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Abstract: The functional classification of genes plays a vital role in molecular 
biology. Detecting previously unknown role of genes and their products in 
physiological and pathological processes is an important and challenging 
problem. In this work, information from several biological sources such as 
comparative genome sequences, gene expression and protein interactions are 
combined to obtain robust results on predicting gene functions. The 
information in such heterogeneous sources is often incomplete and hence 
making the maximum use of all the available information is a challenging 
problem. We propose an algorithm that improves the performance of prediction 
of different models built on individual sources. We also develop a 
heterogeneous boosting framework that uses all the available information even 
if some sources do not provide any information about some of the genes. We 
demonstrate the superior performance of the proposed methods in terms of 
accuracy and F-measure compared to several imputation and integration 
schemes. 
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This paper is a revised and expanded version of a paper entitled ‘Robust 
prediction from multiple heterogeneous data sources with partial information’ 
presented at the ‘18th ACM Conference on Information and Knowledge 
Management (CIKM)’, Toronto, Canada, October 2010. 

 

1 Introduction 

In the field of functional genomics, the functional classification of genes that are 
unannotated and improving the existing gene functional annotation catalogs is an 
important and challenging problem. Due to its ability to detect previously unknown role 
of genes and their products in physiological and pathological processes, functional 
classification plays a vital role in molecular biology (Re and Valentini, 2010). 
Nevertheless, the development of an automatic model for such a classification task is still 
limited by the intrinsic difficulty of the task and lack of a reliable mechanism that can 
effectively leverage partial sources of information. However, researchers from different 
domains are extracting some task specific information for the same model organism and 
its genes. This lead to the availability of different types of biomolecular data, ranging 
from expression profiles to phylogenetic gene-specific evolution rates and many others. 
Such vast amounts of data can, in principle, provide useful information for the automated 
assessment of the functional role of genes. The extent to which the presence of a specific 
type of experimental data could improve the classification performance significantly 
varies for specific gene and the particular biomolecular process under investigation. 
Though the availability of multiple sources have a tremendous potential for improving 
the performance of functional classification, it also poses some challenges which include 
heterogeneous non-compatible features and unavailability of information for all the genes 
in different datasets. In this paper, we primarily focus on improving the performance on 
the functional classification by utilising multiple sources of information about a set of 
genes. 

Recently, a systematic evaluation of classification performance using different 
combination rules suitable to merge the output of gene function classifiers trained on 
different data sources is presented (Re and Valentini, 2010). Due to the heterogeneous 
nature of different data sources, it is possible that different types of classification models 
may perform better on different datasets. In this work, we build ensemble models to 
combine the information from different sources and evaluate the performance of such 
ensemble models. The intuition behind combining the predictions of different classifier 
comes from the fact that different base classifier may perform better for different 
samples. Combining the final decisions of a number of classifiers can obtain a strong 
classification model that (on an average) performs well for most of the genes. 

The availability of multiple sources of information have a tremendous potential  
for improving the performance of functional classification. Though the integration 
approaches discussed above demonstrate good potential to produce a robust model, they 
suffer from one limitation. They can be only applied to the common genes that are 
available across all the sources. One of the key challenges in this domain is that many 
sources contain only partial information and one can rarely see all the information 
available in a given source. Some of the sources potentially consist of information about  
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certain genes that is not available in some of the other sources. Using only the common 
information implies that we are not using all the available information which might be 
vital for building a better prediction model. Furthermore, when the prediction model is 
used on a particular test case, it is unlikely that the testing gene will have information for 
all the sources. In such cases, the prediction model generated from a model built on 
common set of genes will be suboptimal. Thus, the need for a general framework which 
can use all the available information and also capable of making prediction for the test 
case for which not all the information is available is required. This motivated us to build 
a generalised framework for the integrated predictive modelling in the presence of 
uncommon data objects. Though some kernel-based methods try to handle this problem 
via imputation at the early stage, a systematic and generalised framework which exploits 
the partial information that is available in multiple sources in a better manner is not 
available in the literature. This is precisely the main objective of the work that is being 
proposed in this paper. Generally, in such cases, only the common samples are taken for 
the study thereby leading to a significant loss of potential information during integration. 
There are some works that impute the data to make it complete and then using the 
complete datasets for further integration process (Williams and Carin, 2005). These 
works typically make a few reasonable assumptions and integrate the information 
analytically calculating the kernel matrix from incomplete data. In case of very few 
missing elements, semi-definite programming can be used to complete the kernel matrix 
(Graepel, 2002). In this paper, we develop a new approach to solve this problem of 
integration from multiple sources in the presence of only a portion of samples that are 
common across all the sources. In other words, majority of the samples are available only 
in fewer sources. Here, we refer to a data point as ‘uncommon’ when it is not available in 
all the sources. 

The rest of the paper is organised as follows: Section 2 describes some of the related 
works related to our problem. Section 3 describes proposed algorithms for dealing with a 
set of common genes and with partial information. Section 4 discusses the experimental 
setup and explains the sources from which different datasets were extracted. The  
results of the functional classification task are given in Section 5 and finally, Section 6 
concludes our discussion. 

2 Related background 

2.1 Notations used 

Table 1 gives the notations used in this paper. 

2.2 Types of data integration 

Three basic approaches for data integration for the task of class prediction have been 
proposed in the literature:   

1 Early integration: Methods such as Vector Space Integration (VSI), which basically 
integrate all the data sources into a single data file and predict classes with all the 
features available. Early integration produces a single, potentially more informative 
dataset which can then be used for the prediction task (des Jardins et al., 1997). 
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Other such methods were based on modelling networks of functional relationships 
between proteins where graphical models provide a probabilistic framework for data 
integration (Karaoz et al., 2004). 

2 Intermediate integration: which is typically based on Kernel Fusion (KF) methods. 
The integration is done during the training phase itself. Individual kernels on 
different sources are learned first and the final classifier is built on the composite 
kernel that is built after combining the individual ones (Lanckriet et al., 2004). To 
exploit the heterogeneity of the data, weighted functional linkage graph is generated 
using different sources of information (Zhao et al., 2008). 

3 Late integration: This typically models individual sources and then combines  
the knowledge from these individual models and builds a final classifier (Kuncheva 
et al., 2001; Roli et al., 2001). Methods such as decision templates, different types  
of weighted majority voting using linear or logarithmic weight combination and 
ensemble methods like bagging, boosting and random forests fall into this category 
(Dietterich, 2000; Polikar, 2006; Krishnaraj and Reddy, 2008). The methods that are 
being proposed in this paper fall into this category.  

Table 1 Notations used in this paper 

Notation Description 

N Number of datasets 

m Number of total data points 

Di i-th dataset 

mi Number of data points in Di 

dk k-th data point 

wki Weight of the data point dk for Di 

Cij Weak classifier at j-th iteration for Di 

Mi Strong classifier generated from Di 

 Indicator matrix 

ki Indicator variable for data dk in Di 

i Indicator variable for test data in Di 

cij Weight of the weak classifier Cij 

2.3 Ensemble methods for integration 

Recently, ensembles of classifiers have been gaining a lot of interest because of their 
excellent generalisation performance. The intuition for using the ensemble technique is 
that, if the base classifiers composing the ensemble are diverse, then they are expected to 
make different errors and hence, the ensemble output produced by these classifiers is 
expected to reduce the error through some form of weighted averaging (Kuncheva and 
Whitaker, 2003). 

Weighted majority voting (Kittler et al., 1998): Weighted majority voting is the most 
widely used late integration method because of its inherent simplicity, natural mapping to 
the problem and superior generalisation performance. There are many general and 
problem specific majority voting schemes that can be used for the problem that are 
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addressed in this paper. Let, a trained classifier from i-th dataset and j-th type (any base 
classifier) computes a function k

ijd  for a specific class k such that : [0,1]k
ijd X  . An 

ensemble combines the outputs of T base learners using a suitable combining function g 
to compute the posterior probability k for a given class k.  

11 12( )= ( ( ), ( ),...., ( ))k k k
k Ncx g d x d x d x  (1) 

where N is the number of information sources and c is the number of the base classifiers. 
In this paper, we made the ensemble decision using the different schemes described 
below. Please note that these methods are being used as baseline methods for comparison 
purposes. 

Ensemble linear: In Ensemble Linear, the combined result is generated using a 
weighted combination of the decisions of base classifiers, where the weight of the base 
classifier in the consensus is calculated linearly using the following equation:  

( )= ( ), =k t
k t it t

t t
t

C
x d x where

C
   

 (2) 

where Ct is the accuracy of the t-th base classifier, when optimising for accuracy  
(or F-measure). 

Ensemble logarithmic: Ensemble Logarithm is similar to Ensemble Linear except that 
the weights of the base classifiers are calculated logarithmically as follows:  

 
= , =

 1
t t

t t
t t

t

p ln C
where p ln

p ln C

 


 
 
  

 (3) 

where  is a small constant value which avoids the indeterminate form. 
Ensemble of similar classifiers: Ensemble of similar classifiers is a popular method. 

In this case, the combined decision is produced using the same type of classifiers. i.e. 
SVM ensemble is generated by m base (SVM) classifiers trained on m different datasets. 
The consensus decision is obtained as follows: 

( )= ( )k
ki t it

t

x d x   (4) 

where ki(x) is the i-th Ensemble of similar classifier for the class k. For example, it is 
composed of the i-th model from each dataset. 

Ensemble of the best classifier: The best classification model on different datasets can 
be ensembled to produce a better result compared to the ensemble of similar classifiers. 
The consensus decision in this case is given as follows:  

'( )= ( ), =k
k t ts j j

t

x d x where s argmax    (5) 

where ’s are calculated for the base classifier models for a particular dataset as 
explained earlier. However, in the end, N such classifiers will be chosen when the 
previous normalisation will not hold anymore. ’s are the weights normalised across the 
N best classifiers from these datasets. 
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Decision templates (Kuncheva et al., 2001): Decision template is an approach which 
makes use of all the base classifiers trained on each of the m datasets. The decision 
profile DP(x) for an instance x is a matrix composed by the , [0,1]t jd   elements 

representing the support given by the t-th classifier to class j. Decision templates DTj are 
the averaged decision profiles obtained from Xj, the set of training instances belonging to 
the class j:  

1
= ( )j

x Xj j

DT DP x
X 

  (6) 

The similarity S between the decision template DTj for a class j and the decision profile 
for a given test instance x is:  

2

,
=1 =1

1
( )=1 ( , ) ( )

T C

j j t k
t k

S x D t k d x
T C

      (7) 

and the final decision of the ensemble is calculated by assigning the test instance to the 
class with the largest similarity:  

( )= ( )j jD x argmax S x  (8) 

2.4 Data imputation for partial data 

In the literature, there were only a few attempts that were made on incorporating 
information in the presence of several uncommon data points. Most of the work on 
handling such scenarios is available in the kernel fusion methods where the kernel matrix 
is integrated to combine the information from multiple sources. Most of these methods 
treat this as a missing data problem to calculate the missing features with the help  
of observed features to subsequently compute the kernel matrix. There are few 
propositions that fill the missing entries in the kernel matrix directly. In our study, we 
comprehensively compared the proposed method with the following kernel fusion 
alternatives: 

1 Unconditional mean imputation (UMI): For a data point that is not in a particular 
source, the feature values are imputed with the average of the feature values of the 
points that are present in that source. After getting all the feature values, we 
aggregate the kernel matrix to get a single kernel matrix and use SVM classifier on it 
to make the prediction.  

1
=j j

d dk
d S

f f
S 
  (9) 

where S is the set of data that has the value for feature j-th feature. 

2 Weighted summation imputation (WSI): The feature values for the data are not 
imputed in the source. Rather, for a data point that is missing in a source, the kernel 
matrix entries of that point for this kernel are imputed as a weighted combination of 
the average of the entries of that particular kernel matrix and the average of the 
entries for that samples in other kernel matrices where the gene is present. In our 
experiment, we used 50% weight for both these values. 
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3 Nearest neighbour imputation (NNI): In this method, the kernel matrix entries are 
directly imputed rather than imputing the feature values. First, the kernel matrices 
for the different sources are generated from the genes present in those sources. At 
this juncture, for a gene that is not present in a particular source does not have any 
kernel matrix entry. Using the other sources where the feature values are present for 
that gene, the nearest neighbour is obtained. Then, in the source where that gene was 
missing, the kernel matrix entry of the nearest neighbour is replicated. However, 
there was no entry of the nearest neighbour for the new gene which is filled by the 
current highest entry of the matrix that originally corresponds to the most similar 
genes in the source. 

3 Proposed methods for data integration 

We will now describe the details of the two algorithms that are proposed to handle the 
integration of multiple heterogeneous datasets. The first algorithm, ‘DecBoost’, is 
developed for the case where complete information is available. In other words, the 
information about all the genes are available in all the data sources. For the partial data 
case, we develop ‘HeteroBoost’ which can handle the integration in the presence of 
partial information. In this case, some genes are available in only few data sources and 
hence will not have information from the rest of the data sources. When all the data is 
integrated, the matrix will become incomplete. 

3.1 Decision boosting 

Typically, different classifiers work well on different sources and their corresponding 
classification models show superior performance compared to others (Caruana and 
Niculescu-Mizil, 2004). In this objective, we will build boosting-based integration 
framework for solving the prediction problem in the presence of multiple heterogeneous 
data sources. ‘Heterogeneous’ refers to different types of data stored in different sources 
such as categorical, numerical, string, network data etc. Appropriate features along with 
their similarity measures relevant to the prediction task at hand will be decided before the 
integration step and the data is stored in a matrix format. Our approach falls into the 
category of late integration where we combine the decisions of different classifiers (Aziz 
and Reddy, 2010). After building individual models for each data source, we take the 
decisions made on individual genes and use them as features for the next stage. We will 
then apply boosting method using the new feature representation which is comprised of 
these individual classifiers. Even if strong classifiers are used to build local models for 
individual sources, they are considered to be weak learners for the final classification 
model that is being built in the latent integration space. This is because, most of the 
times these sources are considered to be weak sources of information for the final 
prediction task. 

Such a two-level integration scheme can provide optimal results since the first level 
(local modelling) can produce reliable models for individual sources and the second level 
can produce the most optimal combination of such models. Since there is no single 
classifier model that is optimal for all the datasets, we will use many different classifiers 
for individual sources and create individual features from the decisions (or probabilities) 
of each of the classifiers. In the second level, one can then use a standard classification 
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algorithm (boosting in our case) with this new feature representation. Though some of 
the steps in this process appear to be available in the literature, such an approach has not 
been rigorously investigated in the context of integrating information from multiple 
heterogeneous sources. 

The effectiveness of an ensemble method depends on the diversity of the base 
classifiers being used. In other words, if different base classifiers make error on different 
genes, then the combined result can get rid of some errors and improve the final accuracy 
of the ensemble models. To ensure the improved accuracy when combining models from 
multiple sources, we propose to boost the decisions from these individual sources using 
AdaBoost. The AdaBoost algorithm (Freund and Schapire, 1996) is an efficient, simple 
and easy to manipulate additive modelling technique that can potentially use any 
available weak learner. Boosting algorithms combine weak learning models that are 
slightly better than random models. It is an ensemble method that generates multiple 
classifiers from a base learner and ensembles them for building the best classifier (Freund 
and Schapire, 1997). The basic idea of boosting is to repeatedly apply the weak learner to 
modified versions of the data, thereby producing a sequence of weak classifiers for  
t =1,2,,T, where T denotes predefined number of iterations. Each boosting iteration 
performs the following steps: (a) Fits a weak learner to the weighted training set and (b) 
Computes the error and updates the weights for every data point. The final model 
obtained by boosting algorithm is a linear combination of several weak learning models. 

For a particular gene, we will consider all the decisions from the base classifier 
models as different feature values and construct a vector of these decisions. We improve 
the quality of these decisions by applying a boosting algorithm on such a decision matrix. 
We thus call the proposed algorithm as ‘DecBoost’. In simple terms, we boost the 
decisions made from individual data sources and provide a much robust prediction result. 
The details of the DecBoost are shown in Algorithm 1. It is a modification of AdaBoost 
where the weak learners are the different types of classifiers that are run on various 
sources. It should be noted that this method is effective only when each source contains 
enough information to make a decision about a given gene. 

3.2 Heterogeneous boosting for integration with partial information 

In practice, one can not obtain all the required information about a particular gene from 
all the sources. Often, some sources deliver information about some of the genes whose 
information is not available from other sources. In other words, when all the sources are 
combined, there will be some missing information about certain genes with respect to 
some sources. Most of the current research work in data integration primarily focuses on 
integrating information when all the sources contain the information about a gene. That 
is, for the sake of convenience, researchers primarily deal with common genes that are 
available in all the data sources. In certain cases, utilising only the common information 
will potentially produce inferior prediction result when there are several genes with 
partial information. Some work on handling partial information is available in the kernel 
methods literature (Sharpe and Solly, 1995; Smola et al., 2005; Chechik et al., 2008) 
where the kernel matrix is integrated to combine the information from multiple sources. 
Most of these methods treat it as a missing data problem to calculate the missing features 
with the help of observed features to subsequently compute the kernel matrix (Graepel, 
2002; Williams and Carin, 2005). Though some kernel-based methods can handle this 
problem via imputation at the early stage, they only work well when there is less amount 
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of incomplete data (Little and Rubin, 2002). However, in practice, when several sources 
are being integrated, the amount of information about a particular gene vastly differs and 
we will find significant amount of missing information. In such cases, imputation 
methods do not work well during integration and will yield suboptimal solutions. Most 
importantly, when the prediction model is used on a particular test case, it is unlikely that 
the test case will have information for all the sources. Hence, our idea is to rely only on 
particular sources available for those uncommon genes and thus, give more importance 
(or weight) to that source during the training phase for that particular gene. 

Algorithm 1: DecBoost 

1: Input: Datasets D1,DN with the common data points x1,xN 

2: Output: Final strong classifier h(x)  

3: Procedure: 

4: From each dataset Di, generate M weak classifiers Ci,1,Ci,M. [Generating 
the classifier pool]  

5:  Initialise weight 1,

1
=iw

n
 [Boosting starts here] 

6:  For t = 1T: 

         (a) Find the best classifier Ct from the pool using the weighted error 
criterion ,= ( )t t i t i ii

w C x y   

         (b) Update the weights 1, ,= * . ( )t i t i t t i iw w exp c C x y      where 
(1 )

= t
t

t

c log




 

         (c) Normalise 1,
1,

1,

= t i
t i

t ii

w
w

w





 

7: Return classifier ( )= . ( )t tt
h x c C x  

We propose a heterogeneous boosting-based integration framework that will exploit all 
the available (including partial) information from multiple data sources. To achieve this 
goal, we propose a novel objective criterion which will emphasise the importance of 
genes with partial information compared to the common ones. We will also modify the 
re-weighting scheme in the following manner: if a gene is present in only one source out 
of c sources, the importance of it will be increased by c times while modelling that gene. 
We plan to use weighted classifiers and incorporate the penalty term that takes into 
account the information about the importance of each gene. The increase of weight of the 
misclassified gene will be inversely proportional to the number of datasets that contain 
the information about the gene. The basic intuition here is that the algorithm will give 
more importance to a gene if it is available only in one source compared to one being 
available in many sources. At the end of each boosting iteration, the instances are  
re-weighted in such a way that the misclassified objects get a higher weight so that the 
next weak classifier gives more importance to those objects that were misclassified in the 
previous iteration. 
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In boosting algorithm, a strong classifier is built as a combination of a number of 
weak classifiers, where each classifier is chosen at every iteration if its accuracy is 
greater than 50%. At the end of each iteration, the samples are re-weighted in such a way 
that the misclassified samples get a higher weight so that the next weak classifier shows a 
better performance on those samples that were misclassified in the previous iteration. We 
modified the boosting algorithm to build a strong model out of a dataset using all its data 
points in such a way that increment in all the misclassified samples is not equal. We use 
the term ‘weak classifier’ to refer to the classifier chosen in each iteration during the 
boosting process of a particular dataset, the term ‘strong classifier’ to refer to the 
classifier that is generated out of a Heterogeneous dataset and the term ‘stronger 
classifier’ to refer to the final classifier that is a weighted combination of the strong 
classifiers. 

For getting the stronger classifier from dataset Di, we modify the AdaBoost weight 
updation in such a way that it holds the following two properties: 

 The weight for the misclassified examples is increased.  

 The increase of the weight of the misclassified data point will be inversely 
proportional to the number of datasets that contain the information about the data 
point.  

The basic intuition behind the second criteria is that the algorithm does want to give more 
importance to a data point when it is available only in one source compared to data point 
that is available in many sources. Note that, if it is misclassified in other datasets during 
an iteration, then its weight is increased in that dataset as well. Thus, it is unlikely that a 
data point is neglected in all the strong models thus making the stronger model more 
general and diverse. 

Let  denote an indicator matrix such that ki is 1 if the gene dk is in dataset Di and 0 

otherwise. We define i  as the average number of datasets in which the data from Di is 

present and is calculated as follows: 

( * )
=

ki ki
k i

i
ki

k

 







 


 (10) 

We modify the re-weighting scheme in AdaBoost to follow the two above mentioned 
criteria as follows:  

1 (1 2* )
=1j j

j j

 
 
 

  (11) 

where j is the error rate for that iteration. Hence, the increment amount is 
(1 2* )j

j





 

which is positive since j < 0.5. We varied this increment amount based on the number of 
datasets that the gene is present in:  

(1 2* )
*j i

j ki
i

 
  






 (12) 
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It should be noted that the multiplying factor is defined in such a way that the 
aforementioned two criteria are fulfilled and it retains the property of balancing i.e. the 
product of all the multiplication factors for a dataset is 1. Let mfk denotes the multiplying 
factor of k-th data point, then  

( * )
1

= = * =1
ki ki

i k i
k

k k kki ki ki
i k i

mf
 


  




 
 

 
    

 (13) 

Algorithm 2: HETEROBOOST 

1: Input: Datasets D1,DN, samples d1,dm and the indicator matrix  

2: Output: Final strong classifier M  

3: Procedure: 

4: for i = 1N: 

5:     Initialise weight 
1

=ki
i

w
m

 

6:     for j = 1T: 

7:       (a) ( )ij C H ki kj ij k kkij
C argmin w C d y   

8:       (b) for k = 1m: 

9:         (i) 
(1 2* )

= (1 * )j i
ij

j kii

c log
 

  





 

10:       (ii) = * . ( )ki ki ij ij k kw w exp c C d y    

11:    (c) Normalise weights: k  = ki ki
ki

ki kik

w
w

w




 

12:   end for 

13:   strong classifier ( )= . ( )i ij ijM x c C x  

14: end for 

15: return stronger classifier =1

=1

( )
( )=

n

i i ii
n

i ii

F M d
M d

F







 

During the test phase, our method will consider only those sources where the information 
about the test cases is available and then obtain a weighted ensemble model out of  
those sources. In other words, there will be no imputation performed in the sources that 
do not have information about that particular gene. The final outcome is calculated as 

follows: =1

=1

( )
( )=

n

i i ii
n

i ii

F M d
M d

F







 where Fi is the evaluation metric (such as accuracy or 

F-measure) that is being measured for the strong boosted classifier Mi and d is the test gene. 
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3.2.1 Advantages of the proposed framework 

For integrating multiple sources, there had been a lot of research works in developing 
new kernel-based methods. Our approach has the following advantages compared to the 
kernel-based fusion methods. 

1 Modularity: It can efficiently handle dynamic sources because of our modular 
approach. It is flexible in terms of adding/removing/updating data sources. We will 
perform the local modelling only on the modified data source without modifying the 
features obtained from any other source. Only the second level classifier built will 
have to be retrained. This is a big advantage over the kernel-based fusion techniques 
(Varma and Babu, 2009) where the system has to be retrained completely when one 
particular source is modified since the kernel matrix has to be recomputed again. 
This a tedious task in many practical applications where the data sources change 
constantly. One can also potentially use hierarchical models in combination of these 
ensemble methods (Reddy and Park, 2011; Alaydie et al., 2010). 

2 Scalability: Kernel methods obtain the composite kernel by optimising using semi-
definite programming which is a computationally expensive and hence, it is not a 
viable solution for large scale problems. Though there had been some works on 
efficiently optimising kernels for large-scale problems (Sonnenburg et al., 2006; 
Zien and Ong, 2007), domain experts hesitate to use such complicated methods 
when simpler and more interpretable methods can be used. Hence, there is a  
huge gap between making the theoretical research being made available to the 
practitioners. Our approach can conveniently build upon some of the existing tools 
that the practitioners are already using and achieve the final goal in faster time and is 
easily parallelisable (Palit and Reddy, 2012). 

3 Robustness to partial information: For handling partial information, the imputation-
based methods follow an indirect two step approach by first imputing the values and 
then building models thus propagating any errors accumulated during the imputation 
phase to the next phase. Our approach is a direct method where we build models 
without imputation and build models directly from the data available to us. 

4 Interpretability: Quite often, the domain experts would like to know the impact of 
some of the data sources for the performance of integrated model. 

4 Experimental setup 

In this section, we will first describe the various datasets that were used in our 
experiments. We will also discuss the experimental setup for evaluating the proposed 
framework. 

4.1 Datasets 

In order to evaluate the effectiveness of the proposed integration framework, we used  
the genes from S. cerevisiae (yeast) for which information is available from different  
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sources. We have chosen S. cerevisiae because it is the most widely studied model  
organism for which vast amounts of bio-molecular data are available (Rhee et al., 2008). 
We have used the following six bio-molecular datasets to evaluate the proposed gene 
function prediction methodology: 

1 BioGRID: The source of this protein–protein interaction data is BioGRID database 
(Stark et al., 2006) that collects PPI data from both high-throughput studies and 
conventional focused studies. BioGRID houses high-throughput two-hybrid, mass 
spectrometric protein interaction data and synthetic lethal genetic interactions 
obtained from synthetic genetic array and molecular barcode methods, as well as a 
vast collection of thoroughly validated physical and genetic interactions from the 
literature. It is binary data which represents the presence or absence of protein–
protein interactions. 

2 Sequence: The pair-wise similarity data from the Smith-Waterman algorithm 
represents homological functional relations that exist between genes belonging to the 
same functional classes. Each data value computed from the Smith-Waterman log-E 
values between a pair of yeast sequences that express the pair-wise similarities 
between the genes. 

3 DomainBinary: DomainBinary consists of protein family data (Finn et al., 2008). 
The basic idea of using such information is the tight connection between the protein 
structure and its ability to perform a particular biological task. Proteins comprise of 
structured regions usually referred to as domains joined by unstructured regions 
named loops which can be a potential source of information about the functional role 
of a gene. Each specific domain constituting a protein is reposed to the realisation of 
a specific task (either structural or biochemical) and thus the presence of particular 
kind of domain in the protein structure could be of vital importance in the prediction 
of its function. For each gene product, the presence or absence of 4950 protein 
domains obtained from the DomainBinary database is stored as a binary vector. 

4 DomainLogE: DomainLogE is also processed from the previous data source. The E-
value assigned to each gene product is computed from a collection of profile-HMMs, 
each of which is trained on a specific domain family. The E-values are obtained from 
the HMMR software toolkit (can be obtained from http://hmmer.janelia.org). 

5 Gasch: Gasch gene expression dataset is generated by merging the experiments of 
Spellman (gene expression measures relative to 77 conditions) (Spellman et al., 
1998) with the transcriptional responses of yeast to environmental stress (173 
conditions) by Gasch (Gasch et al., 2000). 

6 STRING: This is also a protein–protein interaction data that is collected from a 
different source named STRING (von Mering et al., 2003). It contains binary PPI 
data from yeast two-hybrid assay, mass-spectrometry of purified complexes, 
correlated mRNA expression and genetic interactions. 

From Tables 2 and 3, we can observe that there are many uncommon genes along with 
only 1901 common genes (genes that are present in all the six data sources). In Table 3,  
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the column labelled ‘Total’ indicates the number of genes that are available in only few 
datasets. In other words, the first row in Table 3 indicates the total number of genes that 
are available in one and only one dataset (105) and which dataset they are present 
(BioGRID-66 and Gasch-39). Table 3 provides a complete distribution of the information 
available about the genes across all the datasets. One can also see information about  
636 genes is available in only two datasets (632 from BioGRID, 634 from Gasch and  
six from STRING). 

Table 2 Six bio-molecular datasets used in our experiments 

Data source No. of samples No. of features 

BioGRID 4531 5367 

Sequence 3527 6349 

DomainBinary 3529 5724 

DomainLogE 3529 4950 

Gash 4524 250 

STRING 2338 2559 

Table 3 The distribution of genes across the six bio-molecular datasets used in this paper 

In dataset Total BioGRID Sequence DomainBinary DomainLogE Gasch STRING 

1 105 66 0 0 0 39 0 

2 636 632 0 0 0 634 6 

3 401 395 5 6 6 397 394 

4 118 57 118 118 118 61 0 

5 1504 1480 1503 1504 1504 1492 37 

6 1901 1901 1901 1901 1901 1901 1901 

Total 4665 4531 3527 3529 3529 4524 2338 

4.2 Functional annotations 

We used functional annotations collected from the Functional Catalogue (FunCat) 
database (Ruepp et al., 2004) to associate each of the genes in the six aforementioned 
datasets to a functional class. We have chosen FunCat since it consists of annotations 
primarily based on experimental evidence, which allows us to minimise the impact of 
non-experimental functional annotations (Re and Valentini, 2010). The Functional 
Catalogue comprises of hierarchically structured controlled vocabulary of functional 
categories in a forest like structure and was originally developed to describe yeast 
functional processes. In order to reduce the number of candidate classes and to 
quantitatively compare the results of other methods proposed in the literature, we 
considered the first level (that is the most general and wide functional classes of the 
overall taxonomy) of classes that are represented by at least 20 genes. The 15 classes 
chosen for our experiments are shown in Table 4. The numbers that preceded the 
functional classes are the numbers from the FunCat annotations. 
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Table 4 Functional classes that contain significant number of genes 

FunCat No. Functionality 

1 METABOLISM 

2 ENERGY 

10 CELL CYCLE & DNA PROCESSING 

11 TRANSCRIPTION 

12 PROTEIN SYNTHESIS 

14 PROTEIN FATE (folding, modification) 

16 PROTEIN WITH BINDING FUNCTION OR COFACTOR REQUIREMENT 

18 REGULATION OF METABOLISM &  PROTEIN FUNCTION 

20 CELLULAR TRANSPORT & TRANSPORT ROUTES 

30 CELLULAR COMMUNICATION/SIGNAL  TRANSDUCTION 
MECHANISM 

32 CELL RESCUE, DEFENSE & VIRULENCE 

34 INTERACTION WITH THE ENVIRONMENT 

40 CELL FATE 

42 BIOGENESYS OF CELLULAR COMPONENTS 

43 CELL TYPE DIFFERENTIATION 

5 Results and discussion 

First, we identified 1901 genes that are common across all the datasets and the rest of the 
2764 other genes that are present in only fewer datasets (see Table 3). We performed 
threefold cross-validation for reporting our results on the test data. We randomly divided 
both the common and uncommon genes into three folds. The combination of two folds is 
used for training and the rest for testing. To get the combined result, one fold of the 
common genes is merged with one fold of the uncommon genes to make one fold of the 
combined gene set. Because of the class imbalance problem, the models often produce 
poor result for F-measure for the target class. To tackle the class imbalance issue, we  
pre-processed the training data before the training process to undersample the majority 
classes and oversample the minority class using Synthetic Minority Oversampling 
TEchnique (SMOTE) (Chawla et al., 2002). 

While working with the kernel fusion methods, we used the same fold generated for 
the heterogeneous boosting. For UMI, we first imputed the missing feature values and 
then generated complete kernel matrices for different datasets. For the other two 
methods, we imputed the kernel matrix to obtain a complete kernel matrix. In either case, 
we have a set of full kernel matrices. To get the integrated kernel matrix we computed: 
(a) simple summation of those kernel matrices and (b) weighted summation of  
those kernel matrices based on the individual accuracy in corresponding datasets. We 
performed two separate sets of experiments for the common genes and the uncommon 
genes. Here, we discuss the results of these experiments separately. 
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5.1 Integration results with common genes 

While choosing the classification methods as base learners, we used four state-of-the-art 
machine learning methods: SVM, Naive Bayes, Decision Tree and Adaboost (with 
decision stumps). We identified 1901 genes that are common across all the six sources. 
While choosing the base learners, we used threefold cross-validation where each fold was 
generated using stratified random sampling. In this manner, for each of the 1901 genes 
we generated 24 decisions (four classifiers for each of the six datasets) and obtained 
24*16 base models. It should be noted that not only identifying the true functional 
category for a gene is important but also identifying if a gene does not belong to any 
functional category is critical. If a gene can confidently be identified as not belonging to 
a functional class, it will lead to a lot of savings in terms of further experimental 
investigation in many cases. Since it is also vital to quantify the performance on the 
prediction of the genes that belong to a functional category, we calculated the F-measure 
for evaluating and comparing the performance of different algorithms. 

We observed that SVM performs better than the other classifiers in many cases. For 
SWsequence and Gasch datasets, SVM is outperformed by other methods like Adaboost 
(or in some cases NaiveBayes). This lead to the conclusion that due to the nature of the 
datasets and the properties of the base classifiers, different classifiers may perform well 
on different datasets. However, it is also observed that, though the classification accuracy 
varies between different functional categories, the performance of the base classifiers that 
work well on particular datasets does not vary significantly for different functional 
categories. This also suggests that it is the property of the dataset and the classifier that 
determines the effectiveness of the corresponding classifiers.  

The ensemble that uses six SVMs as base classifiers performs better than the 
individual SVM classifier. We also observed a similar result for the ensembles that uses 
decision tree, NaiveBayes and Adaboost as base classifiers. This lead to the conclusion 
that ensemble can improve the performance to a certain extent. This outcome can be 
validated by the fact that these ensembles contain diversity by using different datasets 
and hence, the base classifiers used are diverse. However, since no base classifier of a 
particular type consistently outperformed all other types in all datasets; it is fair to 
assume that the performance variations of the base classifiers that we observe are 
primarily due to the property of the base classifier and the nature of the datasets. So, 
additional experiments were performed to choose the best base classifier for each of the 
datasets and an ensemble was built from those classifiers. This result is shown in Figure 
1 along with the comparison with other majority voting approaches. Since we have 
already seen that the ensemble classifiers perform better than the corresponding 
classifiers, Figure 1 only reports the performance of the ensemble classifiers. One  
can observe that the ensemble from the best of the pools does not consistently outperform 
the other classifiers. In Figure 1, we compared all the aforementioned ensemble 
classifiers with our newly proposed decision boosting classifier. The proposed approach 
consistently outperforms the other ensemble classifiers and all the base classifiers. One of 
the possible reason for such performance improvement is because of the way the 
ensemble base classifiers are constructed and our proposed decision boosting method 
ensures the kind of dataset diversity that is needed for better performance. We compared 
our decision boosting approach for F-measure (see Table 5) with other ensemble  
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techniques proposed by Re and Valentini (2010) for all the functional categories and  
depicted the superiority of the proposed DecBoost method (see Figure 2). Table 6 
summarises the Win-Tie-Loss statistics. We observe that our approach consistently 
outperforms the decision templates. 

Figure 1 Comparison of accuracy for different functional classes between different majority 
voting techniques and the proposed DecBoost (see online version for colours) 

 

Figure 2 Comparison of F-measure values using different ensemble techniques and the proposed 
decision boosting for several FunCat classes (see online version for colours) 
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Table 5 Comparison of decision boosting to the other ensemble methods for different 
functional classes 

FunCat class Ensemblebin Ensemblelog EnsembleDT DecBoost 

1 0.7835 0.786 0.7845 0.792 

2 0.2857 0.3125 0.4324 0.576 

10 0.5887 0.5887 0.6666 0.705 

11 0.5673 0.5673 0.6722 0.715 

12 0.6814 0.6412 0.6715 0.758 

14 0.6776 0.6581 0.6846 0.66 

16 0.5217 0.4978 0.5543 0.59 

18 0.2424 0.2424 0.3333 0.365 

20 0.5828 0.5212 0.5465 0.686 

30 0.2285 0.2352 0.5769 0.475 

32 0.1842 0.1351 0.25 0.322 

34 0.1764 0.1764 0.4509 0.391 

40 0.1304 0.1304 0.3409 0.434 

42 0.4736 0.3333 0.5279 0.594 

43 0.3956 0.3414 0.46 0.49 

AVG 0.4347 0.4111 0.5302 0.5702 

Table 6 Win-tie-loss statistics for various ensemble methods 

 EnsembleDT Ensemblelin Ensemblelog 

DecBoost 12-0-3 14-0-1 15-0-0 

EnsembleDT – 13-0-2 14-0-1 

Ensemblelin – – 7-5-3 

We compared our method with late integration methods like Ensemble linear, Ensemble 
logarithmic, Ensemble Decision Templates as well as the early integration methods like 
VSI and Kernel Fusion (see Table 7). We observe that late integration generally 
outperformed the early integration methods and among the late integration methods, the 
proposed DecBoost algorithm consistently outperformed other state-of-the-art methods 
discussed earlier. 

Table 7 Comparison of the proposed decision boosting method with different integration 
techniques proposed in the literature 

Metric VSI KF Ensemblelog EnsembleDT DecBoost 

F-measure 0.3213 0.3782 0.4111 0.5302 0.5702 

Recall 0.226 0.3039 0.2974 0.4446 0.4634 

Precision 0.653 0.6293 0.8443 0.7034 0.756 
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5.2 Integration results with all genes 

Table 8 shows the results of different boosting methods on common and uncommon 
genes. We observe that DecBoost using common genes performs well on the common  
set of genes. However, for the uncommon genes, if we take only part of the model  
that can be fit with the particular genes, the results are not impressive. Using 
HeteroBoost, we observe the improvement of using all the genes during the training 
process on the uncommon genes. For the common genes, this model in some cases is 
outperformed by the common ensembles. Finally, we observe that using the modified 
weighting criterion which emphasised the importance for uncommon genes more than the 
common genes gives performance improvement for the uncommon genes as well as the 
overall improvement. 

Table 8 Comparison of F-measure values in the presence of all the genes using heterogeneous 
boosting, decision boosting and boosting with only the common genes 

Functional class 
Common genes Uncommon genes Overall results 

ECG EAG HBOOST ECG EAG HBOOST ECG EAG HBOOST 

Metabolism 0.781 0.779 0.771 0.651 0.735 0.771 0.707 0.756 0.771 

Energy 0.632 0.624 0.612 0.478 0.608 0.631 0.534 0.613 0.621 

Transcription 0.712 0.690 0.673 0.609 0.683 0.721 0.653 0.687 0.695 

Protein Synthesis 0.722 0.692 0.675 0.613 0.685 0.732 0.673 0.689 0.715 

Protein Fate 0.691 0.688 0.683 0.591 0.638 0.706 0.654 0.664 0.699 

Protein with 
Binding Function 0.619 0.622 0.631 0.509 0.601 0.651 0.559 0.613 0.645 

Regulation of 
Metabolism 0.407 0.445 0.443 0.391 0.403 0.441 0.399 0.425 0.443 

Cellular  
Transport 0.702 0.690 0.676 0.609 0.653 0.732 0.657 0.667 0.715 

Cellular 
Communication/
Signal 

0.515 0.520 0.503 0.410 0.453 0.551 0.456 0.487 0.535 

Average 0.642 0.639 0.630 0.540 0.607 0.660 0.588 0.622 0.649 

Notes: ECG: ensemble with common genes; EAG: ensemble with all genes; HBOOST: 
the proposed HeteroBoost method. 

We also compared our heterogeneous boosting algorithm with kernel fusion methods 
with different imputation schemes to make it work for all genes (Tables 9 and 10). Table 10 
shows accuracy values of the proposed method in comparison to different Kernel fusion 
methods. F-measure is a more appropriate metric than accuracy in this problem because 
it is more important to correctly associate the genes with a particular functional class than 
correctly detecting that the gene is not associated with other function class. In the 
previous section, we can observe that the kernel fusion method is outperformed by the 
ensemble techniques (Table 7) based on F-measure criteria. Table 9 shows that using the 
information of all genes using different imputation schemes improves the overall 
performance of the kernel fusion methods. However, despite such improvements, the 
result of kernel fusion methods with imputation is still inferior to our proposed 
heterogeneous boosting method. By the use of smoting on the training data, which is 
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easily applicable and natural fits the boosting methods, the result of heterogeneous 
boosting significantly outperformed the kernel fusion method. It should be noted that, for 
different kernel imputation methods we do not see any consistent performance. On the 
other hand, the proposed heterogeneous boosting method consistently outperforms the 
kernel fusion methods. Since we do not see any significant and consistent difference in 
the performance between simple summation and weighted summation schemes, in Table 
10 we only reported the weighted summation. 

Table 9 Comparison of F-measure values for the proposed heterogeneous boosting method 
and different kernel fusion approaches 

 Kernel fusion UMI Kernel fusion WSI Kernel fusion NNI Ensemble 

Functional 
class Simple Weighted Simple Weighted Simple Weighted HBOOST 

Metabolism 0.534 0.531 0.565 0.572 0.557 0.563 0.771 

Energy 0.467 0.472 0.437 0.442 0.509 0.515 0.621 

Transcription 0.473 0.482 0.422 0.418 0.495 0.467 0.695 

Protein 
synthesis 0.515 0.509 0.519 0.523 0.607 0.593 0.715 

Protein fate 0.509 0.513 0.515 0.509 0.544 0.567 0.699 

Table 10 Comparison of accuracy values for the proposed heterogeneous boosting method and 
different kernel fusion approaches 

Functional Class  Kernel Fusion UMI Kernel Fusion WSI Kernel Fusion NNI HBOOST 

Metabolism  0.783 0.789 0.773 0.783 

Energy  0.771 0.783 0.783 0.819 

Transcription  0.735 0.752 0.743 0.778 

Protein Synthesis  0.756 0.752 0.743 0.793 

Protein Fate  0.718 0.710 0.721 0.759 

6 Conclusion 

The availability of different sources of information on the same set of genes created new 
opportunities as well as challenges for the task of functional classification. Significant 
research efforts for robust integration of such abundant biological sources of information 
is being pursued at a rapid pace. For the task of functional classification of genes, 
integrating different sources at an early stage without the use of class information will 
provide significantly inferior result compared to those obtained from combining the 
decisions from multiple sources. In this paper, we developed a new method to combine 
the decisions of different classifiers in the individual dataset. Our study shows that 
different classifiers work well on different sources and their corresponding classification 
models have shown superior performance compared to individual classifiers. Our study 
also shows that boosting the decisions made from individual sources can obtain robust 
results on predicting gene functions. Furthermore, we proposed a novel integration 
framework based on re-weighting the uncommon genes helped in accurately predicting 
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the overall functional classification. The proposed heterogeneous boosting method 
outperformed the standard kernel fusion-based approaches for integrating multiple 
sources in the presence of partial information in the context of gene function prediction. 
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