classifier’ to refer to the final classifier that is a weighted combination of the strong
classifiers.

For getting the stronger classifier from dataset Di, we modify the AdaBoost weight
updation in such a way that it holds the following two properties:

 The weight for the misclassified examples is increased.

 The increase of the weight of the misclassified data point will be inversely
proportional to the number of datasets that contain the information about the data
point.

The basic intuition behind the second criteria is that the algorithm does want to give more
importance to a data point when it is available only in one source compared to data point
that is available in many sources. Note that, if it is misclassified in other datasets during
an iteration, then its weight is increased in that dataset as well. Thus, it is unlikely that a
data point is neglected in all the strong models thus making the stronger model more
general and diverse.

Let  denote an indicator matrix such that ki is 1 if the gene dk is in dataset Di and 0

otherwise. We define i as the average number of datasets in which the data from Di is

present and is calculated as follows:

(*)
=

ki ki
k i

i
ki

k

 







 


 (10)

We modify the re-weighting scheme in AdaBoost to follow the two above mentioned
criteria as follows:

1 (1 2*)
=1j j

j j

 
 
 

 (11)

where j is the error rate for that iteration. Hence, the increment amount is
(1 2*)j

j





which is positive since j < 0.5. We varied this increment amount based on the number of
datasets that the gene is present in:

(1 2*)
*j i

j ki
i

 
  






 (12)

 194 C.K. Reddy and M.S. Aziz

It should be noted that the multiplying factor is defined in such a way that the
aforementioned two criteria are fulfilled and it retains the property of balancing i.e. the
product of all the multiplication factors for a dataset is 1. Let mfk denotes the multiplying
factor of k-th data point, then

(*)
1

= = * =1
ki ki

i k i
k

k k kki ki ki
i k i

mf
 


  




 
 

 
    

 (13)

Algorithm 2: HETEROBOOST

1: Input: Datasets D1,DN, samples d1,dm and the indicator matrix 

2: Output: Final strong classifier M

3: Procedure:

4: for i = 1N:

5: Initialise weight
1

=ki
i

w
m

6: for j = 1T:

7: (a) ()ij C H ki kj ij k kkij
C argmin w C d y 

8: (b) for k = 1m:

9: (i)
(1 2*)

= (1 *)j i
ij

j kii

c log
 

  






10: (ii) = * . ()ki ki ij ij k kw w exp c C d y  

11: (c) Normalise weights: k = ki ki
ki

ki kik

w
w

w




12: end for

13: strong classifier ()= . ()i ij ijM x c C x

14: end for

15: return stronger classifier =1

=1

()
()=

n

i i ii
n

i ii

F M d
M d

F







During the test phase, our method will consider only those sources where the information
about the test cases is available and then obtain a weighted ensemble model out of
those sources. In other words, there will be no imputation performed in the sources that
do not have information about that particular gene. The final outcome is calculated as

follows: =1

=1

()
()=

n

i i ii
n

i ii

F M d
M d

F







 where Fi is the evaluation metric (such as accuracy or

F-measure) that is being measured for the strong boosted classifier Mi and d is the test gene.

 Predicting gene functions from multiple biological sources 195

3.2.1 Advantages of the proposed framework

For integrating multiple sources, there had been a lot of research works in developing
new kernel-based methods. Our approach has the following advantages compared to the
kernel-based fusion methods.

1 Modularity: It can efficiently handle dynamic sources because of our modular
approach. It is flexible in terms of adding/removing/updating data sources. We will
perform the local modelling only on the modified data source without modifying the
features obtained from any other source. Only the second level classifier built will
have to be retrained. This is a big advantage over the kernel-based fusion techniques
(Varma and Babu, 2009) where the system has to be retrained completely when one
particular source is modified since the kernel matrix has to be recomputed again.
This a tedious task in many practical applications where the data sources change
constantly. One can also potentially use hierarchical models in combination of these
ensemble methods (Reddy and Park, 2011; Alaydie et al., 2010).

2 Scalability: Kernel methods obtain the composite kernel by optimising using semi-
definite programming which is a computationally expensive and hence, it is not a
viable solution for large scale problems. Though there had been some works on
efficiently optimising kernels for large-scale problems (Sonnenburg et al., 2006;
Zien and Ong, 2007), domain experts hesitate to use such complicated methods
when simpler and more interpretable methods can be used. Hence, there is a
huge gap between making the theoretical research being made available to the
practitioners. Our approach can conveniently build upon some of the existing tools
that the practitioners are already using and achieve the final goal in faster time and is
easily parallelisable (Palit and Reddy, 2012).

3 Robustness to partial information: For handling partial information, the imputation-
based methods follow an indirect two step approach by first imputing the values and
then building models thus propagating any errors accumulated during the imputation
phase to the next phase. Our approach is a direct method where we build models
without imputation and build models directly from the data available to us.

4 Interpretability: Quite often, the domain experts would like to know the impact of
some of the data sources for the performance of integrated model.

4 Experimental setup

In this section, we will first describe the various datasets that were used in our
experiments. We will also discuss the experimental setup for evaluating the proposed
framework.

4.1 Datasets

In order to evaluate the effectiveness of the proposed integration framework, we used
the genes from S. cerevisiae (yeast) for which information is available from different

 196 C.K. Reddy and M.S. Aziz

sources. We have chosen S. cerevisiae because it is the most widely studied model
organism for which vast amounts of bio-molecular data are available (Rhee et al., 2008).
We have used the following six bio-molecular datasets to evaluate the proposed gene
function prediction methodology:

1 BioGRID: The source of this protein–protein interaction data is BioGRID database
(Stark et al., 2006) that collects PPI data from both high-throughput studies and
conventional focused studies. BioGRID houses high-throughput two-hybrid, mass
spectrometric protein interaction data and synthetic lethal genetic interactions
obtained from synthetic genetic array and molecular barcode methods, as well as a
vast collection of thoroughly validated physical and genetic interactions from the
literature. It is binary data which represents the presence or absence of protein–
protein interactions.

2 Sequence: The pair-wise similarity data from the Smith-Waterman algorithm
represents homological functional relations that exist between genes belonging to the
same functional classes. Each data value computed from the Smith-Waterman log-E
values between a pair of yeast sequences that express the pair-wise similarities
between the genes.

3 DomainBinary: DomainBinary consists of protein family data (Finn et al., 2008).
The basic idea of using such information is the tight connection between the protein
structure and its ability to perform a particular biological task. Proteins comprise of
structured regions usually referred to as domains joined by unstructured regions
named loops which can be a potential source of information about the functional role
of a gene. Each specific domain constituting a protein is reposed to the realisation of
a specific task (either structural or biochemical) and thus the presence of particular
kind of domain in the protein structure could be of vital importance in the prediction
of its function. For each gene product, the presence or absence of 4950 protein
domains obtained from the DomainBinary database is stored as a binary vector.

4 DomainLogE: DomainLogE is also processed from the previous data source. The E-
value assigned to each gene product is computed from a collection of profile-HMMs,
each of which is trained on a specific domain family. The E-values are obtained from
the HMMR software toolkit (can be obtained from http://hmmer.janelia.org).

5 Gasch: Gasch gene expression dataset is generated by merging the experiments of
Spellman (gene expression measures relative to 77 conditions) (Spellman et al.,
1998) with the transcriptional responses of yeast to environmental stress (173
conditions) by Gasch (Gasch et al., 2000).

6 STRING: This is also a protein–protein interaction data that is collected from a
different source named STRING (von Mering et al., 2003). It contains binary PPI
data from yeast two-hybrid assay, mass-spectrometry of purified complexes,
correlated mRNA expression and genetic interactions.

From Tables 2 and 3, we can observe that there are many uncommon genes along with
only 1901 common genes (genes that are present in all the six data sources). In Table 3,

 Predicting gene functions from multiple biological sources 197

the column labelled ‘Total’ indicates the number of genes that are available in only few
datasets. In other words, the first row in Table 3 indicates the total number of genes that
are available in one and only one dataset (105) and which dataset they are present
(BioGRID-66 and Gasch-39). Table 3 provides a complete distribution of the information
available about the genes across all the datasets. One can also see information about
636 genes is available in only two datasets (632 from BioGRID, 634 from Gasch and
six from STRING).

Table 2 Six bio-molecular datasets used in our experiments

Data source No. of samples No. of features

BioGRID 4531 5367

Sequence 3527 6349

DomainBinary 3529 5724

DomainLogE 3529 4950

Gash 4524 250

STRING 2338 2559

Table 3 The distribution of genes across the six bio-molecular datasets used in this paper

In dataset Total BioGRID Sequence DomainBinary DomainLogE Gasch STRING

1 105 66 0 0 0 39 0

2 636 632 0 0 0 634 6

3 401 395 5 6 6 397 394

4 118 57 118 118 118 61 0

5 1504 1480 1503 1504 1504 1492 37

6 1901 1901 1901 1901 1901 1901 1901

Total 4665 4531 3527 3529 3529 4524 2338

4.2 Functional annotations

We used functional annotations collected from the Functional Catalogue (FunCat)
database (Ruepp et al., 2004) to associate each of the genes in the six aforementioned
datasets to a functional class. We have chosen FunCat since it consists of annotations
primarily based on experimental evidence, which allows us to minimise the impact of
non-experimental functional annotations (Re and Valentini, 2010). The Functional
Catalogue comprises of hierarchically structured controlled vocabulary of functional
categories in a forest like structure and was originally developed to describe yeast
functional processes. In order to reduce the number of candidate classes and to
quantitatively compare the results of other methods proposed in the literature, we
considered the first level (that is the most general and wide functional classes of the
overall taxonomy) of classes that are represented by at least 20 genes. The 15 classes
chosen for our experiments are shown in Table 4. The numbers that preceded the
functional classes are the numbers from the FunCat annotations.

 198 C.K. Reddy and M.S. Aziz

Table 4 Functional classes that contain significant number of genes

FunCat No. Functionality

1 METABOLISM

2 ENERGY

10 CELL CYCLE & DNA PROCESSING

11 TRANSCRIPTION

12 PROTEIN SYNTHESIS

14 PROTEIN FATE (folding, modification)

16 PROTEIN WITH BINDING FUNCTION OR COFACTOR REQUIREMENT

18 REGULATION OF METABOLISM & PROTEIN FUNCTION

20 CELLULAR TRANSPORT & TRANSPORT ROUTES

30 CELLULAR COMMUNICATION/SIGNAL TRANSDUCTION
MECHANISM

32 CELL RESCUE, DEFENSE & VIRULENCE

34 INTERACTION WITH THE ENVIRONMENT

40 CELL FATE

42 BIOGENESYS OF CELLULAR COMPONENTS

43 CELL TYPE DIFFERENTIATION

5 Results and discussion

First, we identified 1901 genes that are common across all the datasets and the rest of the
2764 other genes that are present in only fewer datasets (see Table 3). We performed
threefold cross-validation for reporting our results on the test data. We randomly divided
both the common and uncommon genes into three folds. The combination of two folds is
used for training and the rest for testing. To get the combined result, one fold of the
common genes is merged with one fold of the uncommon genes to make one fold of the
combined gene set. Because of the class imbalance problem, the models often produce
poor result for F-measure for the target class. To tackle the class imbalance issue, we
pre-processed the training data before the training process to undersample the majority
classes and oversample the minority class using Synthetic Minority Oversampling
TEchnique (SMOTE) (Chawla et al., 2002).

While working with the kernel fusion methods, we used the same fold generated for
the heterogeneous boosting. For UMI, we first imputed the missing feature values and
then generated complete kernel matrices for different datasets. For the other two
methods, we imputed the kernel matrix to obtain a complete kernel matrix. In either case,
we have a set of full kernel matrices. To get the integrated kernel matrix we computed:
(a) simple summation of those kernel matrices and (b) weighted summation of
those kernel matrices based on the individual accuracy in corresponding datasets. We
performed two separate sets of experiments for the common genes and the uncommon
genes. Here, we discuss the results of these experiments separately.

 Predicting gene functions from multiple biological sources 199

5.1 Integration results with common genes

While choosing the classification methods as base learners, we used four state-of-the-art
machine learning methods: SVM, Naive Bayes, Decision Tree and Adaboost (with
decision stumps). We identified 1901 genes that are common across all the six sources.
While choosing the base learners, we used threefold cross-validation where each fold was
generated using stratified random sampling. In this manner, for each of the 1901 genes
we generated 24 decisions (four classifiers for each of the six datasets) and obtained
24*16 base models. It should be noted that not only identifying the true functional
category for a gene is important but also identifying if a gene does not belong to any
functional category is critical. If a gene can confidently be identified as not belonging to
a functional class, it will lead to a lot of savings in terms of further experimental
investigation in many cases. Since it is also vital to quantify the performance on the
prediction of the genes that belong to a functional category, we calculated the F-measure
for evaluating and comparing the performance of different algorithms.

We observed that SVM performs better than the other classifiers in many cases. For
SWsequence and Gasch datasets, SVM is outperformed by other methods like Adaboost
(or in some cases NaiveBayes). This lead to the conclusion that due to the nature of the
datasets and the properties of the base classifiers, different classifiers may perform well
on different datasets. However, it is also observed that, though the classification accuracy
varies between different functional categories, the performance of the base classifiers that
work well on particular datasets does not vary significantly for different functional
categories. This also suggests that it is the property of the dataset and the classifier that
determines the effectiveness of the corresponding classifiers.

The ensemble that uses six SVMs as base classifiers performs better than the
individual SVM classifier. We also observed a similar result for the ensembles that uses
decision tree, NaiveBayes and Adaboost as base classifiers. This lead to the conclusion
that ensemble can improve the performance to a certain extent. This outcome can be
validated by the fact that these ensembles contain diversity by using different datasets
and hence, the base classifiers used are diverse. However, since no base classifier of a
particular type consistently outperformed all other types in all datasets; it is fair to
assume that the performance variations of the base classifiers that we observe are
primarily due to the property of the base classifier and the nature of the datasets. So,
additional experiments were performed to choose the best base classifier for each of the
datasets and an ensemble was built from those classifiers. This result is shown in Figure
1 along with the comparison with other majority voting approaches. Since we have
already seen that the ensemble classifiers perform better than the corresponding
classifiers, Figure 1 only reports the performance of the ensemble classifiers. One
can observe that the ensemble from the best of the pools does not consistently outperform
the other classifiers. In Figure 1, we compared all the aforementioned ensemble
classifiers with our newly proposed decision boosting classifier. The proposed approach
consistently outperforms the other ensemble classifiers and all the base classifiers. One of
the possible reason for such performance improvement is because of the way the
ensemble base classifiers are constructed and our proposed decision boosting method
ensures the kind of dataset diversity that is needed for better performance. We compared
our decision boosting approach for F-measure (see Table 5) with other ensemble

 200 C.K. Reddy and M.S. Aziz

techniques proposed by Re and Valentini (2010) for all the functional categories and
depicted the superiority of the proposed DecBoost method (see Figure 2). Table 6
summarises the Win-Tie-Loss statistics. We observe that our approach consistently
outperforms the decision templates.

Figure 1 Comparison of accuracy for different functional classes between different majority
voting techniques and the proposed DecBoost (see online version for colours)

Figure 2 Comparison of F-measure values using different ensemble techniques and the proposed
decision boosting for several FunCat classes (see online version for colours)

 Predicting gene functions from multiple biological sources 201

Table 5 Comparison of decision boosting to the other ensemble methods for different
functional classes

FunCat class Ensemblebin Ensemblelog EnsembleDT DecBoost

1 0.7835 0.786 0.7845 0.792

2 0.2857 0.3125 0.4324 0.576

10 0.5887 0.5887 0.6666 0.705

11 0.5673 0.5673 0.6722 0.715

12 0.6814 0.6412 0.6715 0.758

14 0.6776 0.6581 0.6846 0.66

16 0.5217 0.4978 0.5543 0.59

18 0.2424 0.2424 0.3333 0.365

20 0.5828 0.5212 0.5465 0.686

30 0.2285 0.2352 0.5769 0.475

32 0.1842 0.1351 0.25 0.322

34 0.1764 0.1764 0.4509 0.391

40 0.1304 0.1304 0.3409 0.434

42 0.4736 0.3333 0.5279 0.594

43 0.3956 0.3414 0.46 0.49

AVG 0.4347 0.4111 0.5302 0.5702

Table 6 Win-tie-loss statistics for various ensemble methods

 EnsembleDT Ensemblelin Ensemblelog

DecBoost 12-0-3 14-0-1 15-0-0

EnsembleDT – 13-0-2 14-0-1

Ensemblelin – – 7-5-3

We compared our method with late integration methods like Ensemble linear, Ensemble
logarithmic, Ensemble Decision Templates as well as the early integration methods like
VSI and Kernel Fusion (see Table 7). We observe that late integration generally
outperformed the early integration methods and among the late integration methods, the
proposed DecBoost algorithm consistently outperformed other state-of-the-art methods
discussed earlier.

Table 7 Comparison of the proposed decision boosting method with different integration
techniques proposed in the literature

Metric VSI KF Ensemblelog EnsembleDT DecBoost

F-measure 0.3213 0.3782 0.4111 0.5302 0.5702

Recall 0.226 0.3039 0.2974 0.4446 0.4634

Precision 0.653 0.6293 0.8443 0.7034 0.756

 202 C.K. Reddy and M.S. Aziz

5.2 Integration results with all genes

Table 8 shows the results of different boosting methods on common and uncommon
genes. We observe that DecBoost using common genes performs well on the common
set of genes. However, for the uncommon genes, if we take only part of the model
that can be fit with the particular genes, the results are not impressive. Using
HeteroBoost, we observe the improvement of using all the genes during the training
process on the uncommon genes. For the common genes, this model in some cases is
outperformed by the common ensembles. Finally, we observe that using the modified
weighting criterion which emphasised the importance for uncommon genes more than the
common genes gives performance improvement for the uncommon genes as well as the
overall improvement.

Table 8 Comparison of F-measure values in the presence of all the genes using heterogeneous
boosting, decision boosting and boosting with only the common genes

Functional class
Common genes Uncommon genes Overall results

ECG EAG HBOOST ECG EAG HBOOST ECG EAG HBOOST

Metabolism 0.781 0.779 0.771 0.651 0.735 0.771 0.707 0.756 0.771

Energy 0.632 0.624 0.612 0.478 0.608 0.631 0.534 0.613 0.621

Transcription 0.712 0.690 0.673 0.609 0.683 0.721 0.653 0.687 0.695

Protein Synthesis 0.722 0.692 0.675 0.613 0.685 0.732 0.673 0.689 0.715

Protein Fate 0.691 0.688 0.683 0.591 0.638 0.706 0.654 0.664 0.699

Protein with
Binding Function 0.619 0.622 0.631 0.509 0.601 0.651 0.559 0.613 0.645

Regulation of
Metabolism 0.407 0.445 0.443 0.391 0.403 0.441 0.399 0.425 0.443

Cellular
Transport 0.702 0.690 0.676 0.609 0.653 0.732 0.657 0.667 0.715

Cellular
Communication/
Signal

0.515 0.520 0.503 0.410 0.453 0.551 0.456 0.487 0.535

Average 0.642 0.639 0.630 0.540 0.607 0.660 0.588 0.622 0.649

Notes: ECG: ensemble with common genes; EAG: ensemble with all genes; HBOOST:
the proposed HeteroBoost method.

We also compared our heterogeneous boosting algorithm with kernel fusion methods
with different imputation schemes to make it work for all genes (Tables 9 and 10). Table 10
shows accuracy values of the proposed method in comparison to different Kernel fusion
methods. F-measure is a more appropriate metric than accuracy in this problem because
it is more important to correctly associate the genes with a particular functional class than
correctly detecting that the gene is not associated with other function class. In the
previous section, we can observe that the kernel fusion method is outperformed by the
ensemble techniques (Table 7) based on F-measure criteria. Table 9 shows that using the
information of all genes using different imputation schemes improves the overall
performance of the kernel fusion methods. However, despite such improvements, the
result of kernel fusion methods with imputation is still inferior to our proposed
heterogeneous boosting method. By the use of smoting on the training data, which is

 Predicting gene functions from multiple biological sources 203

easily applicable and natural fits the boosting methods, the result of heterogeneous
boosting significantly outperformed the kernel fusion method. It should be noted that, for
different kernel imputation methods we do not see any consistent performance. On the
other hand, the proposed heterogeneous boosting method consistently outperforms the
kernel fusion methods. Since we do not see any significant and consistent difference in
the performance between simple summation and weighted summation schemes, in Table
10 we only reported the weighted summation.

Table 9 Comparison of F-measure values for the proposed heterogeneous boosting method
and different kernel fusion approaches

 Kernel fusion UMI Kernel fusion WSI Kernel fusion NNI Ensemble

Functional
class Simple Weighted Simple Weighted Simple Weighted HBOOST

Metabolism 0.534 0.531 0.565 0.572 0.557 0.563 0.771

Energy 0.467 0.472 0.437 0.442 0.509 0.515 0.621

Transcription 0.473 0.482 0.422 0.418 0.495 0.467 0.695

Protein
synthesis 0.515 0.509 0.519 0.523 0.607 0.593 0.715

Protein fate 0.509 0.513 0.515 0.509 0.544 0.567 0.699

Table 10 Comparison of accuracy values for the proposed heterogeneous boosting method and
different kernel fusion approaches

Functional Class Kernel Fusion UMI Kernel Fusion WSI Kernel Fusion NNI HBOOST

Metabolism 0.783 0.789 0.773 0.783

Energy 0.771 0.783 0.783 0.819

Transcription 0.735 0.752 0.743 0.778

Protein Synthesis 0.756 0.752 0.743 0.793

Protein Fate 0.718 0.710 0.721 0.759

6 Conclusion

The availability of different sources of information on the same set of genes created new
opportunities as well as challenges for the task of functional classification. Significant
research efforts for robust integration of such abundant biological sources of information
is being pursued at a rapid pace. For the task of functional classification of genes,
integrating different sources at an early stage without the use of class information will
provide significantly inferior result compared to those obtained from combining the
decisions from multiple sources. In this paper, we developed a new method to combine
the decisions of different classifiers in the individual dataset. Our study shows that
different classifiers work well on different sources and their corresponding classification
models have shown superior performance compared to individual classifiers. Our study
also shows that boosting the decisions made from individual sources can obtain robust
results on predicting gene functions. Furthermore, we proposed a novel integration
framework based on re-weighting the uncommon genes helped in accurately predicting

 204 C.K. Reddy and M.S. Aziz

the overall functional classification. The proposed heterogeneous boosting method
outperformed the standard kernel fusion-based approaches for integrating multiple
sources in the presence of partial information in the context of gene function prediction.

Acknowledgements

This work was supported in part by the US National Science Foundation grants IIS-
1231742 and IIS-1242304.

References

Alaydie, N., Reddy, C.K. and Fotouhi, F. (2010) ‘Hierarchical boosting for gene function
prediction’, Proceedings of the 9th International Conference on Computational Systems
Bioinformatics (CSB), Stanford, CA, USA, pp.14–25.

Aziz, M.S. and Reddy, C.K. (2010) ‘Robust prediction from multiple heterogeneous data sources
with partial information’, Proceedings of the 19th ACM International Conference on
Information and Knowledge Management, 26–30 October, Toronto, Ontario, Canada,
pp.1857–1860.

Caruana, R. and Niculescu-Mizil, A. (2004) ‘Data mining in metric space: an empirical analysis of
supervised learning performance criteria’, Proceedings of the 10th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 22–25 August, Seattle,
Washington, USA, pp.69–78.

Chawla, N., Bowyer, K., Hall, L. and Kegelmeyer, W. (2002) ‘Smote: synthetic minority over-
sampling technique’, Journal of Artificial Intelligence Research, Vol. 16, pp.321–357.

Chechik, G., Heitz, G., Elidan, G., Abbeel, P. and Koller, D. (2008) ‘Max-margin classification of
data with absent features’, Journal of Machine Learning Research, Vol. 9, pp.1–21.

des Jardins, M., Karp, P., Krummenacker, M., Lee, T. and Ouzounis, C. (1997) ‘Prediction of
enzyme classification from protein sequence without the use of sequence similarity’,
Proceedings of the 5th International Conference on Intelligent Systems for Molecular Biology,
21–26 June, Halkidki, Gteece, pp.92–99.

Dietterich, T.G. (2000) ‘Ensemble methods in machine learning’, MCS ‘00: Proceedings of the
1st International Workshop on Multiple Classifier Systems, 13–15 June, Seaside, CA, USA,
pp.1–15.

Finn, R., Tate, J., Mistry, J., Coggill, P., Sammut, J., Hotz, H., Ceric, G., Forslund, K., Eddy, S.,
Sonnhammer, E. and Bateman, A. (2008) ‘The Pfam protein families database’, Nucleic Acids
Research, Vol. 36, No. 281–288.

Freund, Y. and Schapire, R.E. (1996) ‘Experiments with a new boosting algorithm’, International
Conference on Machine Learning, 3–6 Juky, Bari, Italy, pp.148–156.

Freund, Y. and Schapire, R.E. (1997) ‘A decision-theoretic generalization of online learning and
an application to boosting’, Journal of Computer Systems and Sciences, Vol. 55, No. 1,
pp.119–139.

Gasch, A.P., Spellman, P., Kao, C., Carmel-Harel, H., Eisen, M., Storz, G., Botstein, D. and
Brown, P. (2000) ‘Genomic expression programs in the response of yeast cells to
environmental changes’, Molecular Biology of the Cell, Vol. 11, No. 12, pp.4241–4257.

Graepel, T. (2002) ‘Kernel matrix completion by semidefinite programming’, Proceedings of the
International Conference on Artificial Neural Networks, 28–30 August, Madrid, Spain,
pp.694–699.

Karaoz, U., Murali, T., Letovsky, S., Zheng, Y., Ding, C., Cantor, C. and Kasif, S. (2004) ‘Whole-
genome annotation by using evidence integration in functional linkage networks’,
Proceedings of the National Academy of Sciences USA, Vol. 101, No. 9, pp.2888–2893.

 Predicting gene functions from multiple biological sources 205

Kittler, J., Hatef, M., Duin, R. and Matas, J. (1998) ‘On combining classifiers’, IEEE Transactions
on Pattern Analysis and Machine Intelligence, Vol. 20, No. 3, pp.226–239.

Krishnaraj, Y. and Reddy, C.K. (2008) ‘Boosting methods for protein fold recognition: an
empirical comparison’, IEEE International Conference on Bioinformatics and Biomedicine,
BIBM’08, 3–5 November, Philadelphia, PA, USA, pp.393–396.

Kuncheva, L., Bezdek, J. and Duin, R. (2001) ‘Decision templates for multiple classifier fusion: an
experimental comparison’, Pattern Recognition, Vol. 34, No. 2, pp.299–314.

Kuncheva, L. and Whitaker, C. (2003) ‘Measures of diversity in classifier ensembles’, Machine
Learning, Vol. 51, No. 2, pp.181–207.

Lanckriet, G., De Bie, T., Cristianini, N., Jordan, M. and Noble, W. (2004) ‘A statistical
framework for genomic data fusion’, Bioinformatics, Vol. 20, No. 16, pp.2626–2635.

Little, R.J.A. and Rubin, D.B. (2002) Statistical Analysis with Missing Data, Wiley Series in
Probability and Statistics, Wiley.

Palit, I. and Reddy, C.K. (2012) ‘Scalable and parallel boosting with mapreduce’, IEEE
Transactions on Knowledge and Data Engineering, Vol. 24, No. 10, pp.1904–1916.

Polikar, R. (2006) ‘Ensemble based systems in decision making’, IEEE Circuits and Systems
Magazine, Vol. 6, No. 3, pp.21–45.

Re, M. and Valentini, G. (2010) ‘Integration of heterogeneous data sources for gene function
prediction using decision templates and ensembles of learning machines’, Neurocomputing,
Vol. 73, Nos. 7–9, pp.1533–1537.

Reddy, C.K. and Park, J-H. (2011) ‘Multi-resolution boosting for classification and regression
problems’, Knowledge and Information Systems, Vol. 29, No. 2, pp.435–456.

Rhee, S., Wood, V., Dolinski, K. and Draghici, S. (2008) ‘Use and misuse of the gene ontology
annotations’, Nature Review Genetics, Vol. 9, No. 7, pp.509–515.

Roli, F., Giacinto, G. and Gianni, V. (2001) ‘Methods for designing multiple classifier systems’,
Proceedings of the 2nd International Workshop on Multiple Classifier Systems, MCS’01,
2–4 July, Cambridge, UK, pp.78–87.

Ruepp, A., Zollner, A.and Maier, D., Albermann, K., Hani, J., Mokrejs, M., Tetko, I., Guldener,
U., Mannhaupt, G., Munsterkotter, M. and Mewes, H. (2004) ‘The funcat, a functional
annotation scheme for systematic classification of proteins from whole genomes’, Nucleic
Acids Research, Vol. 32, No. 18, pp.5539–5545.

Sharpe, P.K. and Solly, R.J. (1995) ‘Dealing with missing values in neural network-based
diagnostic systems’, Neural Computing and Applications, Vol. 3, No. 2, pp.73–77.

Smola, A.J., Vishwanathan, S.V.N. and Hofmann, T. (2005) ‘Kernel methods for missing
variables’, Proceedings of International Workshop on Artificial Intelligence and Statistics,
6–8 January, Barbados, pp.325–332.

Sonnenburg, S., Rätsch, G., Schäfer, C. and Schölkopf, B. (2006) ‘Large scale multiple kernel
learning’, Journal of Machine Learning Research, Vol. 7, pp.1531–1565.

Spellman, P., Sherlock, G., Zhang, M., Iyer, V., Anders, K., Eisen, M., Brown, P., Botstein, D. and
Futcher, B. (1998) ‘Comprehensive identification of cell cycle-regulated genes of the yeast
saccharomices cerevisiae by microarray hybridization’, Molecular Biology of the Cell, Vol. 9,
No. 12, pp.3273–3297.

Stark, C., Breitkreutz, B., Reguly, T., Boucher, L., Breitkreutz, A. and Tyers, M. (2006) ‘Biogrid: a
general repository for interaction datasets’, Nucleic Acids Research, Vol. 34, pp.535–539.

Varma, M. and Babu, B.R. (2009) ‘More generality in efficient multiple kernel learning’,
ICML‘09: Proceedings of the 26th Annual International Conference on Machine Learning,
14–18 June, Montreal, Quebec, Canada, pp.1065–1072.

von Mering, C., Huynen, M., Jaeggi, D., Schmidt, S. and and B. Snel, P.B.P. (2003) ‘String:
a database of predicted functional associations between proteins’, Nucleic Acids Research,
Vol. 31, No. 1, pp.258–261.

 206 C.K. Reddy and M.S. Aziz

Williams, D. and Carin, L. (2005) ‘Analytical kernel matrix completion with incomplete multi-
view data’, ICML Workshop on Learning with Multiple Views, 7–11 August, Bonn, Germany,
pp.80–86.

Zhao, X., Chen, L. and Aihara, K. (2008) ‘Protein function prediction with the shortest path in
functional linkage graph and boosting’, International Journal of Bioinformatics Research and
Application, Vol. 4, No. 4, pp.375–384.

Zien, A. and Ong, C.S. (2007) ‘Multiclass multiple kernel learning’, ICML’07: Proceedings of the
24th international conference on Machine learning, 20–24 June, Corvallis, OR, USA,
spp.1191–1198.

