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Abstract
We introduce a novel check-in time prediction
problem. The goal is to predict the time a user will
check-in to a given location. We formulate check-
in prediction as a survival analysis problem and
propose a Recurrent-Censored Regression (RCR)
model. We address the key challenge of check-in
data scarcity, which is due to the uneven distribu-
tion of check-ins among users/locations. Our idea
is to enrich the check-in data with potential visi-
tors, i.e., users who have not visited the location
before but are likely to do so. RCR uses recur-
rent neural network to learn latent representations
from historical check-ins of both actual and poten-
tial visitors, which is then incorporated with cen-
sored regression to make predictions. Experiments
show RCR outperforms state-of-the-art event time
prediction techniques on real-world datasets.

1 Introduction
The prevalence of GPS-enabled devices such as smart-
phone has led to the democratization of location-based ser-
vices. Location-Based Social Networks (LBSNs), such as
Foursquare and Facebook Places, collect huge amount of lo-
cation data for millions of individuals, making it possible to
study human mobility patterns at unprecedented scales.

An intriguing use of location data is to predict movement of
individuals, which has enormous application potential [Cho
et al., 2011]. Towards the goal of thoroughly understand-
ing human mobility patterns, we propose to leverage check-
in data collected by LBSNs and aim to predict the time of
future check-ins. Given a user u and a location of interest
l, we want to predict the exact time when u will check-in
to l in the future, regardless of whether the user has visited
the location before or not. Figure 1 illustrates check-in time
prediction problem with an example. A user has reported five
check-ins {c1, c2, c3, c4, c5} from 8:25am to 1:20pm on a sin-
gle day. Using these check-ins as observation, the goal is to
predict when the user will check-in to the airport, using a
model learnt from historical user check-ins to the airport.

∗This work is done when the first author was a graduate student
with the Computer Science department at Iowa State University.
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Figure 1: An illustration of check-in time prediction.

Movement prediction has been studied extensively in the
liturature. Existing works mainly focus on next location pre-
diction [Cho et al., 2011; Noulas et al., 2012; Gao et al.,
2012; Scellato et al., 2011; Liu et al., 2016; Ye et al., 2013],
where the goal is to predict the next location a user is most
likely to visit given his/her current location. However, to the
best of our knowledge, predicting the check-in time to a given
location remains to be an open issue. Our work complements
existing techniques by addressing this particular challenge.

Extending existing research on movement prediction to the
time dimension will potentially benefit various time-sensitive
applications. For example, identifying people who are most
likely/not likely to visit a shop or attraction within the next
two hours or the next few days. Such information can be used
for more efficient targeted-advertisement or tourism service.

Check-in time prediction can be formulated as a regres-
sion problem since time is a continous variable. Neverthe-
less, modeling the check-in time to a location l is a chal-
lenging task due to check-in data scarcity. Although the total
amount of check-ins is abundant, they are highly unevenly
distributed among users and locations (Figure 2). For exam-
ple, it is estimated that, on Foursquare, only 10% of loca-
tions have more than 10 check-ins, and about 50% of users
reported fewer than 10 check-ins [Noulas et al., 2012]. To
alleviate data scarcity, we propose to enrich the check-in data
using potential visitors to l. That is, the users who did not
check-in to l so far, but is likely to do so in the future. In-



spired by several human mobility studies [Cho et al., 2011;
Noulas et al., 2012], we propose a matrix factorization-based
approach to identify potential visitors.
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Figure 2: Distribution of 3300 user check-ins among 420 locations
in New York City, randomly crawled from Foursquare dataset.

Introducing potential visitors, however, does not automat-
ically solve the data scarcity problem. Standard regression
methods cannot directly use information about potential vis-
itors whose actual check-in time to l is not observed. To
address this issue, we form check-in time prediction as a
survival analysis problem and propose a Recurrent-Censored
Regression (RCR) model. In order to capture the spatio-
temporal nature of check-in data, we design a gated recurrent
units (GRUs) structure [Cho et al., 2014] to learn latent repre-
sentation of historical check-ins of a user. This representation
is then incorporated into censored regression to make predic-
tions. We summarize our contributions as follows:

• We identify an open issue in human mobility research,
namely, the check-in time prediction problem. In particu-
lar, given a user and a location of interest, we aim to predict
the time when the user will check-in to that location.

• We address the key challenge of check-in data scarcity.
Our method is to enrich the check-in data with potential
visitors. In order to effectively use both actual and poten-
tial visitors, we propose a novel recurrent-censored regres-
sion model which is able to learn the latent dependencies
of check-in time with respect to historical check-ins.

• The proposed model is evaluated on real-world data. The
results show that RCR model achieves significant per-
formance improvement compared to state-of-the-art event
time prediction techniques.

The rest of the paper is organized as follows: Section 2
summarizes related work. We give a formal definition of the
problem in Section 3. We describe the spatio-temporal fea-
tures we used in Section 4 and present the proposed model in
Section 5. Our experimental results are shown in Section 6.
Section 7 concludes the paper.

2 Related Work
We briefly summarize the research works related to check-in
location prediction and time-to-event modeling.

2.1 Check-in Location Prediction
The first large-scale study on human mobility patterns using
location data collected by LBSNs is due to Cho et al. [Cho et
al., 2011]. They proposed two models, the Periodic Mobility

Model and the Periodic Social Mobility Model, which can re-
produce a user’s movement. This pioneering work has since
inspired several lines of research works on check-in location
prediction, i.e., predict the next location(s) a user is most
likely to visit. Noulas et al. [Noulas et al., 2012] proposed
to explore check-in data, instead of plain geographic coordi-
nates, to predict the next location a user will visit. The key
difference here is check-in data gives the exact place (e.g.,
a store, a coffee shop, etc.) a user visits. It allows users to
train a model using features such as the type and name of
the location. In [Scellato et al., 2011], the authors proposed
the NextPlace framework, which is not only capable of pre-
dicting the next check-in location of a user, but also the user’s
arrival time and the interval of time the user spent in that loca-
tion. In [Gao et al., 2012], the authors proposed an improved
model for next location prediction. Their model takes into ac-
count not only historical spatial trajectories but also the tem-
poral periodic patterns of a user. Recently, a Spatial Temporal
Recurrent Neural Network (ST-RNN) was introduced in [Liu
et al., 2016] for check-in location prediction. This technique
outperforms several existing models. This result demostrated
the potential of deep neural networks in check-in data mining.
The most recent work in this field is by [Rakesh et al., 2017]
where the authors proposed a novel model to predict a user’s
preference of a sequence of locations for the purpose of tour
recommendation.

2.2 Time-to-Event Prediction
In time-to-event prediction, there is a set of entities, among
which some have experienced a particular event. The goal
is to model the time when the event will occur for a given
entity. This problem arises from various application fields,
such as health care [Li et al., 2016c], crowed sourcing [Li
et al., 2016b], and education [Ameri et al., 2016]. To our
knowledge, such models have never been investigated in the
context of spatio-temporal data.

Commonly, the occurrence of an event is not observed for
every entity in the dataset. An entity that has not experienced
the event is said to be censored since the event time required
for training an estimation model is missing. Several mod-
els have been developed to make use of such censored in-
stances in the field of survival analysis. These models can
be categorized into three types. 1. Cox proportional haz-
ards model [Cox, 1992]. The Cox model is semi-parametric
which does not make any assumption about the distribution
of event occurrence time and is typically learned by optimiz-
ing a partial likelihood function. To efficiently handle high-
dimensional data, some variations of Cox model have been
proposed, including [Tibshirani, 1997; Simon et al., 2011]. 2.
Parametric censored regression model [Lee and Wang, 2003;
Wei, 1992] assumes event occurrence time follows a particu-
lar distribution such as Weibull or log-logistic. 3. Censored
linear regression. Due to the existence of censored instances,
the least-squares estimator of standard linear regression can-
not be directly used. Several techniques have been proposed
to solve this problem, e.g., the Tobit model [Tobin, 1958]
and the Buckley-James estimator [Buckley and James, 1979].
There is a recent survey [Wang et al., 2018] that discusses ma-
chine learning techniques for survival analysis in great detail.



3 Problem Formulation
First, we formally define the notions of check-in and user-
trajectory used in this paper.

Definition 1 (Check-in) Let U denote a set of unique user
identifiers, L denote a set of locations, and T denote the time
domain. A check-in c is a triple (u, l, t) ∈ U × L× T , which
indicates the user u has visited l at time t.

Definition 2 (User-trajectory) Let C be a collection of
check-ins and u ∈ U a user, then the set Cu := {(u, l, t) ∈
C} is the user-trajectory (or simply trajectory) of u.

Problem Statement : Given a location of interest l ∈ L
and a user of interest u ∈ U , the goal of check-in time pre-
diction is to predict the time t when u will check-in to l, us-
ing a sequence of historical check-ins {c1, c2, ..., ck} ⊆ Cu
reported by u as observations. Besides the historical check-
ins, a user’s profile on the location-based social network (e.g.,
his/her social connections) usually contains valuable informa-
tion about the user, hence we also consider different ways to
make use of such information extracted from the user profile
in check-in time prediction.
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Figure 3: Check-in time prediction formulated as a censored regres-
sion problem.

In check-in time prediction, each user is an entity and we
are interested in modelling time of the event “A user u visits
a location l”. To illustrate, the trajectories of five users are
shown in Figure 3. Among them, three users check-in to a
Starbucks coffee store, and the other two users did not (dur-
ing the observation window). The Time-axis is relative so it
does not require all the trajectories to start at the same time.
In this example, we want to model the check-in time for this
Starbucks coffee store using these trajectories as training in-
stances, such that given a new user, we are able to predict his
check-in time to this location.

If a user ui has reported a check-in to l, we know the exact
time of that visit, denoted by Ti. However, if ui is a poten-
tial visitor, the check-in time Ti is an unknown variable, and
the user is said to be censored 1. In order to model check-in
times using both actual and potential visitors, we formulate
the check-in time prediction problem as a survival analysis

1An instance is called right censored if its event time is greater
than its last observed time. For check-in data, all censored instances
are right censored.

problem. At the core of survival analysis is a set of tech-
niques termed censored regression, which can take advantage
of censored instances.

Formally, we denote each user ui as (Xi, ti, δi), where
Xi denotes spatio-temporal feature vector extracted from the
user’s trajectoryCui

. δi indicates whether the user has visited
l, i.e., δi = 1 if ui reported a check-in to l and δi = 0, other-
wise. The observed time ti for a user is defined as follows:

ti =

{
Ti, if ui has visited l (δi = 1)

Ui, otherwise (δi = 0)
(1)

where Ui is the time of the last check-in of ui on the trajec-
tory. For a potential visitor, although Ti is unknown, we do
know the check-in time must be no earlier than Ui, which can
be seen as a lower bound. The time variable we used here is
relative, i.e., Ti does not denote a specific point in the time
domain. Instead, it denotes the time elapsed since the begin-
ning of the trajectory of ui.

In survival analysis, censored regression is typically used
to model non-recurring events, e.g., the death of a patient.
One problem that arises here is about handling a user’s multi-
ple check-ins to l in our formulation. Our approach is to par-
tition the user’s trajectory into several non-overlapping tra-
jectory segments, each containing one (for visitors) or none
(for potential visitors) check-in to l. Each trajectory segment
is treated as one instance for the model.

The proposed solution consists of two general steps (Fig-
ure 4). The first step is spatio-temporal feature extraction. In
this step, we select a set of visitors and potential visitors to
the location of interest. We then create trajectory segments of
these users’ trajectories. Each check-in within a segment is
represented by a spatio-temporal feature vector. This is fol-
lowed by the model training and prediction step. The input
to the RCR model is a sequence of feature vectors generated
from a trajectory segment. The trained model is then used to
make predictions given a new user trajectory as observation.

4 Spatio-Temporal Feature Extraction
4.1 User Selection
Given a location of interest l, user selection is the process of
finding a set of users Ut ⊆ U whose trajectories can be used
to model the check-in time to l. Ut consists of two types of
users, visitors to l, and potential visitors who did not visit l
before but are likely to do so in the future. Finding visitors
is straightforward, hence we will focus on how to identify
potential visitors.

We propose to use Matrix Factorization, a widely-used
technique for recommendation systems, to identify potential
visitors. In Matrix Factorization, both users and locations are
mapped into a k-dimensional latent space. Given n users and
m locations, let U ∈ Rk×n denote the latent user feature ma-
trix, where the column vector ui ∈ U is the feature vector of
the ith user. Similarly, we define the location feature matrix
and location feature vector as L ∈ Rk×m and li, respectively.
Whether the ith user is likely to visit the jth location is pre-
dicted by the product of their feature vectors p̂ij = uTi lj . The
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latent features are estimated using:

arg minU,L
∑
i,∀j∈Mi

Ei(pij , p̂ij) + Θ(U,L) (2)

where E(·) is a loss function, e.g., Mean Square Error, Mi is
the observed check-in locations of the ith user, and Θ(U,L)
the L2-regularization term:

Θ(U,L) = λu

2 ‖U‖
2
2 + λl

2 ‖L‖
2
2 (3)

where λu and λv are hyper-parameters to control the regular-
ization strength. We define u as a potential visitor to l if the
following three conditions are all satisfied:
• Geographic Distance: u lives in the same city where l is lo-

cated. City information can be easily inferred by majority-
voting on cities the user has visited.

• Social Connection: At least one friend of u has visited l
before. Social connections of users can be extracted from
the user’s Location-based Social Network (LBSN). For ex-
ample, on Foursquare, users have the option to “follow”
others, which can be seen as a directed social connection.

• Location Preference: u is predicted to visit l using the ma-
trix factorization method described above.

4.2 Trajectory Segments Generation
Our hypothesis is that consecutive check-ins are likely to be
correlated. But if there is a significant time interval between
two check-ins, they are not likely to be related. When a
user u reports a check-in to l, we are particularly interested
in the locations he has visited precedent to l. These prece-
dent check-ins and l together makes a trajectory segment of
u. The size of the trajectory segment is constrained by a
hyper-parameter termed observation window size, denoted by
T . Let C = {u, l, t} be a check-in to l, the trajectory segment
containing C consists of C and all the check-ins reported be-
tween min(tprev, t − T ) and t. Here tprev is the previous
time the user visited l before t. Following this hypothesis,
we generate one trajectory segment for each check-in to l.
The trajectory of a potential visitor, however, does not con-
tain a check-in to l. Thus, its trajectory segment consists of n
consecutive check-ins that fall within the observation window
from the last known check-in on the trajectory.

4.3 Feature Extraction
We extract two sets of features for a trajectory segment:
User Mobility Features: These features describe the user
who generated the trajectory segment.

(i) Activity Level. The average number of check-ins per day
reported by the user.
(ii) Category Preference. This feature consists of a set of inte-
ger values, each corresponding to the total number of check-
ins reported by the user in a specific location category. The
location category information is usually available on LBSNs
such as Foursquare.
(iii) Travel Cost. It is defined as Di,j = dl/dH , where dl
is the distance between the user’s home and l, and dH is the
average distance between his home and the other locations
he checks-in to. We use the method discussed in [Cho et al.,
2011] to estimate a user’s home location.
(iv) Historical Visits. For historical visits, we compute how
many times a user has checked into l on his entire trajectory,
the time since last visit, and the average interval between two
previous visits to l.

Check-in Features: These features are generated for each
check-in present on the trajectory segment.
(i) Geographic Distance. The Euclidean distance between the
check-in location and l.
(ii) Location Category. The category of the check-in location,
e.g., being a shop or restaurant. This information is available
on LBS such as Yelp and GoogleMaps.
(iii) Precedent Location. We say a location lp is a precedent
location of l if there exists a check-in to lp precedent to the
check-in to l on any trajectory. A check-in to lp serves as
an indicator that the user may later visit l. Using association
rule mining [Agrawal et al., 1993], we identify precedent lo-
cations lp of l with high support (s) and confidence (c):

s(lp → l) = σ(lp ∪ l)/n (4)
c(lp → l) = σ(lp ∪ l)/σ(lp) (5)

Here, lp → l means the rule that a user who visits lp first
will visit l in the future. n is the total number of trajectory
segments, σ(lp) denotes the number of trajectory segments
containing lp, and σ(lp ∪ l) the ones containing both lp and
l. Together, they measure how likely and frequently this rule
can be observed on a real trajectory. This feature is a Boolean
value that indicates whether this check-in location is such a
precedent location to l or not.
(iv) Temporal Features, including day of the week and time
of the check-in, time since the previous check-in, and the av-
erage number of check-ins per hour on this segment.



5 Recurrent-Censored Regression Model
The goal here is to model a user’s check-in time to a given
location l. The check-in time T is represented as a continu-
ous random variable. Let S(t) denote the probability that the
check-in occurs later than a specific time point t, defined as:

S(t) = Pr(T > t) =
∫∞
t
f(u)du = 1− F (t) (6)

where f(u) is a probability density function and F (t) the
cumulative distribution function. In order to predict event
times, censored regression attempts to estimate the check-in
rate function r(t), which is the instantaneous rate of occur-
rence of the check-in at time t. It is defined as:

r(t) = limdt→0
Pr(t≤T<t+dt)

dt (7)

The numerator here is the probability that the check-in will
occur in the time interval [t, t + dt), given that it has not oc-
curred before t. In the traditional censored regression setting,
each entity is represented by a feature vector which is used
to construct r(t). In contrast, our model adapts to the spatio-
temporal nature of check-ins. It learns a latent representation
of a user’s check-ins and then uses it to construct r(t).

Figure 5 illustrates the proposed RCR model. We are par-
ticularly interested in modelling the conditional check-in rate
at time t given a sequence of check-ins before time t. Let
X = {X1, X2, ..., Xk} denote the feature vectors of the k
check-ins, and U the user mobility feature vector. We define
the conditional check-in rate in the RCR model as follows:

r(t|X,U) = r0(t)exp(H(t)) (8)

where r0(t) is the baseline check-in rate function. The key
component here is H(t), which is the latent representation of
each check-in within X and U .

In RCR, H(t) is learned using a neural network of gated
recurrent units. Given X and U as input, the model iterate
through X1, X2, ...Xk. Let ti be the timestamp of Xi. At the
ith step, the model learns a representation of X1, X2, ...Xi,
denoted by h(ti). It then uses h(ti) and U to estimate H(ti),
the conditional check-in probability at time ti. At each step,
the gated recurrent units update h(ti) using Xi, U , as well
as the representation h(ti−1) generated in the previous step.
The following equations describe this updating process:

zt = σ
(
Wz · [h(ti−1), Xi]

)
(9)

rt = σ
(
Wr · [h(ti−1), Xi]

)
(10)

ĥ(ti) = tanh
(
W · [rt ∗ h(ti−1), Xi]

)
(11)

h(ti) = (1− zt) ∗ h(ti−1) + zt ∗ ĥ(ti) (12)

And H(ti) is then computed using h(ti) and U :

H(ti) = tanh
(
β0 + β1 ∗ h(ti) + β2 ∗ U

)
(13)

In the above equations, [·, ·] denotes the concatenation of two
vectors. Wz , Wr, and W are the weight matrices of the re-
current neural network and β0, β1, β2 are model parameters.
zt and rt correspond to the forget gate and the reset gate, re-
spectively. Intuitively, zt is used to forget irrelevant informa-
tion learned from X1, X2, ..., Xi−1, while rt determines the
influence of Xi on h(ti). This gated structure is particularly
suitable for identifying check-ins that have the most impact
on the event time.
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Figure 5: One unit of the recurrent-censored regression model.

During the training phase, a collection of {X,U} is given
as training instance. We use the Back Propagation Through
Time algorithm [Rumelhart et al., 1988] to train the RCR
model. The loss function we used is the negative likelihood
of observing the training instances, which takes into consid-
eration both visitors and potential visitors.∏

i:δi=1
exp(H(ti))∑

j:tj≥ti
exp(H(ti))

(14)

The baseline function is parametrized as follows:

r̂0(ti) = 1/
∑
j∈Ri

eH(tj) (15)

where Ri is the set of instances whose event times are equal
to or greater than ti. In each training iteration, the model up-
dates its parameters according to output of the loss function.
It attempts to reach the optimal parameter using stochastic
gradient descent until it achieves convergence.

6 Experimental Results
To the best of our knowledge, there is no existing technique
designed particularly for check-in time prediction. Hence,
we compare the proposed model with standard and censored
regression models which can be adapted to our problem.
• Most Popular Hour (Popular): This model simply selects

the most popular check-in hour of the given location as the
predicted check-in time for every user.

• Standard linear regression model (Linear) applied on the
spatio-temporal features to directly predict the check-in
time. The feature vectors in X are averaged out into one
vector and then concatenated with U .

• A feedforward deep neural network (DNN) with three
fully-connected hidden layers. It uses the same hidden
layer size and learning rate as our RCR model. It also uses
the single feature vector to make prediction.

• The Accelerated Failure Time model (AFT) which is a
widely used parametric model for censored regression. We
fit a logistic distribution to this model to make predictions.

• The Cox proportional hazards regression model (Cox)
is a state-of-the-art semi-parametric censored regression
model.

Among the above models, Popular, Linear, and DNN cannot
utilize potential visitors. Censored regression-based models,



Table 1: Average Time-Dependent AUC with and without potential visitors on Foursquare dataset.
Visitors With potential visitors Without potential visitors Average

gainPopularity Low Medium High Low Medium High

M
od

el
s

Popular 0.371 0.413 0.410 0.371 0.413 0.410 0
Linear 0.550 0.587 0.594 0.550 0.587 0.594 0
DNN 0.537 0.601 0.610 0.537 0.601 0.610 0
AFT 0.592 0.659 0.663 0.552 0.591 0.520 15.09%
Cox 0.604 0.672 0.690 0.549 0.596 0.524 17.77%
RCR 0.710 0.734 0.742 0.574 0.590 0.555 27.17%

Table 2: Average Time-Dependent AUC with and without potential visitors on Gowalla dataset.
Visitors With potential visitors Without potential visitors Average

gainPopularity Low Medium High Low Medium High

M
od

el
s

Popular 0.380 0.434 0.440 0.380 0.434 0.440 0
Linear 0.557 0.575 0.590 0.557 0.575 0.590 0
DNN 0.542 0.592 0.607 0.542 0.592 0.607 0
AFT 0.589 0.661 0.670 0.562 0.580 0.579 11.56%
Cox 0.612 0.690 0.692 0.565 0.579 0.594 14.72%
RCR 0.705 0.743 0.749 0.557 0.583 0.599 26.34%

including AFT, Cox, and RCR, can use potential visitors. Re-
call that Matrix Factorization (MF) is used to identify poten-
tial visitors. The size of latent variables used in MF is set to
6, which has been shown to be suitable for location recom-
mendation systems [Li et al., 2016a]. We implemented the
RCR model in Python with Tensorflow2. The size of hidden
layer of RCR is set to 128. During the training process, the
learning rate is set to 0.01 with a momentum of 0.9.
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Figure 6: Potential visitors found for different location type.

We evaluate the proposed model on two widely used
datasets crawl from location-based social networks: 1)
Foursquare New York City (NYC) and Tokyo check-in
datasets [Yang et al., 2015]3. This dataset was collected from
Foursquare.com where information of location categories and
the social connection between users are available. NYC and
Tokyo and the two most popular cities on the social net-
work. 2) Gowalla global check-in dataset with social con-
nections [Cho et al., 2011]4. However, location category is
not available in this dataset. And since Gowalla is closed
now, we cannot collect such information online. Thus we will
ignore location category for our experiments on this dataset.

2https://github.com/yglhub/Check-in-Prediction
3https://sites.google.com/site/yangdingqi/home/foursquare-

dataset
4https://snap.stanford.edu/data/loc-gowalla.html
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(d) Gowalla dataset.
Figure 7: F-1 score for high popularity locations.

We consider three types of locations, based on their over-
all popularity: High (>75 check-ins), Medium (>25 and≤75
check-ins), and Low (≤25 check-ins). For each location type,
we randomly select 50 locations from the dataset. Figure 6 il-
lustrates the average number of visitors and potential visitors
found for high, medium, and low popularity locations.

Conventional regression metrics such as mean squred er-
ror are not suitable for censored regression due to the lack of
ground truth (i.e., actual check-in time) for the censored in-
stances [Lee and Wang, 2003]. Therefore, we use two alter-
native metrics. The first metric is Time-Dependent AUC (TD-
AUC) which is widely used to evaluate the performance of
censored regression models [Harrell et al., 1984]. TD-AUC
is computed as follows:

1
N

∑
i∈1...N,δi=1

∑
yj>yi

I[S(ŷj |Xj) > S(ŷi|Xi)] (16)
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(d) Gowalla dataset.
Figure 8: F-1 score for medium popularity locations.
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Figure 9: F-1 score for low popularity locations.

where N is the total number of comparable pairs, ŷi is the es-
timated check-in time, and I[·] is the indicator function. Here,
a comparable pair is the check-in time of any two different
visitors (including the potential visitors) to the location of in-
terest. Hence for n visitors there can be (n2 ) comparable pairs.
Intuitively, TD-AUC measures the consistency between the
predicted and actual ordering of a set of check-ins.

As for the second metric, we use the F-1 score for the
task of visitor identification for user-defined time windows.
Specifically, given the location l, a set of candidate visitors
V , and a parameter w, the task is to identify the users in V
who will visit l within the next w hours.

To demonstrate the impact of using potential visitors, we
show the performance of different models with and without
using potential visitors in the training process (which is not
applicable for Popular, Linear, or DNN since the 4 models
cannot use information about potential visitors). The TD-
AUC result is shown in Table 1 (on Foursquare dataset) and
Table 2 (on Gowalla dataset). Without enriching the dataset
with potential visitors, all models performed poorly: Note
that, on each test point even the best performer is only slightly
better than random guess. Nevertheless, when potential vis-
itors are allowed, censored regression-based models perform
better than standard regression models, in general. We draw
two conclusions: 1) The proposed RCR model significantly
outperforms all the baselines when potential visitors are al-
lowed. 2) Using potential visitors to enrich check-in data is
effective, and the proposed model is the most efficient in us-
ing information about potential users.

For each location l used in our experiment, we randomly
select a user set containing equal number of visitors, poten-
tial visitors, and other users. We want to identify the users
who will visit l within w hours. Note that the Popular model
is not suitable for this task since it makes the same predic-
tion for every user. Hence we exclude it from the compar-
ison. Figures 7, 8, and 9 show the average F-1 scores@w

for high, medium, and low popularity locations, respectively.
We also show separately the performance gain of using po-
tential visitors (averaged on w). It can be seen that censored
regression models can all benefit from using potential vis-
itors. The RCR model demonstrates outstanding ability in
exploiting potential visitors comparing with state-of-the-art
censored regression models. When potential visitors are used,
the RCR model is able to achieve 86% performance gain on
average than AFT and Cox. This advantage comes from the
unique recurrent structure of the RCR model designed partic-
ularly for handling spatio-temporal data.

7 Conclusion
Check-in time prediction is an intriguing problem but has not
been studied in the literature. The key challenge here is the
scarcity of check-in data. This is because check-ins are highly
unevenly distributed among a huge number of users and lo-
cations. We propose a comprehensive solution to address
this problem by enriching the dataset with potential visitors,
and designing a novel Recurrent-Censored Regression (RCR)
model that can exploit both actual and potential visitors to im-
prove performance. The proposed RCR model incorporates
gated recurrent unit network into censored regression. This
unique structure allows RCR to outperform the state-of-the-
art event time prediction techniques.
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