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Abstract— Efficient Training in a neural network plays a vital
role in deciding the network architecture and the accuracy of
these classifiers. Most popular local training algorithms tend to
be greedy and hence get stuck at the nearest local minimum of
the error surface and this corresponds to suboptimal network
model. Stochastic approaches in combination with local methods
are used to obtain an effective set of training parameters. Due
to the lack of effective fine-tuning capability, these algorithms
often fail to obtain such an optimal set of parameters and are
computationally expensive. As a trade-off between computational
expense and accuracy required, a novel method to improve the
local search capability of training algorithms is proposed in
this paper. This approach takes advantage of TRUST-TECH
(TRansformation Under STability-reTaining Equilibrium CHar-
acterization) to compute neighborhood local minima on the error
surface surrounding the current solution in a systematic manner.
Empirical results on different real world datasets indicate that
the proposed algorithm is computationally effective in obtaining
promising solutions.

I. INTRODUCTION

Artificial neural networks (ANN) are powerful statistical
machine learning tools that are widely used in several domains
of science and engineering for problems like function approx-
imation, timeseries prediction, medical diagnosis, character
recognition, load forecasting, speaker identification, risk man-
agement etc. They were developed in analogy to the human
brain for the purpose of improving conventional learning
capabilities. These networks serve as excellent approximators
of nonlinear continuous functions [6]. However, using an
artificial neural network to model a system involves in dealing
with certain difficulties in achieving the best representation
of the classification problem. Hence, it is vital to develop
algorithms that can exploit the power of a given network
architecture and this can be achieved by obtaining the global
minimum of the error on the training data along with the
cross validation procedure. The main goal of optimal training
of the network is to find a set of weights that achieves the
global minimum of the mean square error (MSE) [5]. We will
consider a simple one hidden layer neural network with n
(number of features) input nodes, k£ hidden nodes and 1 output
node. Thus, each network has nk weights and & biases to the
hidden layer, and k& weights and one bias to the output node.
Hence, training a neural network effectively is necessarily a
search problem of dimension s = (n + 2)k + 1. The network
is trained to deliver the output value (Y;) of the the 7" sample
at the output node which will be compared to the actual target
value (¢;). The local minima problem is one of the thoroughly
studied aspects of neural networks [5].
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The main focus of this paper is to develop a robust training
algorithm for obtaining the optimal set of weights of an
artificial neural network by searching the parameter subspace
in a systematic manner using nonlinear transformation and
the concept of stability regions. The rest of this paper is
organized as follows: Section II discusses the relevant back-
ground and the problem formulation. Section III introduces
various notations and discusses the details about training neu-
ral networks. Section I'V explains the details about the problem
transformation and develops the stability region based training
algorithm. Implementation details of our algorithm are given
in section V. Section VI then discusses the results on standard
benchmark datasets and finally, section VII concludes along
with a discussion of future research directions.

II. BACKGROUND

The performance of a network is usually gauged by mea-
suring the mean square error (MSE) of its outputs from the
expected targets. The goal of optimal training is to find a set
of parameters that achieves the global minimum of the MSE
[5], [10], [6]. For a n-dimensional dataset, the MSE over ()
samples in the training set is given by:

Q
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where ¢ is the target output, X is the input vector and W is
the weight vector. The MSE as a function of the parameters
will adopt a complex topology with several local optimal
solutions. The network’s weights and thresholds must be set
so as to minimize the prediction error made by the network.
Since it is not possible to analytically determine the global
minimum of the error surface, the neural network training is
essentially an exploration of the error surface for an optimal
set of parameters that attain this global minimum.

Training algorithms can be broadly classified into ‘local’
and ‘global’ methods. Local methods begin at some initial
guesses and deterministically lead to a nearby local mini-
mum. From an initial random configuration of weights and
thresholds, the local training methods incrementally seek for
improved solution until they reach local minima. Typically,
some form of the gradient information at the current point
on the error surface is calculated and used to make a down-
hill move. Advanced techniques like Genetic algorithms and
simulated annealing are applied in combination with standard
Backpropagation (BP) inorder to allow for more promising so-
lutions and avoid being stuck at local minima. These methods
can explore the entire solution space effectively and obtain
promising local optimal solutions, but they lack fine-tuning
capability to obtain a precise final solution and require a local



methods to be employed. From both of the methods mentioned
above, one can realize that there is a clear gap between these
methods and our approach tries to communicate with both
local and global methods.

Probably, the algorithms that resemble our methodology are
TRUST [2] and dynamic tunneling [9]. These methods attempt
to move out of the local minimum in a stochastic manner.
The training algorithm proposed in this paper differs from
these methods by deterministically escaping out of the local
minimum and systematically exploring multiple local minima
on the error surface in a tier-by-tier manner in order to advance
towards the global minimum. This approach is based on the
fundamental concepts of stability region theory that were
established in [3]. Basically, a global method yields initial
points in certain promising regions of the search space. These
promising initial points are used to search the neighborhood
subspace in a systematic manner. TRUST-TECH relies on a
robust, fast local method to obtain a local optimal solution. It
explores the subspace in a tier-by-tier manner by transforming
the function into its corresponding dynamical system and
exploring the neighboring stability regions. Thus, it gives a
set of promising local optimal solutions from which a global
minimum 1is selected. In this manner, TRUST-TECH can be
treated as an effective interface between the global and local
methods, which enables the communication between these two
methods. It also allows the flexibility of choosing different
global and local methods depending on their availability and
performance for certain specific classification tasks. Also, us-
ing our procedure, we will be able to truncate global methods
at early stages and not use them to fine-tune the solutions and
thus saving a lot of computational effort.

III. TRAINING NEURAL NETWORKS

TABLE I
DESCRIPTION OF THE NOTATIONS USED

Notation ~ Description
Number of training samples
Input vector

Q
X
w Weight vector
n
k
wo

Number of features
Number of hidden nodes

j weight for j** hidden and the output node
w; weight for i*" input and j* hidden node
bo bias of the output node
bj bias of the j*" hidden node
t; target value of the i input sample
Y output of the network
e; Error for the it input sample

Table I gives the important notations used in the rest of the
paper. The final nonlinear mapping of the network model is
given by:
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where ¢; and ¢ are the activation functions of the hidden
nodes and the output nodes respectively. ¢; and ¢o can be

same functions or can be different functions. We have chosen
to use ¢o to be sigmoidal and ¢; to be linear. Results in
the literature [4], suggest that this set of activation functions
yield the best results for feedforward neural networks. The
task of the network is to learn associations between the input-
output pairs (X7i,t1), (Xo,t2), ..., (Xq,tg). Without loss of
generality, lets construct the following weight vector :

T
W=(Wo1, W02, -, WOk -y W1, Wn2, --s Wik, Do, b1, ba.., by)

which includes all the weights and biases that are to be
computed. Hence, the problem of training neural networks
is s-dimensional unconstrained minimization problem where
s = (n+ 2)k + 1. The mean squared error which is to be
minimized can be written as
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where the error e; (W) = t; —y(w, x;). The error cost function
C(-) averaged over all training data is a highly nonlinear
function of the synaptic vector w Ignoring the constant for
simplicity, it can be shown that

ve(w) = JE (w)e(w) 3)
V20 (w) = JE(w)J(w) + S(w) 4)

where J(w) is the Jacobian matrix
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and
S(w) = ei(w)V?ei(w) (5)
i=1

Generally, if we would like to minimize J(w) with respect
to the parameter vector w, any variation of Newton’s method
can be written as

Aw = — [V2C(W)]71 VO (w)

) (©6)
= — [T (W) I(w) + Sw)] " I (w)e(w)

IV. STABILITY REGION BASED APPROACH

In this paper, we exploit the geometric and topological
structure of the error surface to explore multiple local optimal
solutions in a systematic manner. We will first describe the
transformation of the original problem into its corresponding
nonlinear dynamical system and then propose a new algorithm
for finding multiple local optimal solutions.



A. Problem Transformation

This section mainly deals with the transformation of the
original likelihood function into its corresponding nonlinear
dynamical system and introduces some terminology pertinent
to comprehend our algorithm. This transformation gives the
correspondence between all the critical points of the error
surface and that of its corresponding gradient system. To
analyze the geometric structure of the error surface, we build
a generalized gradient system described by

%V — _gradg C(w) = —R(w)'VCw) ()

where the error function C' is assumed to be twice differen-
tiable to guarantee unique solution for each initial condition
w(0) and R(w) is a positive definite symmetric matrix (also
known as Reimannian metric) for all w € R*. The state vector
w belongs to the Euclidean space $°, and the vector field
C : ®® — R° satisfies the sufficient condition for the existence
and uniqueness of the solutions. The solution curve of Eq. (7)
starting from w at time ¢ = 0 is called a trajectory and it
is denoted by ®(w,-) : & — R*. A state vector w is called
an equilibrium point of Eq. (7) if C(w) = 0. An equilibrium
point is said to be hyperbolic if the Jacobian of C' at point w
has no eigenvalues with zero real part.

Definition 1: A hyperbolic equilibrium point is called a
(asymptotically) stable equilibrium point (SEP) if all the
eigenvalues of its corresponding Jacobian have negative real
part.

An equilibrium point is called a type-k equilibrium point
if its corresponding Jacobian has exact k eigenvalues with
positive real part. The stable (W* (%)) and unstable (\W*"(Z))
manifolds of an equilibrium point, say z, is defined as:

Wo(z)={zeR® : Jim O(z,t) =2} (8)
WH(z)={zeR® : t_l}r_n O(z,t) =} )

It is interesting to note the relationship between (7) and (6)
and obtain different local solving methods used to find the
nearest local optimal solution with guaranteed convergence.
For example, if R(w) = I, then it is a naive error back-
propagation algorithm. If R(w) = [J(w)TJ(w)] then it is
the Gauss-Newton method and if R(w) = [J(w)T J(w)+ p]
then it is the Levenberg-Marquardt (LM) method.

B. Stability Regions

Now, the task of finding multiple local minima on the
error surface has been transformed into the task of finding
multiple stable equilibrium points on its corresponding dy-
namical system. The advantage of our approach is that this
transformation into the corresponding negative gradient system
will yield more knowledge about the various dynamic and
geometric characteristics of the original surface and leads
to the development a powerful method for finding improved
solutions. For our algorithm, we are particularly interested

in the properties of the local minima and their one-to-one
correspondence of the critical points. To comprehend the
transformation, we need to define energy function. A smooth
function V() : R° — R satisfying V(®(w,t)) < 0, YV ¢
{set of equilibrium points (E)} and t € R is termed as energy
function.

Theorem 4.1: [3]: C(w) is a energy function for the gradi-
ent system (7).

Definition 2: A type-1 equilibrium point z4 (k=1) on the
practical stability boundary of a stable equilibrium point x, is
called a decomposition point.

Definition 3: The practical stability region of a stable equi-
librium point s of a nonlinear dynamical system (7), denoted
by Ap(z,) and is the interior of closure of the stability region
A(zs) which is given by :

Alxs) ={z e R’ : tliﬂolo D(x,t) = x5} (10)

The boundary of practical stability region is called the practi-
cal stability boundary of = and will be denoted by 0A,(x).
Theorem 4.2 asserts that the practical stability boundary is
contained in the union of the closure of the stable manifolds
of all the decomposition points on the practical stability bound-
ary. Hence, if the decomposition points can be identified, then
an explicit characterization of the practical stability boundary
can be established using (11). This theorem gives an explicit
description of the geometrical and dynamical structure of the
practical stability boundary.

Theorem 4.2: (Characterization of practical stability
boundary)[3]: Consider a negative gradient system described
by (7). Let o; , i=1,2,... be the decomposition points on the
practical stability boundary 0A,(zs) of a stable equilibrium
point, say xs. Then

0Ap(z) = | We(ow).

o; GaAp

(11

Our approach takes advantage of these concepts of stability
regions to compute neighborhood local maxima on likelihood
surface. Originally, the basic idea of our algorithm was to
find decomposition points on the practical stability boundary.
Since, each decomposition point connects two local maxima
uniquely, it is important to obtain the decomposition points
from the given local maximum and then move to the next local
maximum through this decomposition point [8]. Though, this
procedure gives a guarantee that the local maximum is not
revisited, the computational expense for tracing the stability
boundary and identifying the decomposition point is high
compared to the cost of applying the local method directly
using the exit point without considering the decomposition
point.

C. Algorithm

The proposed algorithm uses a promising starting point
(A*) as input and outputs the best local minimum of the
neighborhood in the weight space.



Input: Initial guess(A*), Tolerance (7), Step size (s)
Output: Best local minimum (A;;) in the neighborhood
Algorithm:

Step 1: Obtaining good initial guess (A*): The initial guess
for the algorithm can be obtained from global search methods
or from a purely random start. Some domain knowledge about
the specific dataset that the network is being trained on, might
help in eliminating non-promising set of initial weights.

Step 2: Moving to the local minimum (M ): Using an appro-
priate local solver (such as conjugate-gradient, quasi-Newton
or Levenberg-Marquardt), the local optimum M is obtained
using A* as the initial guess.

Step 3: Determining the search direction (d;): The eigenvec-
tors d; of the Jacobian are computed at m;. These eigenvector
directions might lead to promising regions of the subspace.
Other search directions can also be chosen based on the
specific problem that is being dealt.

Step 4: Escaping from the local minimum: Taking small
step sizes away from m; along the d; directions increases
the objective function value till it hits the stability boundary.
However, the objective function value then decreases after the
search trajectory moves away from the exit point. This new
point is used as initial guess and local solver is applied again
(go to Step 2).

Step 5: Finding Tier-1 local minima (Ay;): Exploring the
neighborhood of the local optimal solution corresponding to
the initial guess leads to tier-1 local minima. Exploring from
tier-k local minima leads to tier-k + 1 local minima.

Step 6: Exploring Tier-k local minima (Ay;): Explore all other
tiers in the similar manner described above. From all these
solutions, the best one is chosen to be the desired global
optimum.

Step 7: Termination Criteria: The procedure can be terminated
when the best solution obtained so far is satisfactory (lesser
than sol,.,) or a predefined maximum number of tiers is
explored.

Fig. 1 illustrates two tier TRUST-TECH methodology. The
“** represents the initial guess. Dotted arrows represent the
convergence of the local solver. Solid arrows represent the
gradient ascent linear searches along eigenvector directions.
‘X’ indicates a new initial condition in the neighborhood
stability region. M represents the local minimum obtained
by applying local methods from *X’. Aj; indicates Tier-1
local minima. ey; are the exit points between M and Ajy;.
Similarly, As; and ep; are the second-tier local minima and
their corresponding exit points respectively.

V. IMPLEMENTATION DETAILS

All programs were implemented in MATLAB v6.5 and run
on Pentium IV 2.8 GHz machines. We will now describe
some implementation issues of our algorithm. It is effective to
use TRUST-TECH methodology for those promising solutions
obtained from stochastic global methods. Hence, our algorithm
assumes that it is being invoked from a promising set of
initial parameters. Algorithm 1 describes the two-tier TRUST-
TECH algorithm. NET assumes to have a fixed architecture

Fig. 1. Tllustration of Tier-2 TRUST-TECH procedure for obtaining neigh-
borhood local minima.

with a single output node. ss is the step size required for
moving out of the stability region to obtain the exit point.
T is the tolerance of error used for the convergence of the
local method. Weights give the initial set of weight parameter
values. T'rain function implements the Levenberg-Marquardt
method that obtains the local optimal solution from the ini-
tial condition. The procedure Estimate computes the mean
square error (MSE) value of the network model. A threshold
value (T'hresh) is set based on this MSE value. The procedure
Netighbors returns all the next tier local optimal solutions
from a given local solution. After obtaining all the tier-1
solutions, Neighbors is again invoked (only for promising
solutions) to obtain the second-tier solutions. The algorithm
finally compares the initial solution, tier-1 and tier-2 solutions
and returns the network corresponding to the lowest error
among all these solutions.

Algorithm 1 TRUST TECH(NET,Wts,ss, T)

Wts = Train(NET, Wts, T)

Error = Estimate(NET, Wts)

Thresh = c* Error

Wtsl[ | = Neighbors(NET, Wts, ss,T)

for k =1 to size(Wtsl) do
if Estimate(NET, Wtsl[k]) < Thresh then

Wts2[k][ | = Neighbors(NET, Wtsl, ss, T)

end if

end for

Return best(Wts, Wtsl, Wts2)

The approximate Hessian matrix used for updation in the
Levenberg-Marquardt method is utilized to obtain the search
direction. Since there is no optimal way of obtaining promising
search directions, the Eigen vectors of this Hessian matrix are
used as search directions. Along each search direction, the exit



Algorithm 2 Wts[ | Neighbors (NET,Wts, ss, T)
[Wts, Hess] = Train(NET, Wts, 1)
evec = Eig Vec(Hess)
Wts[] = NULL
for k =1 to size(evec) do
Old.-Wts =Wts
ext_Pt = Find_Ext(NET, Old_-Wts, ss, evec[k])
if (ext_Pt) then
New Wts = Move(NET, Old_Wts, eveclk])
New Wts = Train(NET, New Wts, T)
Errors = Estimate(NET, New_W'ts)
Wts| | = Append(Wts| |, New_Wts, Errors)
end if
end for
Return Wits] |

point is obtained by evaluating the function value along that
particular direction. The step size for evaluation is chosen to be
the average step size taken during the convergence of the local
procedure. The function value increases initially and then starts
to reduce indicating the presence of exit point on the stability
boundary. Move function ensures that a new point (obtained
from the exit point) is located in a different (neighboring)
stability region. From this new initial guess, the local method
is applied again to obtain the local optimal solution of the
neighborhood stability region. The search for exit points along
these directions will be stopped if exit points are not found
after certain number of function evaluations.

TABLE II
SUMMARY OF BENCHMARK DATASETS. DATASET (D), SAMPLE
SIZE (Q), INPUT FEATURES (N), OUTPUT CLASSES (P), NO. OF
HIDDEN NODES (K), NO. OF SEARCH VARIABLES ((N+2)K+1)

D Q n p | k| (n+2)k+1

Cancer 683 9 215 56
Diabetes 178 8 314 61

Image 2310 | 19 | 7 | 8 169

Tonosphere | 351 341219 325
Iris 150 4 1313 19

Sonar 208 | 60 | 2 | 8 497
Wine 178 131314 61

VI. EXPERIMENTAL RESULTS

Our algorithm is evaluated using seven benchmark datasets
in the UCI machine learning repository [1]. Optimal archi-
tectures have been fixed for the networks based on some
heuristic training. The main focus of our algorithm is to
demonstrate the capability of obtaining optimal weight pa-
rameters and improvements in the generalization ability of
the networks. Table II summarizes the datasets. It gives the
number of samples, input features, output classes along with
the number of hidden nodes of the optimal architecture. These
datasets have varying degrees of complexity in terms of sample
size, output classes and the class overlaps. To demonstrate

the generalization capability (and hence the robustness) of
the training algorithm, 10-fold cross validation is performed
on each dataset. The criteria of evaluation is given by the
classification accuracy of the network model in terms of
the percentage of misclassified samples in the test cases.
Tables III and IV shows the improvements in the train error
and the test error using TRUST-TECH methodology when
multiple random starts (MRS) and MATLAB initialization
(Nguyen-Widrow (NW) algorithm [7]) is used. Five tier-1
and corresponding tier-2 solutions were obtained using the
TRUST-TECH strategy. For some of the datasets, there had
been considerable improvements in the classifier performance.
Spiderweb diagram (shown in Fig. 2) a pretentious way to
demonstrate the improvements in a tier-by-tier manner.

VII. CONCLUSION

In this paper, a new method for improving the local
search capability of these training algorithms is proposed. This
method provides an optimal set of training parameters for a
neural network model thus allowing improved classification
accuracies. Because of its non-probabilistic nature, multiple
runs of our algorithm from any given initial guess will provide
exactly the same result. The proposed method also allows the
user to have the flexibility of choosing different global and
local techniques for training. As a continuation of this work,
this new stability region based training algorithm will be used
for simultaneously deciding the architecture and the training
parameters. Its performance on large scale applications like
character recognition, load forecasting etc. will also be tested.
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% Improvements in the classifier accuracy

TABLE III

MULTIPLE RANDOM RESTARTS.

MATLAB INITIALIZATION.

Train Error Test Error

Dataset MRS+LM [ TRUST-TECH | Improvement | MRS+LM | TRUST-TECH | Improvement
Cancer 2.21 1.74 27.01 3.95 2.63 50.19
Image 9.37 8.04 16.54 11.08 9.74 13.76
Ionosphere 2.35 0.57 312.28 10.25 7.96 28.717
Iris 1.25 1.00 25.00 3.33 2.67 24.72
Diabetes 22.04 20.69 6.52 23.83 20.58 15.79
Sonar 1.56 0.72 116.67 19.17 12.98 47.69
Wine 4.56 3.58 27.37 14.94 6.73 121.99

TABLE IV

Train Error Test Error

Dataset NW+LM [ TRUST-TECH | Improvement | NW+LM | TRUST-TECH | Improvement
Cancer 2.25 1.57 42.99 3.65 3.06 19.06
Image 7.48 5.17 44.82 9.39 7.40 26.90
Ionosphere 1.56 0.92 69.57 8.67 6.54 32.57
Iris 1.33 0.67 100.00 3.33 2.67 25.00
Diabetes 21.41 19.55 9.53 23.70 21.09 12.37
Sonar 2.35 0.42 456.96 17.26 14.38 20.03
Wine 7.60 1.62 370.06 14.54 4.48 224.82

% Improvements in the classifier accuracy

% Improvements in the classifier ac

(a) Wine Dataset (b) Cancer Dataset (c) Image Dataset

Fig. 2. Spider web diagrams showing the tier-1 and tier-2 improvements using TRUST-TECH method on various benchmark datasets. The circle in the
middle of the plot represents the starting local optimal solution. The basic two dimensions are chosen arbitrarily for effective visualization and the vertical axis
represents the percentage improvement in the classification accuracy. The basis two axes are chosen arbitrarily and the vertical axis represents the improvements
in the classifier accuracy. The five blue vertical lines surrounding the center circle are the best five local minima obtained from a tier 1 search across all folds.
The five best second-tier improvements are plotted using red lines.



