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Abstract

Accurate and explainable health event predictions
are becoming crucial for healthcare providers to de-
velop care plans for patients. The availability of
electronic health records (EHR) has enabled ma-
chine learning advances in providing these predic-
tions. However, many deep learning based meth-
ods are not satisfactory in solving several key
challenges: 1) effectively utilizing disease domain
knowledge; 2) collaboratively learning representa-
tions of patients and diseases; and 3) incorporat-
ing unstructured text. To address these issues, we
propose a collaborative graph learning model to ex-
plore patient-disease interactions and medical do-
main knowledge. Our solution is able to capture
structural features of both patients and diseases.
The proposed model also utilizes unstructured text
data by employing an attention regulation strategy
and then integrates attentive text features into a se-
quential learning process. We conduct extensive
experiments on two important healthcare problems
to show the competitive prediction performance of
the proposed method compared with various state-
of-the-art models. We also confirm the effective-
ness of learned representations and model inter-
pretability by a set of ablation and case studies.

1 Introduction

Electronic health records (EHR) consist of patients’ temporal
visit information in health facilities, such as medical history
and doctors’ diagnoses. The usage and analysis of EHR not
only improves the quality and efficiency of in-hospital patient
care but also provides valuable data sources for researchers to
predict health events, including diagnoses, medications, and
mortality rates, etc. A key research problem is improving
prediction performance by learning better representations of
patients and diseases so that improved risk control and treat-
ments can be provided. There have been many works on this
problem using deep learning models, such as recurrent neural
networks (RNN) [Choi et al., 2016al, convolutional neural
networks (CNN) [Nguyen et al., 2017], and attention-based
mechanisms [Ma er al., 2017]. However, several challenges
remain in utilizing EHR data and interpreting models:
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Figure 1: An example of the hierarchical structure of the ICD-9-CM
system, disease interaction, and patient diagnosis.

1. Effectively utilizing the domain knowledge of diseases.
Recently, graph structures are being adopted [Choi er al.,
2017] using disease hierarchies, where diseases are clas-
sified into various types at different levels. For example,
Figure 1 shows a classification of two forms of hyperten-
sion and one form of heart failure. One problem is that
existing works [Choi ef al., 2017; Shang et al., 2019] only
consider the vertical relationship between a disease and its
ancestors (hierarchical link). However, they ignore hori-
zontal disease links that can reflect disease complications
and help to predict future diagnoses.

2. Collaboratively learning patient-disease interactions.
Patients with the same diagnoses may have other simi-
lar diseases (patient diagnosis in Figure 1). Existing ap-
proaches [Choi et al., 2017; Ma et al., 2017] treat patients
as independent samples by using diagnoses to represent
patients, but they fail to capture patient similarities, which
help in predicting new-onset diseases from other patients.

3. Incorporating unstructured text. Unstructured data in
EHR including clinical notes contain indicative features
such as physical conditions and medical history. For ex-
ample, a note: “The patient was intubated for respiratory
distress and increased work of breathing. He was also
hypertensive with systolic in the 70s” indicates that this
patient has a history of respiratory problems and hyperten-
sion. Most models [Choi et al., 2016b; Bai et al., 2018] do
not fully utilize such data. This often leads to unsatisfac-
tory prediction performance and lack of interpretability.

To address these problems, we first present a hierarchi-
cal embedding method for diseases to utilize medical do-



main knowledge. Then, we design a collaborative graph neu-
ral network to learn hidden representations from two graphs:
a patient-disease observation graph and a disease ontology
graph. In the observation graph, if a patient is diagnosed
with a disease, we create an edge between this patient and
the disease. The ontology graph uses weighted ontology
edges to describe horizontal disease interactions. Moreover,
to learn the contributions of keywords for predictions, we
design a TF-IDF-rectified attention mechanism for clinical
notes which takes visit temporal features as context informa-
tion. Finally, combining disease and text features, the pro-
posed model is evaluated on two tasks: predicting patients’
future diagnoses and heart failure events. The main contribu-
tions of this work are summarized as follows:

* We propose to collaboratively learn the representations
of patients and diseases on the observation and ontol-
ogy graphs. We also utilize the hierarchical structure of
medical domain knowledge and introduce an ontology
weight to capture hidden disease correlations.

We integrate structured information of patients’ previ-
ous diagnoses and unstructured information of clinical
notes with a TF-IDF-rectified attention method. It al-
lows us to regulate attention scores without any manual
intervention and alleviates the issue of using attention as
a tool to audit a model [Jain and Wallace, 2019].

We conduct extensive experiments and illustrate that the
proposed model outperforms state-of-the-art models for
prediction tasks on MIMIC-III dataset. We also provide
detailed analysis for model predictions.

2 Related Work

Deep learning models, especially RNN models, have been
applied to predict health events and learn representations of
medical concepts. DoctorAl [Choi et al., 2016a] uses RNN
to predict diagnoses in patients’ next visits and the time dura-
tion between patients’ current and next visits. RETAIN [Choi
et al., 2016b] improves the prediction accuracy through a
sophisticated attention process on RNN. Dipole [Ma et al.,
2017] uses a bi-directional RNN and attention to predict diag-
noses of patients’ next visits. Both Timeline [Bai e al., 2018]
and ConCare [Ma et al., 2020b] utilize time-aware attention
mechanisms in RNN for health event predictions. However,
RNN-based models regard patients as independent samples
and ignore relationships between diseases and patients which
help to predict diagnoses for similar patients.

Recently, graph structures are adopted to explore med-
ical domain knowledge and relations of medical concepts.
GRAM [Choi et al., 2017] constructs a disease graph from
medical knowledge. MiME [Choi et al., 2018] utilizes con-
nections between diagnoses and treatments in each visit to
construct a graph. GBERT [Shang et al., 2019] jointly learns
two graph structures of diseases and medications to rec-
ommend medications. It uses a bi-directional transformer
to learn visit embeddings. MedGCN [Mao et al., 2019]
combines patients, visits, lab results, and medicines to con-
struct a heterogeneous graph for medication recommenda-
tions. GCT [Choi et al., 2020] also builds graph structures

of diagnoses, treatments, and lab results. However, these
models only consider disease hierarchical structures, while
neglecting disease horizontal links that reflect hidden disease
complications. As a result, prediction performance is limited.

In addition, CNN and Autoencoder are also adopted to
predict health events. DeepPatient [Miotto er al., 2016]
uses an MLP as an autoencoder to rebuild features in EHR.
Deepr [Nguyen er al., 2017] treats diagnoses in a visit as
words to predict future risks such as readmissions in three
months. AdaCare [Ma et al., 2020a] uses multi-scale dilated
convolution to capture dynamic variations of biomarkers over
time. However, these models neither consider medical do-
main knowledge nor explore patient similarities as discussed.

In this paper, we explore disease horizontal connections
using a disease ontology graph. We collaboratively learn rep-
resentations of both patients and diseases in their associated
networks. We also design an attention regulation strategy on
unstructured text features to provide quantified contributions
of clinical notes and interpretations of prediction results.

3 Methodology

3.1 Problem Formulation

An EHR dataset is a collection of patient visit records. Let
C = {c1,¢a,...,c|c|} be the entire set of diseases represented
by medical codes in an EHR dataset, where |C| is the medical
code number. Let N = {w1,wa, ..., w)x|} be the dictionary
of clinical notes, where |A/] is the word number.

EHR dataset. An EHR dataset is given by D = {~,|u €
U} where U is the collection of patients in D and v, =
(Vi Vg4, ..., Vi) is a visit sequence of patient u. Each visit
Vi = {C}, N{*} is recorded with a subset of medical codes
C} C C, and a paragraph of clinical notes N* C N contain-
ing a sequence of | N{*| words.

Diagnosis prediction. Given a patient u’s previous 7" vis-
its, this task predicts a binary vector y € {0, 1}/ which
represents the possible diagnoses in (T + 1)-th visit. §; = 1
denotes c; is predicted in C'f. ;.

Heart failure prediction. Given a patient u’s previous T’
visits, this task predicts a binary value §j € {0,1}. § = 1 de-
notes that v is predicted with heart failure! in (7 + 1)-th visit.
In the rest of this paper, we drop the superscript u in
Vi, Cy, and N for convenience unless otherwise stated.

3.2 The Proposed Model

In this section, we propose a Collaborative Graph Learning
model, CGL. An overview of CGL is shown in Figure 2.

Hierarchical Embedding for Medical Codes

ICD-9-CM is an official system of assigning codes to dis-
eases. It hierarchically classifies medical codes into differ-
ent types of diseases in K levels. This forms a tree structure
where each node has only one parent. Note that most medical
codes in patients’ visits from EHR data are leaf nodes. How-
ever, a patient can be diagnosed with a higher level disease,
i.e., non-leaf node. Therefore, we recursively create virtual

!'The medical codes of heart failure start with 428 in ICD-9-CM.
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Figure 2: An overview of the proposed model. The graph learning
first learns disease hidden features with two collaborative graphs: an
observation graph and an ontology graph, based on the hierarchical
embedding from medical domain knowledge. Then an RNN is de-
signed to learn temporal information of visit sequences. Rectified
Attention mechanism encodes clinical notes with the guide of TF-
IDF and uses the visit representation as an attention context vector
to integrate structured visit records and unstructured clinical notes.

child nodes for each non-leaf node to pad them into virtual
leaf nodes. We assume there are nj; nodes at each level k&
(smaller £ means higher level in the hierarchical structure).

We create an embedding tensor {Eg }1.e[1,2,..., k] for nodes
in the tree. E;, € R™**% is the embedding matrix for nodes
in level k, and d,. is the embedding size. For a medical code
c; as a leaf node, we first identify its ancestors in each level
k = [1,2,...,K — 1] in the tree and select corresponding
embedding vectors from {E;}. Then, the hierarchical em-
bedding e; € R¥9 of ¢; is calculated by concatenating the
embeddings in each level: e, = E{ @ Ey, @ ..., ® E%,
where @ denotes the concatenation. We use E € RICIxKde
to represent medical codes after hierarchical embedding.

Graph Representation

In visit records, specific diagnosis co-occurrences could re-
veal hidden similarities of patients and diseases. We explore
such relationship by making the following hypotheses:

1. Diagnostic similarity of patients. If two patients get di-
agnosed with the same diseases, they tend to have diag-
nostic similarities and get similar diagnoses in the future.

2. Medical similarity of diseases. If two diseases belong
to the same higher-level disease, they might have medical
similarities such as symptoms, causes, and complications.

Based on these hypotheses, we construct a collaborative
graph G = {Gyc,Gec} for patients and medical codes. Gyc
is the patient-disease observation graph built from EHR data.
Its nodes are patients and medical codes. We use a patient-
code adjacency matrix Ayc € {0, 1}U1XICl to represent Gyc.
Given patient u, if u is diagnosed with a code c; in a pre-
vious visit, we add an edge (u,c;) and set Ayc[u]i] = 1.
Gec is the ontology graph. Its nodes are medical codes. To
model horizontal links of two medical codes (leaf nodes), we
create a code-code adjacency matrix A, € Nlelxiel 1f
two medical codes c; and c¢; have their lowest common an-
cestor in level &, we add an ontology edge (c;,c;)x and set

celillj] = k. This process is based on the idea that two

medical codes with a common ancestor in lower levels of the
hierarchial graph of ICD-9-CM should be similar diseases.
Finally, we set Aj[¢][i] = O for all diagonal elements. Al-
though A( can reflect the hierarchical structure of medical
codes, it is a dense matrix and generates a nearly complete on-
tology graph, which will cause a high complexity for graph
learning. We further propose a disease co-occurrence indica-
tor matrix Bee initialized with all zeros. If two medical codes
¢; and c; appear in a patient’s visit record, we set Bec [t (7]
and Bec[j][i] as 1. Then, we let Acc = Al © Bee be a
new adjacency matrix for Gee to neglect disease pairs in Ay,
which never co-occur in EHR data. Here ® denotes element-
wise multiplication. Finally, we not only create a sparse on-
tology graph for computational efficiency, but also focus on
more common and reasonable disease connections in the on-
tology graph.

Collaborative Graph Learning

To learn hidden features of medical codes and patients, we
design a collaborative graph learning method on the fact and
ontology graphs. Instead of calculating patient embeddings
with medical codes like DeepPatient [Miotto et al., 2016], we
assign each patient an initial embedding. P e RIUI*dv g
the embedding matrix of all patients with the size of d,,. Let

HY = P,H” = Eand HY) € RU*%’ HY ¢ RlcIxa
be the hidden features of patients and medical codes (i.e.,
inputs of [-th graph layer). We design a graph aggregation
method to calculate the hidden features of patients and med-
ical codes in the next layer. First, we map the medical code
features Hgl) into the patient dimension and aggregate ad-
jacent medical codes from the observation graph (Ayc) for
each patient:

20 =HD + AycHP Wy V) e RIUIX

1
YW
Here Wy, () e Ré xd;) maps code embeddings to patient
embeddings. For the ontology graph, if ¢;, ¢; are connected
in level k, we assign an ontology weight ¢; to ¢; when aggre-
gating c; into ¢;:

¢; (k) = o (nj x k+0;). 2)
Here o is the sigmoid function. j1;,0; € R are trainable vari-

ables for c¢;. ¢;(k) is a monotonic function w.r.t. level k.
This function enables the model to describe the horizontal in-
fluence of a disease on other diseases via assigning increasing
or decreasing weights by levels. Let @ € RICI*ICl be the on-
tology weight matrix and M, ® € RICl be the collection of
1, 6. Hél) is mapped into the medical code dimension and ag-
gregated with adjacent patients from the observation graph:

d=0(M®O Agc + O) e RICIXICl 3)
Z0 = HY + AJ HO WO + oHD e RIS 4)

() 5 g . .
Here Wy € R% *9c’ maps patient embeddings to code
embeddings. Given that A¢¢ stores the level where two dis-
eases are connected, we use A¢c to compute ®. Finally, HI(,Z)

and Hgl) of the next layer are calculated as follows:

(141) _ 0 W
H{;"}) = ReLU (BatchNorm (Z{) , W) 1)), (5)



where ngp) ¢} maps Zg ¢y to the (I+1)-th layer, and we use

batch normalization to normalize features. In the L-th graph

layers, we do not calculate H,(,L) and only calculate H&L) as
the graph output, since the medical codes are required for fur-

ther calculation. We let H, = HgL) S RICI%d™ be the final
embedding for medical codes.

Temporal Learning for Visits
Given a patient u, we first compute a embedding v; for visit ¢:

1 ; (r)
V= —— H! ¢ R%:". (6)
| Ct | Ciezct
After the collaborative graph learning, H', contains the infor-
mation of its multi-hop neighbor diseases by the connection
of patient nodes. Hence, different from GRAM, it enables the
model to effectively predict diseases that have never been di-
agnosed on a patient before. We then employ GRU on v; to

learn visit temporal features and get a hidden representation
R = {ry,rs,...,r7} where the size of the RNN cell is h:

R = ri,ro,...,ryp = GRU(Vl,Vg,... ,VT) S RTXh, (7)

Then we apply a location-based attention [Luong et al., 2015]
to calculate the final hidden representation o,, of all visits:

o = softmax (Rw,,) € RT, (8)
0, = aR e R", 9)

where w, € R” is a context vector for attention and c is the
attention weight for each visit.

Guiding Attention on Clinical Notes

We incorporate the clinical notes Ny from the latest visit
Vr, since Np generally contains the medical history and fu-
ture plan for a patient. We propose an attention regulation
strategy that automatically highlights key words, consider-
ing traditional attention mechanisms in NLP have raised con-
cerns as a tool to audit a model [Jain and Wallace, 2019;
Serrano and Smith, 2019]. Pruthi et al. [Pruthi et al., 2020]
present a manipulating strategy using a set of pre-defined im-
permissible tokens and penalizing the attention weights on
these impermissible tokens. To implement the regulation
strategy, we propose a TF-IDF-rectified attention method on
clinical notes. Regarding all patients’ notes as a corpus and
each patient’s note as a document, for a patient u, we first
calculate the TF-IDF weight j3; for each word w; in u’s note
Nrp and normalize the weights into [0, 1]. Then, we select
the embedding q; € R%» from a randomly initialized word
embedding matrix Q € RWI*dw_ For attention in Eg. (8),
the context vector w,, is randomly initialized, while clinical
notes are correlated with diagnoses. Therefore, we adopt o,
as the context vector. Firstly, we project word embeddings Q
into the dimension of visits to multiply the context vector o,,:

Q' = QW, e RWIxh 10)

Then, let N be the embedding matrix selected from Q' for
words in N7, we calculate the attention weight o’ as well as
the output o,, for clinical notes:

o' = softmax (No,) € RIV7!, (11)
o, = a'N e R". (12)

Patient number 7,125
Avg. visit number per patient 2.66

Patient number with heart failure 2,604
Medical code (disease) number 4,795
Avg. code number per visit 13.27
Dictionary size in notes 67,913
Avg. word number per note 4,732.28

Table 1: Statistics of the MIMIC-III dataset.

For a word with a high TF-IDF weight in a clinical note, we
expect the model to focus on this word with a high attention
weight. Therefore, we introduce a TF-IDF-rectified attention
penalty L for the attention weights of words:

Lo=— > (ajlogBi+ (1—aj)log(1—4)). (13)
wi;ENT
The attention weights that mismatch the TF-IDF weights
will be penalized. We believe that irrelevant (impermissible)
words such as “patient” and “doctor” tend to have low TF-
IDF weights. Finally, we concatenate o,, and o, as the output
O € R?" for patient u: O = 0, @ 0.

Prediction and Inference

Diagnosis prediction is a multi-label classification task, while
heart failure prediction is a binary classification task. We both
use a dense layer with a sigmoid activation function on the
model output O to calculate the predicted probability y. The
loss function of classification for both tasks is cross-entropy
loss L.. Then, we combine the TF-IDF-rectified penalty £
and cross-entropy loss as the final loss £ to train the model:

L = AL + CrossEntropy(y,y). (14)

Here, y is the ground-truth label of medical codes or heart
failure, and A is a coefficient to adjust L£y. In the inference
phase, we freeze the trained model and retrieve the embed-
dings H. of medical codes at the output of heterogeneous
graph learning. Then, given a new patient for inference, we
continue from Eq. (6) and make predictions.

4 Experiments

4.1 Experimental Setup

Dataset Description

We use the MIMIC-III dataset [Johnson et al., 2016] to eval-
uvate CGL. Table 1 shows the basic statistics of MIMIC-
III. We select patients with multiple visits (# of visits > 2)
and select clinical notes except the type of “Discharge sum-
mary”, since it has a strong indication to predictions and is
unfair to be used as features. For each note, we use the first
50,000 words, while the rest are cut off for computational
efficiency, given the average word number per note is less
than 5,000. We split MIMIC-III randomly according to pa-
tients into training/validation/test sets with patient numbers
as 6000/125/1000. We use the codes in patients’ last visit as
labels and other visits as features. For heart failure prediction,
we set labels as 1 if patients are diagnosed with heart failure
in the last visit. Finally, the observation graph is built based
on the training set. A 5-level hierarchical structure and the
ontology graph are built according to ICD-9-CM.



Models w-Fy (%) R@20(%) R@40(%) Param.
RETAIN  19.66 (0.58) 33.90 (0.47) 42.93(0.39) 2.90M
Deepr 12.38 (0.01) 28.15(0.08) 37.26 (0.14)  0.80M
GRAM  21.06 (0.19) 36.37(0.16) 45.61(0.27)  1.38M
Dipole 1124 (0.19)  26.96(0.15) 36.83 (0.26)  2.08M
Timeline  16.83 (0.62) 32.08 (0.66) 41.97 (0.74)  1.23M
MedGCN  20.93 (0.25) 35.69 (0.50) 43.36 (0.46)  4.59M
LRpores 17.56 (0.41)  36.71 (0.28) 46.02 (0.38) 325.65M
CGL 2297 (0.19) 38.19(0.16) 48.26 (0.15)  3.55M

Table 2: Diagnosis prediction results in w-F; and R@k.

Evaluation Metrics

We adopt weighted F score (w-F) [Bai et al., 2018]) and top
k recall (R@¥k [Choi et al., 2016a]) for diagnosis predictions.
w-F7 is a weighted sum of Fj for each class. R@k is the ra-
tio of true positive numbers in top k predictions by the total
number of positive samples, which measures the prediction
performance on a subset of classes. For heart failure predic-
tions, we use I’ and the area under the ROC curve (AUC),
since it is a binary classification on imbalanced test data.

Baselines
To compare CGL with state-of-the-art models, we select the
following models as baselines: 1) RNN-based models: RE-
TAIN [Choi et al., 2016b], Dipole [Ma et al., 20171, Time-
line [Bai er al., 2018]; 2) CNN-based models: Deepr [Nguyen
et al., 2017]; 3) Graph-based models: GRAM [Choi er al.,
20171, MedGCN [Mao et al., 2019]; and 4) A logistic regres-
sion model, LR o5, On clinical notes using only TF-IDF fea-
tures of each note (whose dimension is the dictionary size).
Deepr, GRAM, and Timeline use medical code embed-
dings as inputs, while others use multi-hot vectors of med-
ical codes. We do not consider SMR [Wang et al., 2017]
because 1) it does not compare with the above state-of-the-
art models and 2) it focuses on medication recommendation
which is different from our tasks. We also do not compare
with MiME [Choi et al., 2018] and GCT [Choi et al., 2020]
because we do not use treatments and lab results in our data.

Parameters

We randomly initialize embeddings for diseases, patients, and
clinical notes and select the paramters by a grid search. The
embedding sizes d., d,, and d,,, are 32, 16, and 16. The graph
layer number L is 2. The hidden dimensions d\", dt", and d¢*
are 32, 64, and 128, and the GRU unit A is set to 200. The
coefficient A in £y for diagnosis and heart failure prediction
is 0.3 and 0.1. We set the learning rate as 10~3, optimizer as
Adam, and use 200 epochs for training. The source code of
CGL is released at https://github.com/LuChang-CS/CGL.

4.2 Experimental Results

Diagnosis and Heart Failure Prediction

Table 2 shows the results of baselines and CGL on diagno-
sis prediction. We use k = [20, 40] for R@k. Each model
is trained for 5 times with different variable initializations.
The mean and standard deviation are reported. The proposed
CGL model outperforms all the baselines. We think this is
mostly because CGL captures hidden connections of patients

Models AUC (%) Fy (%) Param.
RETAIN  82.73(0.21) 71.12(0.37) 1.67M
Deepr 81.29 (0.01) 68.42(0.01) 0.49M
GRAM 82.82 (0.06) 71.43(0.05) 0.76M
Dipole 81.66 (0.07) 70.01 (0.04) 1.45M
Timeline  80.75 (0.46) 69.81 (0.34) 0.95M
MedGCN  81.25(0.15) 70.86(0.18) 3.98M
LR otes 80.33 (0.12) 69.18 (0.27) 0.07M
CGL 85.66 (0.19) 72.68 (0.22) 1.62M

Table 3: Heart failure prediction results in AUC and F.

Models Diagnosis Heart failure
w-F;  R@20 Param. AUC F Param.
CGL;,. 20.87 3566 398M 82.58 71.02 2.04M
CGL,. 22.10 3759 1.50M 84.53 7196 0.53M
CGL,. 2206 3731 354M 8391 71.59 1.60M
CGL 2297 3819 355M 85.66 72.68 1.62M

Table 4: w-F1, R@20 of diagnosis prediction and AUC, F} of heart
failure prediction for CGL variants. CGLj,.: no hierarchical embed-
ding; CGL,.-: no clinical notes; CGL,,-: no ontology weights.

and diseases and utilizes clinical notes. In addition, the results
of LR;ores indicate that only using clinical notes does not im-
prove performance in predicting diagnosis. Table 3 shows
the heart failure prediction results. We observe that CGL also
achieves the best performance in terms of AUC and F}.

Ablation Study

To study the effectiveness of components, we also com-
pare 3 CGL variants: CGL without hierarchical embedding
(CGLy,.), CGL without clinical notes as inputs (CGL,,.), and
CGL without ontology weights (CGL,,.). The results are
shown in Table 4. We observe that even without clinical
notes, CGL,,. with hierarchical embeddings and ontology
weights still achieves the best performance among all other
baselines. This indicates that domain knowledge including
hierarchical embeddings and ontology weights also help to
learn better representations of medical codes. In addition,
from Table 4 we can infer that the complexity of CGL mostly
comes from modeling clinical notes, i.e., word embeddings.
Therefore, CGL is scalable and can be generalized to other
tasks when clinical notes are not accessible.

Prediction Analysis

New-onset diseases. For a patient, new-onset diseases de-
note new diseases in future visits which have not occurred in
previous visits of this patient. We use the ability of predict-
ing new-onset diseases to measure learned diagnostic simi-
larity of patients. It is natural for a model to predict diseases
that have occurred in previous visits. With the help of other
similar patients’ records, the model should be able to predict
new diseases for a patient. The idea is similar to collabo-
rative filtering in recommender systems. If two patients are
similar, one of them may be diagnosed with new-onset dis-
eases which have occurred in the other patient. We also use
R@Fk (k = [20,40]) to evaluate the ability of predicting oc-
curred and new-onset diseases. Here, R@k denotes the ratio
between the number of correctly predicted occurred (or new)


https://github.com/LuChang-CS/CGL

Occurred New-onset
Models
R@20 R@40 R@20 R@40
GRAM 21.05 23.11 1532 22.50
MedGCN  20.51 21.89 1538 21.53
CGL,,. 21.26 23.85 16.33 23.58

Table 5: R@k of predicting occurred/new-onset diseases.

(a) GRAM level 1 (b) GRAM level 2 (c) GRAM level 3

(d) Timeline level 1  (e) Timeline level 2 (f) Timeline level 3

(g) CGL level 1 (h) CGL level 2 (i) CGL level 3

Figure 3: Code embeddings in 3 levels learned by GRAM, Timeline,
and CGL. Colors correspond to disease types in each level.

diseases and the number of ground-truth diseases. We select
GRAM and MedGCN which have good performance in diag-
nosis prediction, and CGL,,. without clinical notes, because
we want to explore the effectiveness of the proposed observa-
tion and ontology graphs. Table 5 shows the results of R@k
on test data. We can see that CGL,,. has similar results to
GRAM on occurred diseases while achieving superior perfor-
mance on new-onset diseases. This verifies that our proposed
collaborative graph learning is able to learn from similar pa-
tients and predict new-onset diseases in the future.

Disease embeddings. To show the similarity of diseases,
we plot the learned 4795 code embeddings H, using t-SNE
[Maaten and Hinton, 2008]. Figure 3 shows the embeddings
learned by GRAM, Timeline, and CGL in 3 levels. Colors
denotes different disease types in each level. In Figure 3, dis-
ease embeddings learned by GRAM and CGL are basically
clustered according to their real categories, while Timeline
seems like a random distribution. In the plot of GRAM, we
observe the clusters are far away from each other given large
inter-cluster distances, while nodes in a cluster are close to
each other due to small intra-cluster distances. We can ob-
serve that the embeddings learned by GRAM do not capture
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pulmonary edema and
acute exacerbation of CHF
vs aspiration vs infection
(HCAP) ... Acuity suggests
possible flash pulmonary
edema vs aspiration ...

Patient had fairly
acute decompensation
of respiratory status to-
day with hypoxia and
hypercarbia associated
with hypertension ... Dif-
ferential diagnosis includes
flash pulmonary edema and
acute exacerbation of CHF
vs aspiration vs infection
(HCAP) ... Acuity suggests
possible flash pulmonary
edema vs aspiration ...

Hypertensive chronic
kidney disease

Acute respiratory fail-
ure

Congestive heart fail-
ure

Diabetes

Table 6: An example of word contributions without/with the TF-
IDF rectified penalty. The pink/gray color denotes high/low atten-
tion weights.

distinguishable features of low-level diseases as well as the
relationships across clusters. Therefore, we can infer that
learning proper representations that reflect disease hierarchi-
cal structures and correlations is helpful for predictions.

Contribution of notes. We compare the proposed TF-IDF
rectified attention weights with regular attention weights to
verify if the model focuses on important words. Table 6
demonstrates an example with a part of a note and predicted
diagnoses. In this example, the patient is diagnosed with 33
diseases, and CGL predicts 10 of them correctly in top 20 pre-
dicted codes. Important words with high o’ values are high-
lighted in pink. We first observe that pink words are relevant
to diagnoses. In addition, we notice the rectified attention
weights are more semantically interpretable. For example,
“acute” and “HCAP” (Health care-associated pneumonia) get
higher weights with the rectified attention loss. Meanwhile,
we show the unimportant words with low o’ values in gray.
We observe that our model detects unimportant words which
have less contributions. For example, “patient” and “diag-
nosis” are regarded as an unimportant word but not captured
in the regular attention mechanism. Therefore, we may con-
clude that the TF-IDF-rectified attention method improves the
accuracy of interpretations using clinical notes.

5 Conclusion

In this paper, we propose CGL, a collaborative graph learning
model to jointly learn the representations of patients and dis-
eases, and effectively utilize clinical notes in EHR data. We
conducted experiments on real-world EHR data to demon-
strate the effectiveness of the learned representations and per-
formance improvements of CGL over state-of-the-art models.
We also provide analysis of CGL on multiple aspects, includ-
ing new onset diseases, disease embeddings, and contribution
of clinical notes. In the future, we plan to explore methods to
quantify the contributions of certain admissions to each pre-
dicted medical code. Usage of single admission records in
EHR data will also be considered for further investigation.
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Algorithm 1: Embedding(C, K)

Algorithm 3: CGL-Training(D, K, L)

Input : The medical code set C; level number K of
the ICD-9-CM structure
Output: Medical code embedding E

1 for k< 110 K do

2 | Ej < initialize embedding for codes in level k
3 end

4 E + blank embedding matrix for leaf nodes

s fori < 110 |C| do

6 e, «e=EoE, & ,... 0E,

7 E; +— ¢;

s end

9 return E

Algorithm 2: GraphLearning(E, Ayc, Acc, L)

1

Input : The medical code embedding E; adjacency
matrices Azsc, Acc of the observation and
ontology graph; layer number L

Output: Final medical code embedding H,
HY « P

2 H£0)<—E
sforl< 0t L —1do

4 Zl(,l) + aggregate neighbors (H((;l)) of patient

nodes on the observation graph

5 ® ¢ calculate the ontology weight using Eq. (3)

7 {p,c}

6 Zg) <— aggregate neighbors (H;(,l), ‘IJHEI)) of code

nodes on the observation and ontology graph

g message passing from Zg o}

s end
9 ZEL) <+ aggregate neighbors (H,(,L_l)7 @HgL_l)) of

10 H. < message passing from Z.

code nodes on the observation and ontology graph
(L—1)

n return H,.

A Pseudocode

The pseudo-code of hierarchical embedding, collaborative
graph learning, and training CGL is described in Algorithm 1,
2, and 3, respectively.

B Parameter Settings for Baselines

All models were implemented by Python 3.7.4 and Tensor-
flow 2.3.0 in a machine with Intel 19-9900K CPU, 64GB
memory, and Geforce RTX 2080 Ti GPU with CUDA 10.1.
The parameter settings for baselines are listed as follows:

RETAIN [Choi et al., 2016b]: RETAIN uses two RNNs
with reversed time to calculate attention values of visits and
predict heart failure in the next visit. The embedding size
for visits is 256 and the hidden layer size for two RNN
layers is 128.

Deepr [Nguyen et al., 2017]: Deepr uses the embedding of
medical codes as input and uses a CNN to predict the re-
admission within 6 months. The embedding size for med-

W =

e e N w»n s

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Input : An EHR dataset D; level number K of the
ICD-9-CM structure; graph layer number L
C <+ medical code set of D
U <+ patient set of D
Ay, Acc < build observation and ontology graphs
from D
F <+ Embedding (C, K)
H. < GraphLearning (E, Ayc, Acce, L)
Q <« initialize word embeddings
repeat
u <— a patient in ¢/ with multiple admissions
y < ground-truth of u
Cq,...,Cp < diagnoses of u’s all T visits
Nt < notes of u’s T-th visit
fort < 1t0oT do
\ v; < average embeddings of code in C
end
R+ CIRIJ(Vl,VQ7 - 7VT)
0, < Visit output by attention on R
Q’ < project Q to the dimension of visit
N « select word embeddings from Q' in N
0, < note output by attention with o,, on N
O <+ o,Do,
y < predictions using O
Lo < TF-IDF-rectified loss of N
L = AL + CrossEntropy(y, y)
Optimizing the model using £
until convergence

ical codes is 100. Kernel window size is 3. The number
of kernels is 4. The classifier is a network with two dense
layers and the size of the first layer is 64.

GRAM [Choi et al., 2017]: GRAM uses a knowledge DAG
of medical codes to calculate their embeddings. An RNN
layer is applied to learn the features of visits and predict
medical codes and heart failure in the next admissions. The
embedding size for graph nodes is 100, attention size is
100, and the size of RNN hidden layers is 128.

Dipole [Ma et al., 2017]: Dipole applies attention on a
bi-directional RNN layer and predicts diagnoses in pa-
tients’ next visits. The embedding size for visits is 256.
Concatenation-based attention size is 128. The hidden
layer size for the RNN layer is 128.

Timeline [Bai et al., 2018]: Timeline calculates the weight
of codes using time duration and predicts medical codes for
patients’ next visits. It uses an attention layer followed by a
bi-directional RNN layer. The embedding size for medical
codes is 100. The attention layer size is 100. The hidden
layer size for RNN is 128.

MedGCN [Mao et al., 2019]: MedGCN constructs a het-
erogeneous graph for patients, visits, medicines, and lab
results. The hidden units of a graph layer are 128. The
dropout rate is 0.1.

LRyotes: The input of LR;ees is the TF-IDF feature vec-
tor of each note. The input dimension is the dictionary



No. Medical Code Disease Visit Number  Visit Percentage
1 401.9 Unspecified essential hypertension 7,168 36.03%
2 428.0 Congestive heart failure, unspecified 6,580 33.08%
3 42731 Atrial fibrillation 5,279 26.54%
4 5849 Acute kidney failure, unspecified 4,312 21.67%
5  414.01 Coronary atherosclerosis of native coronary artery 4,176 20.99%
6 250.00 Diabetc?s mellitus without mention of complication, type II or 3.734 18.77%

unspecified type, not stated as uncontrolled
7 2724 Other and unspecified hyperlipidemia 3,257 16.37%
8 518.81 Acute respiratory failure 3,073 15.45%
9 599.0 Urinary tract infection, site not specified 2,956 14.86%
10 530.81 Esophageal reflux 2,621 13.17%

Table 7: Disease distributions in MIMIC-III.

size, i.e. 67,913. For a word that occurs in each note, the
corresponding element in the feature vector is the TF-IDF
value of this word. For other words in the dictionary that do
not occur in this note, corresponding elements are set to 0.
LRyotes Uses one dense layer to predict 4,795 diseases in the
diagnosis prediction and predict 1 disease in the heart fail-
ure prediction. Therefore, the parameter numbers of LR es
in two tasks are 325.65M and 0.07M, respectively.

C Disease Distribution of MIMIC-III

We report disease distributions, i.e., the number of visits con-
taining a disease, of the MIMIC-III dataset in Table 7. We
selected top 10 commonest diseases appearing in patients’
visits.

D Experimental Results on Disease
Embeddings

We further select a CNN-based model: Deepr, a graph-
based model: GRAM, an RNN-based model: Timeline, and
CGL without hierarchical embeddings: CGLj,. to compare
the learned disease embeddings with CGL. Figure 4 demon-
strates the learned embeddings of these models. It shows that
the embeddings leaned by Deepr, Timeline, and CGL},_ which
do not utilize the hierarchical structure of medical codes tend
to be random distributions. Combining the results of Table 2
and 4, we can further infer that effective utilization of the hier-
archical structure is able to help models to make predictions.

(a) Deepr level 1 (b) Deepr level 2 (c) Deepr level 3

(e) GRAM level 2 (f) GRAM level 3

(g) Timeline level 1  (h) Timeline level 2 (i) Timeline level 3

(j) CGLy,. level 1 (1) CGLy,. level 3

iy Yiys
. PF . o ¥

(k) CGLy,. level 2

@
Xa

(m) CGL level 1 (n) CGL level 2 (0) CGL level 3
Figure 4: Scatter plot in three levels of code embeddings learned by
Deepr, GRAM, Timeline, CGL}.-, and CGL. Colors correspond to

disease types in each level.
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