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Abstract—Small datasets pose a tremendous challenge in
machine learning due to the few available training examples
compounded with the relative rarity of certain labels which
can potentially impede the development of a representative
hypothesis. We define “Rare Datasets” as ones with low
samples/features ratio and a skewed label distribution.
Since a generalized training model can not be theoretically
guaranteed, a method to leverage similar data is needed.
We propose the first algorithm that utilizes transfer learning
for the label space, present theoretical verification of our
method and demonstrate the effectiveness of our framework
with several real-world experiments. In addition, we formally
describe what constitutes a “Rare Dataset” and present a
detailed characterization of related methods.

Keywords: Rare class, transfer learning, class imbalance,
AdaBoost, Weighted Majority Algorithm, healthcare.

I. INTRODUCTION

Standard machine learning methods require a training

dataset with adequate training examples and a relatively

balanced ratio of labels. Several applications challenge these

assumptions since there could be a limited number of

training examples and a large number of dimensions. Text

and image datasets are high-dimensional datasets that often

occupy a large hypothesis space requiring complex models

with a high VC dimension [1] and a large number of training

examples. This problem is compounded when the dataset is

highly skewed and unevenly represented where the majority

of samples belong to an overrepresented (majority) class and

only a few examples belong to an underrepresented (minor-

ity) class [2]. A heart failure re-hospitalization prediction

problem is presented in this paper where the dataset has a

small number of examples and an imbalanced label space.

The concept of compensating for the skew within the label

space belongs to the domain of “Imbalanced Learning”

and the concept of extracting knowledge from an auxiliary

dataset to compensate for the overall lack of samples belongs

to a family of methods known as “instance-based transfer

learning”. We aim to construct a hypothesis and uncover

the separating hyperplane with only a handful of training

examples with data that is complex in both the feature and

label spaces. The complexity of the data and the rarity of

training examples prohibit hypothesis construction by human

experts or standard algorithms and thus we present a “last

resort” sort of solution that can be applied when nothing

else suffices.

II. FORMAL DEFINITION OF “RARE CLASSES”

We will refer to Figure 1 for an overview of four different

types of datasets and the associated data-mining methods.

Figure 1: Different Types of Datasets

A. Standard Dataset

Standard datasets are the most studied in the machine

learning domain. Standard datasets are balanced where

relatively equal numbers of samples belong to each label

with a label of approximately one. Standard datasets

have an adequate number of examples to construct a

representative model. “Probably Approximately Correct

(PAC)” learning theory [3] estimates the minimal required

number of samples needed to develop a hypothesis. PAC

is applied to uncover if the ratio of the dimensions to the

number of training samples is too large. If that ratio is
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exceedingly high, the hypothesis space would be too large

and prone to model over-fitting. PAC gives a theoretic

relationship between the number of samples needed in

terms of the size of hypothesis space and the number of

dimensions. The simplest example is a binary data set with

binary classes and d dimensions with hypothesis space of

size 22
d

, requiring O (2n) samples [4].

B. Imbalanced Dataset

A dataset is considered imbalanced if it is skewed and

unevenly represented where most of its samples belong to

an overrepresented (majority) class and only few samples

belong to an underrepresented (minority) class [2]. Since

traditional learning methods are optimized to maximize

accuracy, they generally fail to develop a proper hypothesis

when overwhelmed by a majority class of examples [5]. In

imbalanced datasets, the data distribution of the majority

class significantly dominates the instance space.

The authors in [2] present a comprehensive review of the

methods that are applied for imbalanced data. They outline

different sampling methods, cost-sensitive learning methods,

kernel-based learning methods, and active learning methods.

A popular class imbalance algorithm, SMOTE [6], gener-

ates an arbitrary number of synthetic minority examples to

shift the classifier learning bias toward the minority class.

SMOTEBoost [6] is an extension work based on this idea

where the synthetic procedure was integrated with adaptive

boosting. Similar methods such as Borderline SMOTE [7]

and Adaptive Synthetic Sampling [8] have been proposed.

Sun et al. [9] proposed a cost-sensitive boosting algorithm to

undertake the class imbalance problem with multiple classes.

Most of the class imbalanced classification algorithms attach

a cost to the minority class as it is assumed that the
minority class is more important than the majority.

C. Transfer Dataset

Transfer learning datasets are balanced datasets where

classification on the dataset of interest (referred to as tar-

get set) is improved by including a similar and possibly

larger auxiliary dataset (referred to as the source set). Such

knowledge transfer can be gained by integrating relevant

source samples into the training model or by mapping

the source set training models to the target models. The

knowledge assembled can be transferred across domain tasks

and domain distributions with the assumption that they are
mutually relevant, related, and similar.

Pan and Yang [10] present a comprehensive survey of trans-

fer learning methods and discuss the relationship between

transfer learning and other related machine learning tech-

niques. Methods for transfer learning include an adaptation

of Gaussian processes to the transfer learning scheme via

similarity estimation between source and target tasks [11].

A SVM framework was proposed by Wu and Dietterich [12]

where scarcity of target data is offset by abundant low-

quality source data. Pan, Kwok, and Yang [13] used a

low-dimensional mapping space to reduce the distribution

difference between source and target domains by exploit-

ing Borgwardt’s Maximum Mean Discrepancy Embedding

(MMDE) method [14], which was originally designed for

dimensionality reduction. Pan et al. [15] proposed a more

efficient feature-extraction algorithm, known as Transfer

Component Analysis (TCA), to overcome the computa-

tionally expensive cost of MMDE. Several boosting-based

algorithms have been modified for transfer learning and will

be more rigorously analyzed in this paper.

D. Rare Dataset

A rare dataset is a small and imbalanced dataset where

a similar auxiliary and possibly larger dataset is available

to improve classification. Researchers have addressed the

subject of rare data as they identified such datasets and

acknowledged the need for transfer learning methods for

improved classification.

Shuli et a.l [16] define what constitutes a rare dataset and

present an overview of the work in the field. Weiss [17]

presents a great overview of the problems encountered when

handling rare data and addresses the issues encountered by

researchers evaluating such datasets. Different solutions are

outlined for handling absolute and relatively rare data with

a discussion of solutions for segmentation, bias and noise

associated with these datasets. In his latest work, Weiss [18]

singles out the usage of additional data when the absolute

number of samples is rare as a technique that warrants

additional research. In [19], an end-to-end investigation of

rare categories in imbalanced data sets in both the supervised

and unsupervised settings is presented and transfer learning

for rare datasets is singled out as a possible future solution.

E. Summary of Methods

Table I presents a summary of the machine learning

domains that are applied to handle the datasets outlined in

Figure 1. Classification of rare classes exists as a fringe field

of research between different machine learning domains and

we attempt to address this problem in this paper. Our main

contributions:

1) Formally define what constitutes a “Rare Dataset”.

2) Present a survey of related methods and highlight the

need for a new type of algorithms to solve a niche

but important problem that is not addressed in current

literature.

3) Propose the first transfer learning algorithm optimized

for transfer within the label space.

4) Submit experimental results for real-world datasets to

demonstrate the effectiveness of our framework.

The paper is organized as follows: In Section II, we formally

defined the problem and discussed the related works. Our

algorithm is proposed in Section III along with theoretical
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foundation. Experimental results with related discussions are

given in Section IV. The last two sections conclude our

discussion with possible future directions.

Table I: Summary of the different datasets’ attributes

Learning Domain Satisfactory Size Balanced Dataset
Standard Yes Yes

Imbalanced Yes No
Transfer No Yes

Rare No N0

III. PROPOSED LABEL-TRANSFER ALGORITHM

A. Boosting-based Transfer Learning

Consider a domain (D) comprised of feature space (X).

We can specify a mapping function to map the feature space

to the label space as “X → Y ” where Y ∈ {−1, 1}. Let us

denote the domain with auxiliary data as the source domain

set (Xsrc) and denote (Xtar) as the target domain set that

needs to be mapped to the label space (Ytar).

Boosting-based transfer learning methods apply ensemble

Table II: Summary of the Notations
Notation Description

X feature space, X ∈ R
d

Y label space = {−1, 1}
d number of features
F mapping function X → Y
D domain
src source (auxiliary) instances
tar target instances
maj majority class,
min minority class
εt classifier error at boosting iteration “t”
w weight vector
N number of iterations
n number of source instances
m number of target instances
t index for boosting iteration
..

f t weak classifier at boosting iteration “t”
1I Indicator function

training to both source and target instances with an update

mechanism that incorporates only the source instances that

are useful for target instance classification. These methods

perform this form of mapping by giving more weight to

source instances that improve target training and vice-versa.

TrAdaBoost [20] is the first transfer learning method to use

boosting as a best-fit inductive transfer learner. TrAdaBoost

trains the base classifier on the weighted source and target

set in an iterative manner. The source instances that are not

correctly classified on a consistent basis would converge and

would not be used in the final classifier’s output since that

classifier only uses boosting iterations N
2 → N . Dynamic-

TrAdaBoost [21] improved TrAdaBoost by correcting for the

bias induced by normalization causing early convergence.

Boosting has been extended to many transfer problems

including regression transfer [22] and multi-source learn-

ing [23]. TransferBoost [24] is used for boosting when

multiple source tasks are available. TransferBoost calculates

an aggregate transfer term for every source task as the

difference in error between the target-only task and the

target plus each additional source task. AdaBoost was also

extended in [25] for concept drift with a fixed cost that is

incorporated into the source instances’ update mechanism

via AdaCost [9]. This cost is pre-calculated using proba-

bility estimates as a measure of relevance between source

and target distributions. A source task that is unrelated to

the target task will exhibit negative transferability and its

instances’ weights would be diminished by a fixed [25] or

dynamic rate [24] within AdaBoost’s update mechanism.

B. Algorithm Description

The pseudo code of “Label-Transfer” is presented in

Algorithm 1. The framework is based on AdaBoost[26],

which is a meta algorithm that combines a cascade of

weak classifiers for an optimal feasible solution. AdaBoost

generates a weighted set of additive weak classifiers to

construct a committee capable of non-linear approximation.

The weak classifier on line 7 is trained with the weighted

target and source instances to discover the hyperplane that

forms the classification decision boundaries. In Algorithm 1,

the decision boundaries are utilized to build a model for the

target instances and to control the weight of the auxiliary

instances that are best fit for training. The target instances’

weights are updated using only the target’s accuracy rate

which is calculated on line 8 and is incorporated into the

target instances update mechanism after calculating βtar on

line 11 and using it for AdaBoost’s update mechanism on

line 14 as:

wt+1
tari = wt

tariβtar

1I
[
ytari

�=
..
ft
i

]

(1)

Given a majority label, Ysrc−maj ∈ {+1}, Sensitivity(Sen)

is the label dependent accuracy measure of the source

instances’ majority and is calculated on line 9 as:

Sent
src =

n∑
j=1

[
wj

src−maj

]
1I
[
ysrc−majj =

..

f t
j

]
n∑

i=1

[
wi

src−maj

] (2)

Specificity (Spc) is the label dependent accuracy measure of

the source instances’ minority instance, Ysrc−min ∈ {−1},
and is calculated on lines 10 as:

Spctsrc =
n∑

j=1

[
wj

src−min

]
1I
[
ysrc−minj

=
..

f t
j

]
n∑

i=1

[
wi

src−min

] (3)

As per the transfer learning paradigm, the source distribution

is considered relevant and target instances can benefit from

incorporating relevant source instances. The label dependent
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accuracy is applied on line 12 to update the source majority

weights as:

wt+1
src−maji

=
(
1 + Sent

src

)
wt

srciβsrc

[
ysrci

�=
..
ft
i

]

(4)

The source minority weights are updated on line 13 as:

wt+1
src−mini

=
(
1 + Spctsrc

)
wt

srciβsrc

[
ysrci

�=
..
ft
i

]

(5)

The update mechanism in equations 4 and 5 is borrowed

from the Weighted Majority Algorithm(WMA)[27] with

a label-dependent dynamic cost factor. WMA is a meta-

learning algorithm that constructs an additive set of weak

learners, where the number of mistakes for n source samples

(nεWMA) is bounded by the number of mistakes made by

the best performing of the N weak classifiers (nεbest) as:

nεWMA ≤ nεbest ln
(
β−1
src

)
+ ln(N)

1− βsrc
(6)

Label-Transfer works within the transfer learning paradigm

but applies an update mechanism optimized to balance the

distribution of labels within the label space. While SMOTE

synthetically generates minority samples, Label-Transfer in-

fuses samples from an auxiliary domain that fit the outcome

of the weak classifiers where transfer learning is shifted

to the label space by controlling the weight convergence

using a label-dependent error. All samples are initially given

equal weights and minority labels are initially misclassified

by weak classifiers optimized for accuracy. These classifiers

tend to achieve high accuracy by binning most data to the

majority label when all instances are equally weighted. The

label dependent costs control the convergence of the source

instances as weights converge slower for labels with initial

high error rates (minority labels) and vice versa. As minority

labels get higher normalized weights with every boosting

iteration, the classifiers would subsequently construct more

balanced separating hyperplanes. Since only the N
2 → N

weak classifiers are used for the final output, the expectation

is that a more balanced mix of source weights would have

been constructed in the initial 1 → N
2 boosting iterations.

This is the first transfer learning algorithm to optimize with

label information and shift the instance transfer from the

feature-space to the label-space.

IV. EXPERIMENTAL RESULTS ON REAL-WORLD

DATASETS

A. Experimental Setup

AdaBoost [26] with target instances was applied as the

standard boosting classifier. We applied SMOTE [6] to the

target data before boosting to compare with an imbalanced

method (SMOTE-AdaBoost). For transfer learning, we

used Dynamic-TrAdaBoost [21] as the reference algorithm.

Thirty boosting iterations was experimentally proven

sufficient for training. Small and imbalanced datasets can

Algorithm 1 Label-Transfer

Require:

� Source Majority Dsrc−maj = {xsrc−maji , ysrc−maji}
� Source Minority Dsrc−min = {xsrc−mini

, ysrc−mini
}

� Target Majority Dtar−maj = {xtar−maji , ytar−maji}
� Target Minority Dtar−min = {xtar−mini , ytar−mini}
� Ymaj ∈ {+1} , Ymin ∈ {−1}
� Max iterations : N,Base learner :

..

f
� Source samples : n,Target samples : m

Ensure: Target Classifier Output :
{ .

f : X → Y
}

.

f = sign

[∏N

t= 1
2

(
β

t

tar

−
..

ft

)
−

∏N

t= 1
2

(
β

t

tar

− 1
2

)]

Procedure:
1: Initialize the target weight vector:

wtar = {wtar−maj ∪ wtar−min}
2: Initialize the source weight vector:

wsrc = {wsrc−maj ∪ wsrc−min}
3: Setβsrc =

1

1+

√
2 ln(n)

N

4: Set D as the combined dataset with w weights:

D =
{Dsrc−maj ∪Dsrc−min ∪Dtar−maj ∪Dtar−min}

5: for t = 1 to N do
6: Normalize Weights: w = w

n∑
i
wsrci

+
m∑
j

wtarj

7: Find the candidate weak learner
..

f t : X → Y that

minimizes error for the D weighted according to w
8: Calculate label-independent accuracy of Dtar:

Accttar =
m∑
j=1

[wj
tar]1I

[
ytar=

..

ft
j

]
m∑

j=1
[wj

tar]

9: Calculate label dependent accuracy of Dsrc−maj :

Sent
src =

n∑
j=1

[wj
src−maj]1I

[
ysrc−majj

=
..

ft
j

]
n∑

i=1
[wi

src−maj]

10: Calculate label dependent accuracy of Dsrc−min:

Spctsrc =
n∑

j=1

[wj
src−min]1I

[
ysrc−minj

=
..

ft
j

]
n∑

i=1
[wi

src−min]

11: Set βt
tar =

Accttar

1−Accttar

12: Update Source Majority Weights (i ∈ maj):

wt+1
src−maji

= (1 + Sent
src)w

t
srciβsrc

[
ysrci

�=
..
ft
i

]

13: Update Source Minority Weights (i ∈ min):

wt+1
src−mini

= (1 + Spctsrc)w
t
srciβsrc

[
ysrci

�=
..
ft
i

]

14: Update Target Weights:

wt+1
tari = wt

tariβ
t
1I
[
ytari

�=
..
ft
i

]

tar

15: end for
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prematurely converge during training; For a fair comparison,

we terminated learning and restarted if any algorithm did

not reach 30 boosting iterations.

Base Learner
( ..

f
)

: We did not use decision stumps

as weak learners since the majority of training data belongs

to the source and we need to guarantee an error rate of less

than 0.5 on the target to avoid early boosting termination

(as mandated by AdaBoost). For example, decision stumps

on data with 95% source and 5% target or 95% majority

and 5% minority is not guaranteed (and will certainly not

work for many boosting iterations) to get an error rate of

less than 0.5 on minority target instances that compromise a

small subset of the training data. We used a strong classifier,

classification trees, and applied a top-down approach where

we trimmed the tree at the first node that achieved a target

error rate that is less than 0.5.

Cross Validation: We used standard cross validation

methods when the number of target minority samples was

sufficient. If the target dataset had too many samples to

fit the definition of a rare dataset, we used a fraction for

training and left the remainder for testing. We randomly

selected non-intersecting training and testing sets when

available samples were not sufficient for standard cross

validation. We ran each experiment 30 times and reported

the average accuracy to reduce bias.

B. Dataset Description

We tested several healthcare related datasets and provided

a detailed description of these datasets in Table III.

HealthCare: Heart failure (HF) continues to be an

enormous public health problem despite the many advances

in its pharmacotherapy over the past 25 years [28]. HF is

associated with significant clinical and economic burden

and the high rate of hospitalization is a major contributor

of the estimated cost for 2009 of $37.2 billion [29].

Re-hospitalization for heart failure occurs in one-in-five

patients within 30 days of discharge in patients over 65

years old. HF patient data was collected at Henry Ford

Health System (HFHS) in Detroit. Using administrative

resources at HFHS, we identified patients with a discharge

diagnosis of heart failure (9th Edition/Revision International

Classification of Diseases [ICD-9]) between January 1, 2000

and June 30, 2008. The index of hospitalization was the first

inpatient admission during the period of observation. There

were 8913 unique patients who had a first hospitalization

with primary HF diagnosis. Patients were monitored until

they reached an endpoint (death or re-hospitalization), or

were censored at the earlier of either dis-enrollment or

final follow up on December 31, 2008. New models were

needed to assess the risk of re-hospitalization. Similar to

the population demographics of heart failure studies [30],

the data for re-hospitalization is skewed as it reflects the

local populations’ ethnic demographics and the generally

older age of HF patients. The lack of certain demographics

required a new set of methods that leverages available

demographics and generalizes to demographics with few

samples.

This dataset was split across different demographics. Three

different demographics were used to test the datasets with

three different distributions. Features included demographic

and medical diagnostic conditions. The task is to predict if

a patient will be re-admitted after being released from the

hospital for Heart Failure. We reported the average results

with 50 minority samples.

CMC1: This dataset is a subset of the 1987 National

Indonesia Contraceptive Prevalence Survey. The task is

to predict if a non-Muslim woman is employed based on

her demographic and socio-economic characteristics. Only

24% of the population is non-Muslim and only 4.8% of the

population is non-Muslim and also employed.

Parkinson1: This dataset is composed of a range of

biomedical voice measurements from people with early-

stage Parkinson’s disease. The goal is to predict if a

patient’s score on the Unified Parkinson’s Disease Rating

Scale (UPRDS) is high (UPRDS≥10) or low (UPRDS<10).

C. Experimental Results

1) F-Measure Analysis: F-measure results are presented

in Table IV with the following significance tests:

• Tested the null hypothesis that the F-measure perfor-

mance is not significantly better than AdaBoost and

applied the Friedman Test with p < 0.01. SMOTE-

AdaBoost and Label-Transfer were able to reject the

hypothesis for all datasets.

• Performed paired t-tests with α = 0.01 to test the

null hypothesis that F-measure performance was not
improved over SMOTE-AdaBoost. For all datasets,

Label-Transfer rejected the hypothesis.

Table IV: Comparison of F-Measure values on Real-world

datasets.

Target SMOTE Dynamic Rare
AdaBoost AdaBoost TrAdaBoost Transfer

HealthCare (Race) 0.205 0.257 0.055 0.328
HealthCare (Age) 0.180 0.229 0.063 0.269
HealthCare (Sex) 0.194 0.236 0.037 0.301
CMC (Religion) 0.276 0.325 0.188 0.378
Parkinson (Sex) 0.404 0.552 0.702 0.749

1http://archive.ics.uci.edu/ml/

731731731



Table III: Description of the Datasets

Dataset Features Source Majority Source Minority Target Majority Target Minority

HealthCare (Race)
Numeric : 2
Nominal : 20

African-American African-American Caucasian Caucasian
Not Re-hospitalized Re-hospitalized Not Re-hospitalized Re-hospitalized

4468 (78%) 1026 (18%) ≈183 (3.2%) ≈50 (0.87%)

HealthCare (Age)
Numeric : 1
Nominal : 21

Over 50 Over 50 Under 50 Under 50
Not Re-hospitalized Re-hospitalized Not Re-hospitalized Re-hospitalized

4513 (75%) 1182 (20%) ≈241 (4.0%) ≈50 (0.84%)

HealthCare (Sex)
Numeric : 2
Nominal : 20

Male Male Female Female
Not Re-hospitalized Re-hospitalized Not Re-hospitalized Re-hospitalized

3366 (76%) 818 (18%) ≈211 (4.8%) ≈50 (1.1%)

CMC (Religion)
Numeric : 5
Nominal : 3

Muslim Muslim Non-Muslim Non-Muslim
Un-employed Employed Un-employed Employed

955 (74%) 298 (23%) 15 (0.02%) 7 (0.006%)

Parkinson (Sex)
Numeric : 19
Nominal : 0

Male Male Female Female
UDPRS≥10 UDPRS<10 UDPRS≥10 UDPRS<10
3732 (89%) 276 (8%) 112 (0.03%) 13(0.003%)

2) Specificity Analysis: Specificity results are presented

in Table V with the following significance tests:

• Tested the null hypothesis that the specificity perfor-

mance is not significantly better than AdaBoost and

applied the Friedman Test with p < 0.01. SMOTE-

AdaBoost and Label-Transfer were able to reject the

hypothesis for all datasets.

• Performed paired t-tests with α = 0.01 to test the

null hypothesis that specificity performance was not
improved over SMOTE-AdaBoost. For all datasets,

Label-Transfer rejected the hypothesis.

Table V: Comparison of Specificity values on Real-world

datasets.

Target SMOTE Dynamic Rare
AdaBoost AdaBoost TrAdaBoost Transfer

HealthCare (Race) 0.178 0.279 0.033 0.411
HealthCare (Age) 0.150 0.244 0.039 0.321
HealthCare (Sex) 0.167 0.262 0.021 0.341
CMC (Religion) 0.249 0.321 0.120 0.471
Parkinson (Sex) 0.306 0.550 0.748 0.792

3) G-Mean and AUC Analysis: G-Mean results are pre-

sented in Table VI and AUC results in Table VII as evidence

that boosting specificity, reducing error for the minority la-

bel, did not degrade the overall performance of the classifier.

D. Performance with different target instances

We present the F-measure, G-Mean, AUC and Specificity

plots of the HealthCare dataset in Figure 2. We plot the

measures using different demographics and a varied the

number of target samples. Our algorithm compensated for

the lack of minority data while Dynamic-TrAdaBoost only

performed well once the minority samples’ size reached a

significant level. The graphs demonstrate that our algorithm

Table VI: Comparison of G-Mean values on Real-world

datasets

Target SMOTE Dynamic Rare
AdaBoost AdaBoost TrAdaBoost Transfer

HealthCare (Race) 0.382 0.456 0.145 0.533
HealthCare (Age) 0.355 0.440 0.164 0.478
HealthCare (Sex) 0.374 0.444 0.117 0.510
CMC (Religion) 0.422 0.467 0.331 0.488
Parkinson (Sex) 0.518 0.715 0.841 0.874

Table VII: Comparison of AUC values on Real-world

datasets

Target SMOTE Dynamic Rare
AdaBoost AdaBoost TrAdaBoost Transfer

HealthCare (Race) 0.519 0.521 0.504 0.559
HealthCare (Age) 0.526 0.532 0.503 0.555
HealthCare (Sex) 0.520 0.517 0.502 0.560
CMC (Religion) 0.506 0.510 0.524 0.513
Parkinson (Sex) 0.649 0.761 0.862 0.885

minimized the minority labels error without degrading the

classifier’s overall performance.

V. DISCUSSION AND EXTENSIONS

A true extension would be to use this algorithm to induce

a SMOTE type of balance. We did not do so in this paper to

have a fair comparison and to illustrate the effectiveness of

our method. Rather than generating synthetic samples, as in

SMOTE, we can integrate source instances that retained the

maximum weight after N boosting iterations. Such instances

would have relatively higher weight because they fit the

target instances’ hypothesis space and thus fit the target’s

feature distribution. Another more advanced approach is

to generate synthetic samples from the combination of

weighted samples after N boosting iterations. Both proposed

methods can be used to generate majority and minority

732732732
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(d) AUC (Race)
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(e) AUC (Sex)
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(f) AUC (Age)
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(g) F-Measure (Race)
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(h) F-Measure (Sex)
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(i) F-Measure (Age)
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(j) Specificity (Race)
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(k) Specificity (Sex)
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Figure 2: G-mean, AUC, F-measure, and Specificity results on different demographics at different minority samples.

samples that can be integrated with the target instances to

construct a standard set that is balanced and have enough

samples for training. Once a standard set is constructed,

any standard machine learning algorithm can be quickly and

efficiently applied.

VI. CONCLUSION

We formally defined what constitutes a “Rare Class” and

identified a niche area of research not covered in current

machine learning domains. We presented an overview of

related fields and motivated the necessity for more research

with actual scenarios. We proposed the first transfer learning

method optimized for the label space with theoretical verifi-

cation. We demonstrated the effectiveness of our framework

with demographics data. Future work could remove classi-

fication from the current algorithm and it can serve as an

intermediate step for label space transfer learning to extract

samples from the auxiliary domain to augment the training
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