
LLM-SR: Scientific Equation Discovery via Programming
with Large Language Models

Parshin Shojaee1∗ Kazem Meidani2∗ Shashank Gupta3

Amir Barati Farimani2 Chandan K. Reddy1

1Virginia Tech 2Carnegie Mellon University 3Allen Institute for AI

Abstract

Mathematical equations have been unreasonably effective in describing
complex natural phenomena across various scientific disciplines. How-
ever, discovering such insightful equations from data presents significant
challenges due to the necessity of navigating extremely high-dimensional
combinatorial and nonlinear hypothesis spaces. Traditional methods of
equation discovery, commonly known as symbolic regression, largely fo-
cus on extracting equations from data alone, often neglecting the rich
domain-specific prior knowledge that scientists typically depend on. To
bridge this gap, we introduce LLM-SR, a novel approach that leverages
the extensive scientific knowledge and robust code generation capabilities
of Large Language Models (LLMs) to discover scientific equations from
data in an efficient manner. Specifically, LLM-SR treats equations as pro-
grams with mathematical operators and combines LLMs’ scientific priors
with evolutionary search over equation programs. The LLM iteratively
proposes new equation skeleton hypotheses, drawing from its physical
understanding, which are then optimized against data to estimate skeleton
parameters. We demonstrate LLM-SR’s effectiveness across three diverse
scientific domains, where it discovers physically accurate equations that
provide significantly better fits to in-domain and out-of-domain data com-
pared to the well-established symbolic regression baselines. Incorporating
scientific prior knowledge also enables LLM-SR to search the equation
space more efficiently than baselines1.

1 Introduction

The emergence of Large Language Models (LLMs) has marked a significant milestone in
artificial intelligence, showcasing remarkable capabilities across various domains (Achiam
et al., 2023). As LLMs continue to evolve, researchers are exploring innovative ways to
harness their potential for solving complex problems such as scientific discovery (Wang et al.,
2023; AI4Science & Quantum, 2023). Their ability to process and comprehend vast amounts
of scientific literature, extract relevant information, and generate coherent hypotheses
has recently opened up new avenues for accelerating scientific progress (Zheng et al.,
2023b). Additionally, by leveraging their ability to understand and reason with the help
of programming and execution, LLMs have shown the potential to enhance automatic
reasoning and problem-solving capabilities (Romera-Paredes et al., 2024; Madaan et al.,
2024). Motivated by these strengths, LLMs could be particularly helpful for the task of
equation discovery, a fundamental task in science and scientific discovery.

Discovering accurate symbolic mathematical models from data is an important task in
various scientific and engineering disciplines. The task of data-driven equation discovery
(also commonly known as Symbolic Regression (SR)), aims to find abstract mathematical
equations from data observations such that these equations are predictive of the underlying
∗Equal contribution. Contact: parshinshojaee@vt.edu, mmeidani@andrew.cmu.edu
1Code is available at: https://github.com/deep-symbolic-mathematics/LLM-SR

1

ar
X

iv
:2

40
4.

18
40

0v
2

 [
cs

.L
G

]
 2

 J
un

 2
02

4

https://github.com/deep-symbolic-mathematics/LLM-SR

Figure 1: The LLM-SR framework, consisting of three main steps: (a) Hypothesis Generation, where
LLM generates equation program skeletons based on a structured prompt; (b) Data-driven Evaluation,
which optimizes the parameters of each equation skeleton hypothesis and assesses its fit to the data;
and (c) Experience Management, which maintains a diverse buffer of high-scoring hypotheses to
provide informative in-context examples into LLM’s prompt for iterative refinement.

data, are interpretable, and generalize to unseen data. Finding such equations offers sev-
eral advantages over simply estimating a predictive model, as the resulting mathematical
functions provide insights into the underlying physical processes, enable extrapolation be-
yond the observed data, and facilitate knowledge transfer across related problems (Schmidt
& Lipson, 2009). However, while evaluating the fit of a proposed equation is relatively
straightforward, the inverse process of obtaining these mathematical equations from data is
a challenging problem, known to be NP-hard (Virgolin & Pissis, 2022). Current equation
discovery methods encompass a wide variety of approaches from evolutionary search
algorithms (Cranmer, 2023; Mundhenk et al., 2021; La Cava et al., 2021) to advanced deep
learning methods using Transformers (Biggio et al., 2021; Kamienny et al., 2022). Most of
the traditional symbolic regression techniques are built on top of Genetic Programming (GP)
(Koza, 1994) evolutionary methods, representing mathematical equations as expression trees
and searching the combinatorial space of possible equations through iterative mutation
and recombination. However, current methods often struggle with the complexity of the
vast optimization space and do not incorporate prior scientific knowledge, which leads to
suboptimal solutions and inefficient exploration of the equation search space. Thus, there is
a need for equation discovery methods that effectively integrate prior scientific knowledge
into the navigation of equation search space, a strategy akin to a scientist’s reliance on
foundational knowledge when formulating hypotheses for scientific discovery.

To address these limitations, we introduce LLM-SR (Fig. 1), a novel framework that combines
the strengths of LLMs, reliable optimizers, and evolutionary search for data-driven equation
discovery. At its core, LLM-SR is an iterative hypotheses refinement method that iteratively
generates hypotheses, evaluates these hypotheses, and uses the evaluation signal to refine
and search for better hypotheses. Specifically, given an initial equation hypothesis for
the underlying data, LLM-SR utilizes LLMs to propose new equation hypotheses (1(a)),
evaluates their fit on the data using off-the-shelf optimizers (1(b)), and uses this data-
driven feedback and a carefully maintained dynamic memory of previous equations (1(c))
to iteratively guide the search towards better equations. LLM-SR leverages the scientific
knowledge embedded in LLMs using short descriptions of the problem and the variables
involved in a given system to generate educated hypotheses for equation skeletons (i.e.,

2

equation forms with placeholder parameters for numeric coefficients and constants). The
LLM’s adaptive and informed mutation and crossover capabilities (Meyerson et al., 2023)
are then employed to refine the suggested equations in an iterative process. LLM-SR
incorporates data-driven feedback into the search process by evaluating the fitness of the
generated equations against the observed data, guiding the search towards more accurate
equation skeletons. By representing equations as programs, we take advantage of LLM’s
ability to generate structured and executable code (Li et al., 2023; Shojaee et al., 2023)
while providing a flexible and effective way to represent general mathematical relations.
This representation also facilitates direct and differentiable parameter optimization to
better optimize the coefficients or constants in the generated equations. We evaluated
LLM-SR using GPT-3.5-turbo and Mixtral-8x7B-Instruct (Jiang et al., 2024) as
backbone LLMs across four equation discovery problems spanning three scientific domains.
LLM-SR consistently outperforms state-of-the-art symbolic regression methods, discovering
physically accurate equations with better fit and generalization in both in-domain (ID)
and out-of-domain (OOD) test settings. By leveraging the scientific prior knowledge,
LLM-SR explores the equation search space more efficiently, requiring fewer iterations to
find accurate equations. Our analysis also highlights the crucial role of iterative refinement
and evolutionary search in LLM-SR’s superior performance. The major contributions of this
work can be summarized as follows:

• We introduce LLM-SR, a novel method that combines the strengths of LLMs, off-the-shelf
optimizers, and evolutionary search for data-driven equation discovery.

• We show that LLM-SR outperforms state-of-the-art SR methods by navigating the equa-
tion search space more efficiently and discovering more accurate equations with better
out-of-domain generalization across 4 problems from 3 scientific domains.

• We demonstrate through a comprehensive ablation study that providing natural language
descriptions of the problem and variables, data-driven feedback, and skeleton parameter
optimization signals are vital for LLM-SR’s success.

2 LLM-SR Methodology

2.1 Problem Formulation

In the task of data-driven equation discovery, also known as symbolic regression (SR), the
goal is to find a concise and interpretable symbolic mathematical expression f̃ that closely
approximates an unknown underlying equation f : Rd → R, which maps a d-dimensional
input vector x to output y. Given a datasetD = {(xi, yi)}n

i=1 consisting of input-output pairs,
SR methods seek to uncover the hidden mathematical relationship, such that f̃ (xi) ≈ yi for
all i. The discovered equation should not only accurately fit the observed data points but also
exhibit strong generalization capabilities to unseen data while maintaining interpretability.

Current SR methods typically represent equations using techniques such as expression trees
(Cranmer, 2023), prefix sequences (Petersen et al., 2021; Biggio et al., 2021), or context-free
grammars (Brence et al., 2021), constructing a search space F . These representations provide
limited and structured search spaces, enabling evolutionary search approaches like genetic
programming (GP) to explore and find candidate expressions. In contrast, our work employs
program functions to directly map inputs x to output targets y: def f(x): ... return y.
This offers a flexible and expressive way to represent equations, allowing for a diverse set of
mathematical operations and step-by-step instructions to capture complex mathematical
relations. However, the space of possible programs can be vast, with extremely sparse
solutions, which can hinder the effectiveness of traditional search methods like GP in
finding the desired equation programs (Devlin et al., 2017; Parisotto et al., 2017). To tackle
this challenge, we leverage the scientific knowledge and coding capabilities of LLMs to
effectively navigate the program space for equation discovery. LLMs have the ability to
generate syntactically correct and knowledge-guided code snippets, guiding the efficient
exploration of the large equation program optimization landscape.

Let πθ denote a pre-trained LLM with parameters θ. In this task, we iteratively sample a
set of equation program skeletons from LLM, F = { f : f ∼ πθ}. The goal is to find the

3

Figure 2: Example of an input prompt for E. Coli bacterial growth with problem specifications,
evaluation and optimization function, and the initial input equation example.

skeleton that maximizes the reward (evaluation score) ScoreT (f ,D) for a given scientific
problem T and data observations D. The optimization problem can be expressed as: f ∗ =
arg max f E f∈F [ScoreT (f ,D)], where f ∗ denotes the optimal equation program discovered
at the end of the LLM-guided search. LLM-SR prompts LLM to propose hypotheses given
the problem specification, and experience demonstrations containing previously discovered
promising equations. In LLM-SR, LLM only generates hypotheses as equation program
skeletons where the coefficients or constants of each equation are considered as a placeholder
parameter vector that can be optimized. The parameters are optimized using robust off-
the-shelf optimizers and evaluated for their fit. Promising hypotheses are then added
to a dynamic experience buffer, which guides the equation refinement process, while
non-promising hypotheses are discarded. Below we explain the key components of this
framework, shown in Fig. 1, in more detail.

2.2 Hypothesis Generation

As shown in Fig. 1 (a), the hypothesis generation step relies on a pre-trained LLM to propose
diverse and promising equation program skeletons. By leveraging the LLM’s extensive
knowledge and generative capabilities, we aim to efficiently explore the vast space of
potential equations while maintaining syntactic correctness and scientific plausibility.

2.2.1 Prompt
To guide the LLM in generating relevant and well-structured equation program skeletons,
we design prompts that provide essential context and specify the desired output format.
Our prompt structure, shown in Fig. 2, consist of the following components:

4

Instruction. We begin the prompt with a clear instruction to the LLM, requesting the
completion of the last function’s body in the provided code. The instruction emphasizes
the importance of considering the physical meaning and relationships of the input vari-
ables while completing the function. This guidance helps steer the LLM’s output towards
scientifically meaningful and coherent suggestions.

Problem Specification. Following the instruction, we include a concise description of the
scientific problem at hand. This specification outlines the key variables, constraints, and
objectives of the problem, providing the necessary context for the LLM to generate relevant
equation program skeletons. By clearly defining the problem space, we enable the LLM to
focus its efforts on the most pertinent aspects of the task.

Evaluation Function. To ensure that the generated equation program skeletons can be
effectively assessed, we include the evaluation function in the prompt. This function
includes the criteria used to measure the quality and fitness of the proposed equations. By
providing the evaluation function upfront, we enable the LLM to generate skeletons that
are aligned with the desired performance objectives.

Experience Demonstration. To further guide the LLM and provide concrete examples
of equation program skeletons as well as their improvement trajectory, we incorporate
experience demonstrations in the form of in-context examples (Fig. 2 only shows the initial
example). These examples serve as a reference for the LLM to build upon and refine in its
generated outputs.

2.2.2 Hypothesis Sampling
At each iteration t, we sample a batch of b equation skeletons Ft = { fi}b

i=1 from the
LLM πθ , where each equation skeleton fi is generated based on the constructed prompt
pt: fi ∼ πθ(·|pt). To encourage diversity in the generated equation program skeletons,
we utilize stochastic temperature-based sampling, which allows for a balance between
exploration (creativity) and exploitation (prior knowledge) in the hypothesis space.

After obtaining the sampled equation programs and before processing to the data-driven
evaluation step, we execute each sampled equation program fi and discard those that
fail to execute successfully. By discarding such equation programs, we ensure that only
valid and executable hypotheses are considered for further evaluation. Also, to maintain
computational efficiency and prevent excessively time-consuming evaluations, we impose a
maximum execution time threshold for each equation program. If the execution time of an
equation program exceeds this threshold, we discard the corresponding hypothesis.

2.3 Data-driven Evaluation

Following the hypothesis generation step, we evaluate and score the generated equation
skeleton hypotheses using observed data. In this step, demonstrated in Fig. 1 (b), we first
optimize the parameters of each hypothesis with regard to the dataset, and then use the
optimized parameters to evaluate and score each hypothesis.

2.3.1 Hypothesis Optimization
Inspired by (Biggio et al., 2021), in LLM-SR, we decouple the equation discovery process into
two steps: (i) discovering the equation program structures (skeletons) using the LLM, and
(ii) optimizing the skeleton parameters/coefficients based on data. The LLM is responsible
for generating equation skeletons and the core logic of the program, while the numeric
values of the parameters are represented as placeholders in the form of a parameter vector
params (as shown in Fig. 2). These placeholders are subsequently optimized to fit the
observed data. Let Ft denote the set of equation program skeletons generated by the LLM
at iteration t. Each equation program skeleton f ∈ Ft is a function that takes both input
features x and a vector of learnable parameters params as input arguments and returns the
predicted target values: “def f(x, params): ... return y”.

To optimize the parameters for each skeleton hypothesis, we use two approaches:
(1) numpy+BFGS and (2) pytorch+Adam. The BFGS algorithm (Fletcher, 1987), available in
the scipy library (as represented in Fig. 2), is a gradient-free nonlinear optimization method.

5

In contrast, the Adam optimizer (Kingma & Ba, 2014), available in pytorch, is a direct
gradient-based optimization algorithm. The program notion of equation skeletons employed
in LLM-SR framework enables the use of differentiable programming techniques, which is
not possible with other representations common in equation discovery such as expression
trees or prefix notations. The choice of the optimization approach also depends on the
specific characteristics of the problem and the equation skeleton. The numpy+BFGS method
is often preferred when the number of parameters is relatively small, while pytorch+Adam
is more suitable for larger-scale problems and complex equation structures that benefit from
efficient gradient computation through differentiable programming.

2.3.2 Fitness Assessment
After finding the optimized values of the skeleton parameters, we assess the fitness of each
equation program hypothesis by measuring its ability to capture the underlying patterns in
the data. To obtain the predicted target values ŷ, we replace the placeholder parameter vector
params in the equation program skeleton f with the optimized parameter values params∗
and evaluate the equation skeleton function over the input data: ŷ = f (x,params∗). We
then compute the negative Mean Squared Error (MSE) between the predicted and true target
values as the fitness evaluation score: s = ScoreT (f ,D) = −MSE (ŷ, y), where s represents
the evaluation score or reward corresponding to the equation skeleton f .

2.4 Experience Management

To better navigate the search landscape and avoid local minima, LLM-SR contains an
experience management step, shown in Fig. 1 (c), which maintains a diverse population
of high-quality equation programs in the experience buffer and effectively samples from
this population to construct informative prompts for the LLM in next iteration. This step
consists of two key components: a) experience manager for maintaining the experience
buffer, and b) sampling from this experience buffer.

2.4.1 Buffer Maintenance
Following the data-driven evaluation, the pairs of equation skeleton hypotheses and their
corresponding scores, denoted as (f , s), are stored in an experience buffer Pt for further
refinement in subsequent iterations of the search process. To avoid local optima, we follow
(Cranmer, 2023; Romera-Paredes et al., 2024) and adopt an islands model, also known as a
multi-population model for managing the experience buffer. We initialize m islands with
a copy of the equation program example provided in the initial prompt (equation v0 in
Fig. 2). These islands evolve independently, allowing for parallel exploration of different
regions in the equation program space. At each iteration t, the new equation program
hypotheses Ft, along with their scores, {(f , s) : f ∈ Ft, s = −ScoreT (f ,D)}, are added to
the same island from which the in-context examples of prompts were sampled, if the new
score s is better than the current best. Within each island, we further cluster the equation
programs based on their signature, which is defined as their score. Equation programs
with identical signatures are grouped together. This clustering approach helps preserve
diversity by ensuring that equation programs with different performance characteristics are
maintained in the population.

2.4.2 Experience Sampling
To construct informative prompts for the LLM, we sample equation programs from the
experience buffer, updating the prompt with new experience demonstration in-context
examples. As per (Romera-Paredes et al., 2024), this process follows a two-stage sampling
method: (i) selecting a random island from the m available ones, and (ii) sampling k equation
programs from the selected island for inclusion as in-context examples in the prompt. Cluster
selection follows a Boltzmann sampling (Maza & Tidor, 1993), with a score-based probability
of choosing cluster i: Pi =

exp(si/τc)

∑i′ exp(s′i/τc)
, where si denote mean score of the i-th cluster, and

τc is a temperature parameter. After cluster selection, individual equation programs are
sampled, favoring shorter programs, using the probability proportional to exp

(
−l̃i/τp

)
,

where l̃i is the normalized program length, and τp is a temperature parameter. More details
of these sampling steps are provided in App. B. The sampled programs are then included in

6

Algorithm 1: LLM-SR
Input :LLM πθ , dataset D, scientific problem T ,

T iterations, k in-context examples,
b samples per prompt

Initialize population
P0 ← InitPop()
f ∗, s∗ ← null,−∞
for t← 1 to T − 1 do

Sample from LLM
Ft ← SampleLLM(πθ ,Pt−1, k, b)
Evaluation and population update
for f ∈ Ft do

s← ScoreT (f ,D)
if s > s∗ then

f ∗, s∗ ← f , s
Pt ← Pt−1 ∪ {(f , s)}

end
end

end

Output : f ∗, s∗

Algorithm 2: SampleLLM
Input :LLM πθ , experience buffer P ,

k in-context examples,
b samples per prompt

Sample examples from buffer
E← {xj}k

j=1, xj = SampleDB(P)
Prompt with new examples
p← MakeFewShotPrompt(E)
Sample from LLM
F ← { f j}b

j=1, f j ∼ πθ(·|p)

Output :F

the prompt as in-context experience demonstration, providing the LLM with relevant and
diverse examples to guide the generation of new equation program hypotheses.

Algorithm 1 presents a summarized pseudo-code of the LLM-SR framework. We first
initialize the experience buffer population P0 using InitPop with simple linear initial
equation skeleton example (as shown in Fig. 2 for E. coli growth problem). This equation
skeleton serves as a starting point template for generating candidate equations, avoiding the
need for manual prior knowledge incorporation. At each iteration t, SampleLLM (detailed
in Algorithm 2), which represents Hypothesis Generation, samples b equation program
skeletons from the LLM using an updated prompt with k in-context examples from Pt−1.
The sampled equations are evaluated using ScoreT (f ,D), and Pt is updated with the
equation-score pairs (f , s). In Algorithm 2, SampleDB function which represents Experience
Sampling is first called to sample in-context examples from the experience buffer and update
prompt accordingly. Then, LLM samples are collected with the updated prompt. After T
iteration, the best-scoring program f ∗ from Pt and its corresponding score s∗ are returned as
the optimal solution found for the problem. LLM-SR iteratively refines equation skeletons
using the LLM’s generative capabilities, guiding the search towards promising structures
based on the evolving experience buffer population.

3 Experimental Setup

3.1 Benchmarks and Datasets

Current symbolic regression benchmarks (La Cava et al., 2021; Strogatz, 2015; Udrescu &
Tegmark, 2020), mostly based on Feynman physics equations (Udrescu et al., 2020), may
not effectively capture the true discovery process and reasoning capabilities of LLMs. Our
findings show that LLM-SR rapidly achieves low Normalized MSE scores within very
few iterations on Feynman problems, suggesting that LLMs have likely memorized these
commonly known equations due to their prevalence in training data (check App. C for full
results). Feynman equations are often commonly known, and easily memorized by LLMs,
making them unsuitable evaluation benchmarks for this study. To overcome this limitation,
we introduce novel benchmark problems across three diverse scientific domains that are
designed to challenge the model’s ability to uncover complex mathematical relations while
leveraging its scientific prior knowledge. These new benchmark problems are designed
to simulate the conditions for scientific discovery, ensuring that the equations cannot be
trivially obtained through memorization of the language model. By focusing on diverse
scientific domains and introducing custom modifications to known equations, we encourage
LLM-SR to creatively explore the equation search space and identify mathematical relations.
We next discuss these new benchmark problems.

7

Nonlinear Oscillators. Nonlinear damped oscillators are ubiquitous in physics and engi-
neering. The dynamics of oscillators are governed by differential equations that describe the
relationship between the oscillator’s position, velocity, and the forces acting upon it. Specifi-
cally, the oscillator’s motion is given by a second-order differential equation: ẍ + f (t, x, ẋ) =
0, involving time (t), position (x), and nonlinear function f (t, x, ẋ) accounts for forces. In this
study, we explore two custom nonlinear forms: Oscillation 1: v̇ = F sin(ωx)− αv3 −
βx3− γx · v− x · cos(x); and Oscillation 2: v̇ = F sin(ωt)− αv3− βx · v− δx · exp(γx),
with v = ẋ as velocity and ω, α, β, δ, γ as constants. These forms are designed to challenge
the model’s ability to uncover complex equations, avoiding simple memorization of com-
monly known oscillators. More details on the design and data generation of these oscillators
are provided in App. D.1.

Bacterial Growth. The growth of Escherichia coli (E. coli) bacteria has been widely studied
in microbiology due to its importance in various applications, such as biotechnology, and
food safety (Monod, 1949; Rosso et al., 1995). Discovering equations governing E. coli
growth rate under different conditions is crucial for predicting and optimizing bacterial
growth (Tuttle et al., 2021). The bacterial population growth rate can be modeled using a
differential equation with the effects of population density (B), substrate concentration (S),
temperature (T), and pH level, which is commonly formulated as dB

dt = f (B, S, T, pH) =
fB(B) · fS(S) · fT(T) · fpH(pH). To invoke the LLM’s prior knowledge about this problem,
yet avoid memorization, we consider nonlinear arbitrary designs for fT(T) and fpH(pH)
that share similar characteristics with the common models but are not trivial to recover
from memory. More details on the specific differential equation employed and data for this
problem are provided in App. D.2.

Material Stress Behavior. Understanding the stress-strain behavior of materials under
various conditions, particularly the relationship between stress, strain, and temperature, is
crucial for designing and analyzing structures in various engineering fields. In this problem,
we use a real-world dataset from (Aakash et al., 2019), containing tensile tests on aluminum
at six temperatures ranging from 20°C to 300°C. The data covers the elastic, plastic, and
failure regions of the stress-strain curves, providing valuable insights into the material’s
behavior. More details on the data and visualization of these stress-strain curves can be
found in App. D.3.

3.2 Baselines

We compare LLM-SR against several state-of-the-art symbolic regression (SR) baselines,
including GPlearn1, Deep Symbolic Regression (DSR) (Petersen et al., 2021), Unified
DSR (uDSR) (Landajuela et al., 2022), and PySR (Cranmer, 2023). GPlearn is a pioneering
Genetic Programming (GP) based SR approach with the open-source gplearn package.
DSR is a deep learning-based SR approach that employs reinforcement learning over sym-
bolic expression sequence generations. uDSR extends DSR by incorporating large-scale
pretraining with Transformers and neural-guided GP search at the decoding stage. PySR2 is
a recent SR method that uses multi-island asynchronous GP-based evolution with the aim
of scientific equation discovery. For a fair comparison with LLM-SR, we allow all baselines
to run for over 2M iterations until convergence to their best performance. More details on
the implementation and parameter settings of each baseline are provided in App. A.

3.3 LLM-SR Configuration

We experiment with GPT-3.5-turbo and Mixtral-8x7B-Instruct as 2 different LLM
backbones for LLM-SR. At each iteration, we sample b = 4 equation skeletons per prompt
from the LLM using a temperature τ = 0.8, optimize equation skeleton parameters via
BFGS (30s timeout per program), and sample k = 2 in-context examples from the experience
buffer for the refinement. We run LLM-SR variants for 2.5K iterations in all experiments.
For more implementation details (incl. the experience buffer structure, prompt refinement
strategy, and parallel evaluation), please refer to App. A.

1https://gplearn.readthedocs.io/en/stable/
2https://github.com/MilesCranmer/PySR

8

https://gplearn.readthedocs.io/en/stable/
https://github.com/MilesCranmer/PySR

Model Oscillation 1 Oscillation 2 E. coli growth Stress-Strain All

ID↓ OOD↓ ID↓ OOD↓ ID↓ OOD↓ ID↓ OOD↓ ID↓ OOD↓
GPlearn 0.0155 0.5567 0.7551 3.188 1.081 1.039 0.1063 0.4091 0.4894 1.298
DSR (Petersen et al., 2021) 0.0087 0.2454 0.0580 0.1945 0.9451 2.4291 0.3326 1.108 0.3361 0.9942
uDSR (Landajuela et al., 2022) 0.0003 0.0007 0.0032 0.0015 0.3322 5.4584 0.0502 0.1761 0.0964 1.409
PySR (Cranmer, 2023) 0.0009 0.3106 0.0002 0.0098 0.0376 1.0141 0.0331 0.1304 0.0179 0.3662

LLM-SR (Mixtral) 7.89e-8 0.0002 0.0030 0.0291 0.0026 0.0037 0.0162 0.0946 0.0054 0.0319
LLM-SR (GPT-3.5) 4.65e-7 0.0005 2.12e-7 3.81e-5 0.0214 0.0264 0.0210 0.0516 0.0106 0.0196

Table 1: Quantitative performance comparison of LLM-SR (with GPT-3.5 and Mixtral backbones),
and SR baseline models on different scientific benchmark problems measured by Normalized Mean
Squared Error. ’All’ column indicates average scores over all datasets. SR baselines ran for over 2M
iterations, while LLM-SR variants ran for around 2K iterations.

4 Findings

4.1 LLM-SR Discovers more Accurate Equations

Table 1 shows the performance comparison of LLM-SR (using GPT-3.5 and Mixtral back-
bones) against state-of-the-art symbolic regression methods on various scientific benchmark
problems. In these experiments, symbolic regression methods were allowed to run for con-
siderably longer iterations (over 2M) while LLM-SR variants ran for around 2K iterations.
The table reports the Normalized Mean Squared Error (NMSE), where lower values indicate
better performance. Under the in-domain (ID) test setting, where the test set is sampled from
the same domain as the data used for equation discovery, LLM-SR variants significantly
outperform leading symbolic regression baselines across all benchmarks, despite running
for far fewer iterations. Among the symbolic regression baselines, PySR and uDSR exhibit
superior ID performance compared to DSR and GPlearn.

4.2 LLM-SR has better OOD generalization

Figure 3: Comparison of E. coli growth rate distributions
from LLM-SR, PySR, and uDSR. LLM-SR aligns well
with the ground truth, even for OOD data (unshaded
regions), demonstrating better generalization than PySR
and uDSR, which overfit the ID data (shaded regions
and black points).

The ability to generate equations that
generalize well to domains beyond
the training data, i.e., out-of-domain
(OOD) data, is a crucial characteristic
of effective equation discovery meth-
ods. To assess the generalization ca-
pability of the predicted equations, we
evaluate LLM-SR and the symbolic re-
gression baselines in the OOD test set-
ting, focusing on their ability to pre-
dict systems outside the region en-
countered during training. Table 1
reveals that the performance gap be-
tween LLM-SR and the baselines is
more pronounced in the OOD test set-
ting. This observation suggests that
equations discovered by LLM-SR ex-
hibit superior generalization capabili-
ties, likely attributable to the scientific
prior knowledge embedded by LLMs
in the equation discovery process. For
instance, on the E. coli growth prob-
lem, LLM-SR achieves an OOD NMSE
of around 0.0037, considerably better than symbolic regression methods which all obtain
OOD NMSE > 1. Fig. 3 also compares the ground truth distribution of E. coli growth prob-
lem with the predicted distributions obtained from LLM-SR, PySR, and uDSR. The shaded
region and black points indicate in-domain (ID) data, while the rest represent out-of-domain
(OOD). Results show that the distributions obtained from LLM-SR align well with the

9

ground truth, not only for ID data but also for OOD regions. This alignment demonstrates
the better generalizability of equations discovered by LLM-SR to unseen data, likely due to
the integration of scientific prior knowledge in the equation discovery process. In contrast,
leading symbolic regression methods like PySR and uDSR tend to overfit the observed data,
with their predicted distributions deviating significantly from the true distributions in OOD
regions. This overfitting behavior highlights their limited ability to generalize beyond the
training data and capture the true physical underlying patterns. For more detailed results
and analyses for other benchmark problems, check App. E.

4.3 LLM-SR Discovers Equations More Efficiently

Figure 4: Best score trajectories of LLM-SR
with GPT-3.5 and Mixtral against SR baselines
across different benchmark problems. LLM-SR dis-
covers accurate equations more efficiently, requir-
ing fewer iterations to outperform baselines, which
fail to match LLM-SR even after 2M iterations.

Fig. 4 shows the performance trajectories of
LLM-SR variants and symbolic regression
baselines across different scientific bench-
mark problems, depicting the maximum fit-
ting scores achieved over search iterations.
By leveraging scientific prior knowledge,
LLM-SR needs to explore a considerably
lower number of equation candidates in
the vast optimization space compared to
symbolic regression baselines that lack this
knowledge. This is evident from the sharp
drops in the error curves for LLM-SR vari-
ants, indicating they efficiently navigate the
search space by exploiting domain knowl-
edge to identify promising candidates more
quickly. In contrast, the symbolic regres-
sion baselines show much more gradual
improvements and fail to match LLM-SR’s
performance even after running for over 2M
iterations, as shown by their final results
in Fig. 4. The performance gap between
LLM-SR and symbolic regression baselines
also widens as iterations increase, particu-
larly in the Oscillation 2 and E. coli growth problems, highlighting the effectiveness of
LLM-SR’s iterative refinement process.

5 Analysis

5.1 Ablation Study

Fig. 5 presents an ablation study on the Oscillation 2 problem with GPT-3.5 backbone
to investigate the impact of different components in the LLM-SR performance.

Problem Specification. We create a “w/o Problem Specification” variant by removing the
natural language description of the problem and variables of the system from the LLM’s
input prompt. In this setup, the model operates solely as an adaptive evolutionary search
agent without domain-specific information about the variables and the problem being
studied. We find that this variant performs worse, with increases in the Normalized MSE
from 2.12e-7 to 4.65e-5 for in-domain data and from 3.81e-5 to 7.10e-3 for OOD data. This
highlights the significance of incorporating prior domain knowledge into the equation
discovery process.

Iterative Refinement. The “w/o Iterative Refinement” variant is equivalent to the LLM
sampling baseline, which generates more than 2K samples for the initial LLM-SR’s prompt
without computing feedback and updating in-context examples over the sampling span. The
absence of iterative refinement leads to a substantial performance drop, with the Normalized
MSE increasing to 1.01e-1 for in-domain data and 1.81e-1 for OOD data. This emphasizes

10

Figure 5: Ablation results on the Oscillation 2 problem, showing the impact of problem specification,
iterative refinement, parameter optimization, and optimization methods on LLM-SR’s performance.

the importance of the evolutionary search and iterative refinement process in LLM-SR’s
success.

Coefficient Optimization. We also create a “w/o Coeff Optimization” variant that requires the
LLM to generate complete equations, including numerical coefficients and constants, in a
single end-to-end step. This helps us study the role of parameter optimization using external
optimizers in the equation discovery process. We find that this variant shows significantly
worse results, with the Normalized MSE increasing to 3.75e-1 for in-domain data and
3.78e-1 for OOD data. These results indicate that the two-stage approach of generating
equation skeletons followed by data-driven skeleton parameter optimization is essential
for effective performance, as it helps navigate the intricate combinatorial optimization
landscape involving both continuous parameter values and discrete equation structures.

Optimization method. LLM-SR relies on direct and differentiable parameter optimization, a
capability not present in current symbolic regression methods. We compare two different op-
timization frameworks: numpy+BFGS and torch+Adam. The numpy+BFGS variant yielded
better-performing equations on both ID (2.12e-7) and OOD (3.81e-5) evaluations compared
to torch+Adam (ID: 1.60e-6, OOD: 2.4e-4). However, our initial analysis indicated that this
discrepancy could be primarily due to the LLM’s higher proficiency in generating numpy
code compared to pytorch, rather than the superiority of one optimization method over
the other. Combining LLM-SR with LLM backbones that are better in generating pytorch
code could potentially leverage differentiable parameter optimization to achieve better
performance in future works.

5.2 Qualitative Analysis

Fig. 6 presents the final discovered equations for both Oscillation problems using LLM-SR
and other symbolic regression baselines. A notable observation is that equations discovered
by LLM-SR have better recovered the symbolic terms of the true equations compared to
baseline models. Moreover, LLM-SR provides explanations and reasoning steps based on
the scientific knowledge about the problem, leading to more interpretable terms combined as
the final equation. For example, in both problems, LLM-SR identifies the equation structure
as a combination of driving force, damping force, and restoring force terms, relating them
to the problem’s physical characteristics. In contrast, baselines (DSR, uDSR, PySR) generate
equations lacking interpretability and understanding of the physical meanings or relations
behind the terms. The equations appear as combination of mathematical operations and
variables without clear connection to the problem’s underlying principles. More detailed
results and qualitative analysis on the discovered equations in other benchmark problems
and across performance progression curves can also be found in App. E.

6 Related Work

LLMs and Optimization. LLMs have demonstrated remarkable capabilities in various
domains, but they are prone to generating incorrect or inconsistent outputs due to either

11

Figure 6: Discovered equations for Oscillation 1 (top) and Oscillation 2 (bottom) problems. (a) True
equations and their phase diagram; (b) Equation program skeletons identified by LLM-SR, with
simplified forms obtained after parameter optimization; and (c) Equations found using DSR, uDSR
and PySR baselines. Shaded green terms denote recovered symbolic terms from true equations.

having flawed implicit knowledge or lacking access to external facts (Madaan et al., 2024;
Zhu et al., 2023). This limitation, often referred to as hallucination, hinders the direct
application of LLMs in tasks that require high accuracy. To mitigate these issues, researchers
have explored combining LLMs with feedback or verification mechanisms, such as using
the same model for feedback and self-refinement or employing external evaluators (Madaan
et al., 2024; Yang et al., 2023b; Haluptzok et al., 2022). Recent works have also coupled LLMs
with evaluators in an iterative optimization loop, where LLMs act as evolutionary search
agents (Lehman et al., 2023; Liu et al., 2023; Wu et al., 2024; Lange et al., 2024). LLMs leverage
their prior knowledge, reasoning, and generation capabilities to perform adaptive mutation
and crossover operations (Meyerson et al., 2023). This integration has shown promising
results in applications like prompt optimization (Yang et al., 2023a; Guo et al., 2024), neural
architecture search (Chen et al., 2023; Zheng et al., 2023a), and heuristic discovery (Romera-
Paredes et al., 2024). Most related to our work is FunSearch (Romera-Paredes et al., 2024) that
combines LLMs with systematic evaluators to search for programs that push the boundaries
in solving some established open mathematical problems. Building upon these ideas, our
LLM-SR framework employs LLM as an informed optimizer, leveraging its scientific prior
knowledge and data-driven evaluators to discover mathematical equations underlying
scientific observations.

LLMs for Scientific Discovery. The use of LLMs in scientific discovery has gained significant
attention in recent years (Wang et al., 2023). Researchers have explored the potential of
LLMs across various scientific domains, such as drug discovery, biology, and materials
design (AI4Science & Quantum, 2023). Recently, the ability of LLMs to propose plausible
scientific hypotheses by leveraging their existing knowledge and their potential for data-
driven discovery has been a topic of growing interest (Majumder et al., 2024; Zheng et al.,
2023b; Qi et al., 2023). Despite the increasing exploration of LLMs in scientific contexts
and question answering, their potential for tasks such as equation discovery and symbolic
regression remains largely unexplored. Our work addresses this gap by introducing a
novel approach that harnesses the scientific prior knowledge within LLMs and integrates it
with data-driven evaluation. This approach showcases the potential of LLMs in scientific

12

equation discovery, contributing to the rapidly growing body of research on the use of LLMs
for scientific advancement.

Symbolic Regression. Symbolic regression (SR) methods can be broadly categorized
into search-based approaches, learning-based models, and hybrid methods. Search-based
approaches mainly explore the space of mathematical expressions using evolutionary algo-
rithms or reinforcement learning (Schmidt & Lipson, 2009; Cranmer, 2023; Petersen et al.,
2021; Sun et al., 2023). Learning-based models, on the other hand, leverage large-scale
synthetic data and Transformers to learn the mapping between numeric input observations
and output mathematical expressions (Biggio et al., 2021; Kamienny et al., 2022). Hybrid
methods aim to combine the strengths of both approaches, guiding the search by employing
neural priors to improve the expressiveness and efficiency of the discovery process (Shojaee
et al., 2024; Udrescu & Tegmark, 2020; Mundhenk et al., 2021; Meidani et al., 2023). Despite
the progress made by these approaches, they often face limitations such as the lack of
scientific prior knowledge incorporation and the restricted expressiveness of traditional
equation representations like expression trees. Some works have attempted to address these
issues by incorporating prior physical knowledge such as dimension analysis (Udrescu &
Tegmark, 2020; Tenachi et al., 2023; Meidani & Barati Farimani, 2023) or using declarative
bias and structures with pre-defined grammars (Todorovski & Dzeroski, 1997; Todorovski
& Džeroski, 2007). However, these methods do not leverage the power of LLMs for this
task. Our work advances this research direction by utilizing LLMs to efficiently search the
combinatorial optimization space of equation discovery and generate meaningful equation
structures based on the embedded scientific prior knowledge.

7 Discussion and Conclusion

In this work, we introduced LLM-SR, a novel framework that leverages the power of
Large Language Models (LLMs) for scientific equation discovery. We demonstrated the
effectiveness of LLM-SR by evaluating it on diverse set of scientific problems, showcasing
its ability to uncover physically meaningful and accurate equations. Despite the promising
results, LLM-SR has limitations that should be acknowledged. The computational resources
associated with loading LLMs and generating a large number of equation programs can
be substantial, especially when dealing with complex problems or large-scale datasets.
Additionally, LLM-SR’s reliance on the scientific prior knowledge embedded within the
LLMs may also be limited, biased, or incorrect in certain domains, potentially affecting
the quality of the discovered equations. However, we believe that the potential of using
LLM-SR framework can go beyond what has been studied in this work, and that LLM-
enabled scientific equation discovery can facilitate this task in various fields of science and
engineering. Moreover, with the rapid pace of LLM improvements, the computational cost
is expected to decrease, making it more accessible and efficient.

Future research efforts can focus on several key areas to further enhance the capabilities of
LLM-SR. Exploring the integration of more powerful or domain-specific language models
can potentially improve the quality and relevance of the generated equations. Incorporating
retrieval-augmented learning techniques, where the LLMs are augmented with literature-
driven scientific knowledge, can also provide additional context and guidance during the
equation discovery process. Developing methods to verify and guide the model towards
generating equations that are consistent with established scientific principles can help en-
sure the physical validity of the discovered equations. Another potential future work is
the development of more comprehensive benchmarks for evaluating LLM-based equation
discovery methods. These benchmarks should either include a potentially empirical equa-
tion discovery process or be carefully designed to simulate such a process. This approach
ensures that the equations generated by the models are not simply memorized but are
derived through a genuine discovery process. As LLMs continue to evolve and become
more powerful, LLM-SR has the potential to become an indispensable tool for researchers
and scientists, accelerating scientific discovery and innovation across various domains. With
the development of better benchmarks and evaluation protocols, we can unlock the full
potential of LLM-based equation discovery and pave the way for accelerating scientific
advancements.

13

References
B.S. Aakash, JohnPatrick Connors, and Michael D. Shields. Stress-strain data for aluminum

6061-t651 from 9 lots at 6 temperatures under uniaxial and plane strain tension. Data in
Brief, 25:104085, 2019. ISSN 2352-3409. doi: https://doi.org/10.1016/j.dib.2019.104085.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al.
Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Microsoft Research AI4Science and Microsoft Azure Quantum. The impact of large lan-
guage models on scientific discovery: a preliminary study using gpt-4. arXiv preprint
arXiv:2311.07361, 2023.

Luca Biggio, Tommaso Bendinelli, Alexander Neitz, Aurelien Lucchi, and Giambattista
Parascandolo. Neural symbolic regression that scales. In Marina Meila and Tong Zhang
(eds.), Proceedings of the 38th International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pp. 936–945. PMLR, 18–24 Jul 2021.

Jure Brence, Ljupčo Todorovski, and Sašo Džeroski. Probabilistic grammars for equation
discovery. Knowledge-Based Systems, 224:107077, 2021. ISSN 0950-7051. doi: https:
//doi.org/10.1016/j.knosys.2021.107077.

Angelica Chen, David Dohan, and David So. Evoprompting: Language models for code-
level neural architecture search. In A. Oh, T. Neumann, A. Globerson, K. Saenko, M. Hardt,
and S. Levine (eds.), Advances in Neural Information Processing Systems, volume 36, pp.
7787–7817. Curran Associates, Inc., 2023.

Miles Cranmer. Interpretable machine learning for science with pysr and symbolicregression.
jl. arXiv preprint arXiv:2305.01582, 2023.

Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel rahman Mohamed,
and Pushmeet Kohli. RobustFill: Neural program learning under noisy I/O. In Doina
Precup and Yee Whye Teh (eds.), Proceedings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learning Research, pp. 990–998. PMLR, 06–11
Aug 2017.

Roger Fletcher. Practical Methods of Optimization. John Wiley & Sons, New York, NY, USA,
second edition, 1987.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang
Bian, and Yujiu Yang. Connecting large language models with evolutionary algorithms
yields powerful prompt optimizers. In The Twelfth International Conference on Learning
Representations, 2024.

Patrick Haluptzok, Matthew Bowers, and Adam Tauman Kalai. Language models can teach
themselves to program better. arXiv preprint arXiv:2207.14502, 2022.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary,
Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian
Bressand, et al. Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Gordon R. Johnson and William H. Cook. Fracture characteristics of three metals subjected
to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics,
21(1):31–48, 1985. ISSN 0013-7944. doi: https://doi.org/10.1016/0013-7944(85)90052-9.

Pierre-Alexandre Kamienny, Stéphane d’Ascoli, Guillaume Lample, and Francois Charton.
End-to-end symbolic regression with transformers. In Advances in Neural Information
Processing Systems, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

14

John R. Koza. Genetic programming as a means for programming computers by natural
selection. Statistics and Computing, 4(2):87–112, Jun 1994. ISSN 1573-1375. doi: 10.1007/
BF00175355.

William La Cava, Patryk Orzechowski, Bogdan Burlacu, Fabricio de Franca, Marco Virgolin,
Ying Jin, Michael Kommenda, and Jason Moore. Contemporary symbolic regression
methods and their relative performance. In J. Vanschoren and S. Yeung (eds.), Proceedings
of the Neural Information Processing Systems Track on Datasets and Benchmarks, volume 1,
2021.

Mikel Landajuela, Chak Lee, Jiachen Yang, Ruben Glatt, Claudio P. Santiago, Ignacio
Aravena, Terrell N. Mundhenk, Garrett Mulcahy, and Brenden K. Petersen. A unified
framework for deep symbolic regression. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems,
2022.

Robert Tjarko Lange, Yingtao Tian, and Yujin Tang. Large language models as evolution
strategies. arXiv preprint arXiv:2402.18381, 2024.

Joel Lehman, Jonathan Gordon, Shawn Jain, Kamal Ndousse, Cathy Yeh, and Kenneth O
Stanley. Evolution through large models. In Handbook of Evolutionary Machine Learning,
pp. 331–366. Springer, 2023.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Cheng-
hao Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the
source be with you! arXiv preprint arXiv:2305.06161, 2023.

Tennison Liu, Nicolás Astorga, Nabeel Seedat, and Mihaela van der Schaar. Large language
models to enhance bayesian optimization. In The Twelfth International Conference on
Learning Representations, 2023.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe,
Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative
refinement with self-feedback. Advances in Neural Information Processing Systems, 36, 2024.

Bodhisattwa Prasad Majumder, Harshit Surana, Dhruv Agarwal, Sanchaita Hazra, Ashish
Sabharwal, and Peter Clark. Data-driven discovery with large generative models. arXiv
preprint arXiv:2402.13610, 2024.

Michael de la Maza and Bruce Tidor. An analysis of selection procedures with particular
attention paid to proportional and boltzmann selection. In Proceedings of the 5th Interna-
tional Conference on Genetic Algorithms, pp. 124–131, San Francisco, CA, USA, 1993. Morgan
Kaufmann Publishers Inc. ISBN 1558602992.

Kazem Meidani and Amir Barati Farimani. Identification of parametric dynamical systems
using integer programming. Expert Systems with Applications, 219:119622, 2023. ISSN
0957-4174. doi: https://doi.org/10.1016/j.eswa.2023.119622.

Kazem Meidani, Parshin Shojaee, Chandan K Reddy, and Amir Barati Farimani. Snip:
Bridging mathematical symbolic and numeric realms with unified pre-training. In The
Twelfth International Conference on Learning Representations, 2023.

Elliot Meyerson, Mark J Nelson, Herbie Bradley, Adam Gaier, Arash Moradi, Amy K Hoover,
and Joel Lehman. Language model crossover: Variation through few-shot prompting.
arXiv preprint arXiv:2302.12170, 2023.

Jacques Monod. The growth of bacterial cultures. Annual Review of Microbiology, 3(Volume 3,
1949):371–394, 1949. ISSN 1545-3251. doi: https://doi.org/10.1146/annurev.mi.03.100149.
002103.

Terrell N. Mundhenk, Mikel Landajuela, Ruben Glatt, Claudio P. Santiago, Daniel faissol,
and Brenden K. Petersen. Symbolic regression via deep reinforcement learning enhanced
genetic programming seeding. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman
Vaughan (eds.), Advances in Neural Information Processing Systems, 2021.

15

Emilio Parisotto, Abdel rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong Zhou, and
Pushmeet Kohli. Neuro-symbolic program synthesis. In International Conference on Learn-
ing Representations, 2017. URL https://openreview.net/forum?id=rJ0JwFcex.

Brenden K Petersen, Mikel Landajuela Larma, Terrell N. Mundhenk, Claudio Prata San-
tiago, Soo Kyung Kim, and Joanne Taery Kim. Deep symbolic regression: Recovering
mathematical expressions from data via risk-seeking policy gradients. In International
Conference on Learning Representations, 2021.

Biqing Qi, Kaiyan Zhang, Haoxiang Li, Kai Tian, Sihang Zeng, Zhang-Ren Chen, and
Bowen Zhou. Large language models are zero shot hypothesis proposers. arXiv preprint
arXiv:2311.05965, 2023.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M. Pawan Kumar, Emilien Dupont, Francisco J. R. Ruiz, Jordan S. Ellenberg, Pengming
Wang, Omar Fawzi, Pushmeet Kohli, and Alhussein Fawzi. Mathematical discoveries
from program search with large language models. Nature, 625(7995):468–475, Jan 2024.
ISSN 1476-4687. doi: 10.1038/s41586-023-06924-6.

L Rosso, J R Lobry, S Bajard, and J P Flandrois. Convenient model to describe the combined
effects of temperature and ph on microbial growth. Applied and environmental microbiology,
61(2):610–616, 1995. ISSN 0099-2240. Journal Article.

Dipti Samantaray, Sumantra Mandal, and A.K. Bhaduri. A comparative study on johnson
cook, modified zerilli–armstrong and arrhenius-type constitutive models to predict el-
evated temperature flow behaviour in modified 9cr–1mo steel. Computational Materials
Science, 47(2):568–576, 2009. ISSN 0927-0256. doi: https://doi.org/10.1016/j.commatsci.
2009.09.025.

Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experimental data.
Science Advance, 324(5923):81–85, 2009. ISSN 0036-8075. doi: 10.1126/science.1165893.

Parshin Shojaee, Aneesh Jain, Sindhu Tipirneni, and Chandan K Reddy. Execution-based
code generation using deep reinforcement learning. arXiv preprint arXiv:2301.13816, 2023.

Parshin Shojaee, Kazem Meidani, Amir Barati Farimani, and Chandan Reddy. Transformer-
based planning for symbolic regression. Advances in Neural Information Processing Systems,
36, 2024.

Steven H Strogatz. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology,
Chemistry, and Engineering. CRC Press, 2 edition, 2015. doi: 10.1201/9780429492563.

Fangzheng Sun, Yang Liu, Jian-Xun Wang, and Hao Sun. Symbolic physics learner: Dis-
covering governing equations via monte carlo tree search. In The Eleventh International
Conference on Learning Representations, 2023.

Wassim Tenachi, Rodrigo Ibata, and Foivos I Diakogiannis. Deep symbolic regression for
physics guided by units constraints: toward the automated discovery of physical laws.
The Astrophysical Journal, 959(2):99, 2023.

Ljupco Todorovski and Saso Dzeroski. Declarative bias in equation discovery. In Proceedings
of the Fourteenth International Conference on Machine Learning, ICML ’97, pp. 376–384, San
Francisco, CA, USA, 1997. Morgan Kaufmann Publishers Inc. ISBN 1558604863.

Ljupčo Todorovski and Sašo Džeroski. Integrating Domain Knowledge in Equation Discovery,
pp. 69–97. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007. ISBN 978-3-540-73920-3.
doi: 10.1007/978-3-540-73920-3\ 4.

Amie R. Tuttle, Nicholas D. Trahan, and Mike S. Son. Growth and maintenance of escherichia
coli laboratory strains. Current Protocols, 1(1):e20, 2021. ISSN 2691-1299. doi: 10.1002/
cpz1.20.

Silviu-Marian Udrescu and Max Tegmark. Ai feynman: A physics-inspired method for
symbolic regression. Science Advances, 6(16):eaay2631, 2020. doi: 10.1126/sciadv.aay2631.

16

https://openreview.net/forum?id=rJ0JwFcex

Silviu-Marian Udrescu, Andrew Tan, Jiahai Feng, Orisvaldo Neto, Tailin Wu, and Max
Tegmark. Ai feynman 2.0: Pareto-optimal symbolic regression exploiting graph modular-
ity. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in
Neural Information Processing Systems, volume 33, pp. 4860–4871. Curran Associates, Inc.,
2020.

Marco Virgolin and Solon P Pissis. Symbolic regression is NP-hard. Transactions on Machine
Learning Research, 2022. ISSN 2835-8856.

Hanchen Wang, Tianfan Fu, Yuanqi Du, Wenhao Gao, Kexin Huang, Ziming Liu, Payal
Chandak, Shengchao Liu, Peter Van Katwyk, Andreea Deac, Anima Anandkumar, Kari-
anne Bergen, Carla P. Gomes, Shirley Ho, Pushmeet Kohli, Joan Lasenby, Jure Leskovec,
Tie-Yan Liu, Arjun Manrai, Debora Marks, Bharath Ramsundar, Le Song, Jimeng Sun, Jian
Tang, Petar Veličković, Max Welling, Linfeng Zhang, Connor W. Coley, Yoshua Bengio,
and Marinka Zitnik. Scientific discovery in the age of artificial intelligence. Nature, 620
(7972):47–60, Aug 2023. ISSN 1476-4687. doi: 10.1038/s41586-023-06221-2.

Xingyu Wu, Sheng-hao Wu, Jibin Wu, Liang Feng, and Kay Chen Tan. Evolutionary
computation in the era of large language model: Survey and roadmap. arXiv preprint
arXiv:2401.10034, 2024.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and
Xinyun Chen. Large language models as optimizers. arXiv preprint arXiv:2309.03409,
2023a.

Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad
Godil, Ryan Prenger, and Anima Anandkumar. LeanDojo: Theorem proving with
retrieval-augmented language models. In Neural Information Processing Systems (NeurIPS),
2023b.

Mingkai Zheng, Xiu Su, Shan You, Fei Wang, Chen Qian, Chang Xu, and Samuel Albanie.
Can gpt-4 perform neural architecture search? arXiv preprint arXiv:2304.10970, 2023a.

Yizhen Zheng, Huan Yee Koh, Jiaxin Ju, Anh TN Nguyen, Lauren T May, Geoffrey I Webb,
and Shirui Pan. Large language models for scientific synthesis, inference and explanation.
arXiv preprint arXiv:2310.07984, 2023b.

Zhaocheng Zhu, Yuan Xue, Xinyun Chen, Denny Zhou, Jian Tang, Dale Schuurmans, and
Hanjun Dai. Large language models can learn rules. arXiv preprint arXiv:2310.07064, 2023.

17

Appendix

A Implementation Details
A.1 SR Baselines
We compare LLM-SR against several state-of-the-art Symbolic Regression (SR) baselines,
including GPlearn, Deep Symbolic Regression (DSR) (Petersen et al., 2021), Unified Deep
Symbolic Regression (uDSR) (Landajuela et al., 2022), and PySR (Cranmer, 2023). GPlearn
is a pioneering and standard GP-based SR approach that uses the open-source gplearn3

package with parameters population size: 1000, tournament size: 20, and maximum
generations: 2M. DSR employs a RNN-based reinforcement learning search over sym-
bolic expressions. uDSR extends DSR by incorporating large-scale pretraining and GP
search at the decoding stage. Both DSR and uDSR approaches are implemented using
deep-symbolic-optimization (DSO) 4 package with the standard default parame-
ters: learning rate of 0.0005, batch size of 500, and a maximum of 2M iterations. PySR
is also used with the state-of-the-art open-source pysr5 package for SR that uses asyn-
chronous GP-based evolution, implemented with a population size of 4, 000, up to 100
sub-populations, and a maximum of 2M iterations. For a fair comparison, we allowed
the SR baselines to run for over 2M iterations until convergence to their best performance,
while LLM-SR variants ran for only around 2K iterations. Each of SR basline models was
subjected to a long execution time 5 times, each time running for over 2 million iterations.
This extensive number of evaluations and search iterations ensures robust evaluation of the
models’ capability to converge towards optimal solutions and effectively explore the vast
equation space of each problem.

A.2 LLM-SR
The LLM-SR framework was evaluated using two distinct backbone LLM models:
GPT-3.5-turbo and Mixtral-8x7B-Instruct. For both variants, the framework un-
derwent around 2.5K iterations, a comparatively lower number of search iterations com-
pared to symbolic regression baselines (around 2M) due to the enhanced efficiency of this
approach because of embedded scientific prior knowledge. The best results obtained from
these iterations were then documented and reported. Key parameters of the LLM-SR frame-
work include: Sampling Per Prompt: LLM-SR generates b = 4 samples with temperature
τ = 0.8 per prompt; Program Database Structure: The framework incorporates a program
database consisting of m = 10 islands. This database structure facilitates diverse program
generation and efficient sampling. Prompt Augmentation: To refine the prompt’s effective-
ness, it includes k = 2 best-shot in-context examples as experience demonstration sampled
from the experience buffer. This strategy leverages the buffer’s accumulated knowledge
to enhance prompt relevance and model performance over evolutionary mutations and
the search process. Execution Timeout: A critical operational parameter in our setup was
the execution timeout set at 30 seconds. If the execution of a program generated by the
LLM exceeded this limit, the process was halted, and the evaluation score of None was
returned. This constraint ensured timely progress and resource efficiency in the evalua-
tion process. Parallel Evaluation: In this framework, we deployed e = 4 evaluators to
operate concurrently. This parallelization allowed for rapid and efficient assessment of
the generated programs per prompt. As pointed out, for the LLM backbone models, a
sampling temperature of τ = 0.8 was utilized. This temperature setting was chosen to
balance creativity (exploration) and adherence to the problem constraints and reliance on
the prior knowledge (exploitation), based on preliminary experiments.

B Additional Details of LLM-SR method

Hypothesis Generation and Data-driven Evaluation Fig. 2 provided an example of
specification for Bacterial growth problem. Here, Fig. 7 showcases illustrative examples of

3https://gplearn.readthedocs.io/en/stable/
4https://github.com/dso-org/deep-symbolic-optimization
5https://github.com/MilesCranmer/PySR

18

https://gplearn.readthedocs.io/en/stable/
https://github.com/dso-org/deep-symbolic-optimization
https://github.com/MilesCranmer/PySR

Figure 7: Example of input prompts program body for (a) Oscillation and (b) Stress-Strain problems,
with problem specification, and the initial input equation program example (set as simple linear
equation skeleton). For better readability, the evaluation function details are not included in this figure.

prompts and specifications tailored for the Oscillation and Stress-Strain problems. These
prompts contain descriptions of the problem and relevant variables, expressed in natural
language. By providing this context, the language model can leverage its existing knowledge
about the physical meaning and relations of variables to generate scientifically plausible
hypotheses for new equation programs.

Fig. 8 also shows an example of prompt and specification for LLM-SR that prompts the
model to generate differentiable equation programs in pytorch using tensor operations.
The prompt suggests using differentiable operators and replacing non-differentiable compo-
nents (e.g., if-else conditions) with smooth differentiable approximations.

During each prompting step, the language model generates b = 4 distinct equation program
skeletons using a generation temperature of τ = 0.8. These equation skeleton programs are
concurrently evaluated to gather feedback. Evaluation is constrained by time and memory
limits set at T = 30 seconds and M = 2GB , respectively. Equation programs that exceed
these limits are disqualified and considered as discarded hypotheses by returning None
scores.

Experience Buffer Management. The pairs of equation skeleton hypotheses and their
corresponding scores, denoted as (f , s), are then stored in an experience buffer Pt for
further refinement in subsequent iterations of the search process. To encourage diversity
and avoid getting stuck in local optima, we follow (Cranmer, 2023) and adopt an islands
model, also known as a multiple population or multiple-deme model for managing the
experience buffer (Cranmer, 2023). We initialize m separate islands, each containing a copy
of the equation program example provided in the initial prompt (equation v0 in Fig. 2).
These islands evolve independently, allowing for parallel exploration of different regions
in the equation program space. At each iteration t, the newly generated equation program
hypotheses Ft and their corresponding fitness scores {(f , s) : f ∈ Ft, s = MSE(f ,D)}
are added to the same island from which the prompts were sampled, if the score of new
hypothesis s is better than the current best-score in the island. To maintain the quality
and diversity of the experience buffer, we periodically reset the worst-performing islands.
Every Treset iterations (e.g., every 4 hrs), we identify the m/2 islands whose best equation
programs have the lowest fitness scores. All the equation programs in these islands are
discarded, and each island is reinitialized with a single high-performing equation program,
obtained by randomly selecting one of the surviving m/2 islands and copying its highest-
scoring equation program (favoring older programs in case of ties). This reset mechanism
allows the framework to discard stagnant or unproductive regions of the equation program

19

Figure 8: An example of prompt structure, containing problem specification, evaluation and optimiza-
tion function, and equation program with pytorch and Adam Optimizer

space and focus on more promising areas. Within each island, we further cluster the
equation programs based on their signature, which is defined as the equation program score.
Equation programs with identical signatures are grouped together, forming clusters within
each island. This clustering approach helps preserve diversity by ensuring that equation
programs with different performance characteristics are maintained in the population.

Experience Sampling. To construct informative prompts for the LLM, we sample equation
programs from the experience buffer and update the prompt to include new experience
demonstration in-context examples. Here, we use a two-stage sampling process. First, we

20

Figure 9: Trajectory of Normalized MSE score over iterations for LLM-SR (GPT-3.5) on Feynman
benchmark equations versus new benchmark problems

randomly select an island from the m available islands. Then, within the selected island,
we sample k equation programs (typically, k = 2) to be included as in-context examples
in the prompt. When sampling equation programs within an island, we employ a two-
step approach. First, we sample a cluster based on its evaluation score, favoring clusters
with higher scores (i.e., higher-quality equation programs). Let si denote the score of the
i-th cluster, defined as an aggregation (e.g., mean) of all the scores in the signature that
characterizes that cluster. The probability Pi of choosing cluster i is given by:

Pi =
exp

(
si
τc

)
∑i′ exp

(
si′
τc

) , τc = T0

(
1− u mod N

N

)
, where τc is the temperature parameter, u is the current number of equation programs
in the island, and T0 and N are hyperparameters. This selection approach is known as
the Boltzmann selection procedure (Maza & Tidor, 1993). Once a cluster is selected, we
sample an equation program within that cluster, favoring shorter programs. Let li denote
the negative length of the i-th program within the chosen cluster (measured as the number
of characters), and let l̃i =

li−mini′ li′
maxi′ li′+10−6 . We set the probability of selecting each equation

program proportional to exp
(
l̃i/τp

)
, where τp is a temperature hyperparameter. The

sampled programs are then included in the prompt as in-context experience demonstration,
providing the LLM with relevant and diverse examples to guide the generation of new
equation programs. By maintaining a diverse and high-quality population in the experience
buffer and employing a strategic sampling approach, the experience management enables
the LLM-SR framework to effectively explore the space of equation programs and iteratively
refine its search based on the most promising candidates.

C Limitation of Feynman Benchmark Problems

The Feynman benchmark dataset (Udrescu & Tegmark, 2020), while commonly used for
evaluating symbolic regression and equation discovery methods, may not effectively cap-
ture the true discovery process and reasoning capabilities of LLMs. Fig.9 compares the
performance of LLM-SR with GPT-3.5 backbone across different benchmark problems,
illustrating the best score trajectory of Normalized Mean Squared Error against the number
of iterations for each problem. For the Feynman benchmark equations, LLM-SR rapidly
achieves low MSE scores within very few iterations, suggesting that LLMs may have mem-
orized or become overly familiar with these equations due to their prevalence in training
data. Qualitative examples in Fig. 10, 11, and 12 further support this notion, as the LLM’s

21

Figure 10: An example of LLM response to Feynman I.37.4 problem, demonstrating model memoriza-
tion without iterative search.

Figure 11: An example of LLM response to Feynman I.26.2 problem, demonstrating model memoriza-
tion without iterative search.

one-pass responses to some Feynman problems not only exhibit functional accuracy but
also mirror the exact form of the corresponding physics expressions.

In contrast, the newly designed benchmark problems, which challenge the model with
less familiar components, require more reasoning and refinement steps for LLM-SR to
discover well-fitting equations. The increased number of iterations in the refinement process
demonstrates that these new problems effectively simulate the discovery process rather
than simply relying on retrieval from memory. This observation highlights the necessity for
introducing novel benchmark problems that can better assess the true reasoning capabilities
of LLMs in equation discovery while leveraging its scientific prior knowledge, as the

22

Figure 12: An example of LLM response to Feynman I.12.11 problem, demonstrating model memo-
rization without iterative search.

commonly used Feynman equations may not provide an accurate evaluation due to the
models’ over-exposure and memorization of these exact physic equations.

D Additional Details on Benchmark Problems and Datasets

D.1 Nonlinear Oscillator Equations

Dataset Time range initial values F α β δ γ ω

Oscillator 1 (0, 50) {x=0.5, v=0.5} 0.8 0.5 0.2 0.5 1.0
Oscillator 2 (0, 50) {x=0.5, v=0.5} 0.3 0.5 1.0 5.0 0.5

Table 2: Parameter values for Oscillator datasets.

Figure 13: Phase diagrams of trajectories corre-
sponding to custom oscillators: (a) Oscillator 1 and
(b) Oscillator 2

In this work, we simulate two nonlinear
oscillators using ’solve ivp’6 in scipy
library to generate data. The parameters
and initial values of these simulations are
provided in Table 2, and the equations used
to generate data for this task are repeated
here for ease of reference:
v̇ = F sin(ωx)− αv3− βx3−γx · v− x cos(x)
and
v̇ = F sin(ωt)− αv3− βx · v− δx · exp(γx).
Fig. 13 illustrates the phase plane dia-
grams of these nonlinear damped oscilla-
tors. These oscillators have nonlinear terms
for driving force, restoring force, and damping force, making them challenging problems for
equation identification. To assess the generalization capability of the predicted equations,
we partition the data into training, in-domain validation, and out-of-domain validation
sets based on the trajectory time in simulations. Specifically, we utilize the time interval
T = [0, 20) to evaluate the out-of-domain generalization of the equations.

6https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.
solve_ivp.html

23

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html

Figure 14: Scheme of some common temperature and pH models in bacterial growth, as well as the
custom model behavior.

Figure 15: Stress-strain curves of Aluminium 6061-T651 under various temperatures (data from
(Aakash et al., 2019))

D.2 E. coli Growth Rate Equations

The custom equation used to generate data for this task is:

dB
dt

= µmaxB
(

S
Ks + S

)
tanh (k(T − x0))

1 + c(T − xdecay)4 exp
(
−

∣∣∣pH− pHopt

∣∣∣) sin
(
(pH− pHmin)π

pHmax − pHmin

)2

,

where temperature and pH dependency are approximated by complex nonlinear functions
with new unseen operators, the effect of population density is assumed to be linear (single
bacterial population), and

(
S

Ks+S

)
denotes Monod equation (Monod, 1949) for substrate

concentration model. Fig. 14 shows the numeric behavior of custom designed temperature
and pH functions, fT(T) and fpH(pH), along with some previous forms studied in literature
(Rosso et al., 1995).

D.3 Material Stress Behavior Analysis

Fig. 15 depicts the stress-strain curves of Aluminium 6061-T651 at different temperatures,
showing the elastic, plastic, and failure regions of material and highlighting the significant
influence of temperature on the material’s response. The stress-strain relationship for
aluminum alloys can be described using various constitutive models (Samantaray et al.,
2009), such as the Johnson-Cook model (Johnson & Cook, 1985) which incorporates the
effects of strain, strain rate, and temperature on the stress. A simplified version of J-C
equation (by neglecting the effect of strain rate) is:

σ = (A + Bεn)

(
1−

(
T − Tr

Tm − Tr

)m)
,

24

where σ is the stress, ε is strain, T is the current temperature, Tr is the reference temperature,
Tm is the melting temperature, and A, B, C, n, m are material constants.

For this problem, the data represents the tensile behavior of material under uniaxial tension
for 6 different temperatures. We allocate the data corresponding to T = 200◦C for use as the
validation set.

E Further Results and Visualizations

Performance Trajectory In this section, we evaluate the progress of generated equations
using LLM-SR over iterations. This analysis can illustrate the qualitative evolutionary
refinement of the discovered equations given the best-shot sampled in-context equation
examples provided as experience demonstration sampled from the experience buffer.

Figure 16: Performance Trajectory of LLM-SR along with the best-scoring found equation programs
over iterations on the Oscillation 2 problem.

Fig. 16 shows the NMSE values for the Oscillation 2 dataset. For simplicity, we have
provided the simplified equation versions of programs with their optimized parameters.
We observe that some of the common nonlinear terms such as sinisoidal driving force term
are found early in the search, while more complicated nonlinear terms are found later in the
search. An interesting observation here is that while ground truth equation for this dataset
is v̇ = 0.3 sin(t) − 0.5v3 − x · v − 5.0x · exp(0.5x), LLM-SR has discovered the equation
v̇ = 0.3 sin(t)− 0.5v3 − x · v + 5.0(1− exp(x)). By evaluating the different terms in these
two forms, we observe that in fact 5.0(1− exp(x)) ≈ −5.0x · exp(0.5x) for x ∈ (−2, 2),
which is the approximate range of displacement in this dataset.

Fig. 17 illustrates the evolution of equations for the Oscillation 1 problem. It is evident
that the model attempts to incorporate various nonlinear terms corresponding to driving,
restoring, and damping forces, as evidenced by comments or variable names within the code,
aiming to enhance accuracy. An intriguing observation emerges wherein the model identifies
a trivial solution for the nonlinear oscillation problem, exploiting the flexibility in its code
representations. As depicted in Fig. 17, the last step discovered equation yielding very
low error turns out to be a trivial solution based on the physical interpretation of variables
in this context. This solution was discovered through the utilization of the np.gradient
function in the numpy library, employing numerical differentiation of 0.5v2 with respect
to displacement (x), leading to an approximation of acceleration: −6.67× d

dx (−0.076v2) =

0.5 d
dx (v

2) = dv
dt . Discovery of this edge case by at last iterations is a very interesting

observation

25

Figure 17: Performance Trajectory of LLM-SR along with the best-scoring found equation programs
over iterations on the Oscillation 1 problem.

Figure 18: Performance Trajectory of LLM-SR along with the best-scoring found equation programs
over iterations on the E. coli growth problem.

Similarly, Fig. 18 presents an annotated performance curve illustrating LLM-SR’s per-
formance on the E. coli growth rate equation discovery benchmark problem. It becomes
apparent that the model recognizes the potential presence of optimal values for temperature
and pH (pH opt and T opt) from the early iterations which comes from model prior knowl-
edge about the bell-shaped effect of these variables on the growth rate. To enhance accuracy,
the model necessitates exploration and incorporation of various nonlinear forms. Notably,
LLM-SR directs its evolutionary changes towards the more critical and variable aspects of
the problem, specifically the pH and temperature effects, as opposed to other components
such as substrate concentration represented by the Monod equation S

K+S . Additionally, the
figure demonstrates LLM-SR’s comprehension that different components of the function
should be multiplied together in the final step, underscoring how prior knowledge of the
problem structure can guide LLM-SR’s evolutionary steps.

26

Figure 19: Performance Trajectory of LLM-SR along with the best-scoring found equation programs
over iterations on the Stress-Strain problem.

Fig. 19 displays three distinct equation skeleton programs discovered by LLM-SR for the
stress-strain problem over search iterations. As in previous cases, we notice the model’s
enhancement through exploration and incorporation of various nonlinear terms into the
equations. An additional significant observation for this problem is that stress-strain rela-
tionships often exhibit piece-wise behavior (as it can also be observed in Fig. 15 representing
data obesrvations), which traditional symbolic regression models struggle to identify. How-
ever, LLM-SR represents equation skeletons as programs, thus, it can employ conditional
rules (If-Else) or their continuous relaxations, utilizing step-wise nonlinear differentiable
functions such as the sigmoid function to model piece-wise relations. This differentiability
and smooth approximation of if-else conditions are particularly helpful for the parameter
optimization step, providing smooth functions for the optimizer to navigate.

Qualitative Analysis Fig. 20 and Fig. 21 depict the equation programs identified by
LLM-SR and other Symbolic Regression (SR) methods for the E. coli growth and the stress-
strain problems, respectively. The diverse range of equation forms identified by different
SR baselines reflects the challenges posed by the datasets. Notably, in both datasets, the
SR methods yield either lengthy or highly nonlinear equations that deviate from the prior
knowledge of the systems, as evidenced by the poor out-of-domain (OOD) performance
scores in Table 1. In contrast, LLM-SR finds flexible equation programs that are more
interpretable and aligned with the domain-specific scientific priors of the systems.

Fig. 22 and Fig. 23 offer a qualitative comparison by visually presenting the outputs of the
equations obtained using LLM-SR, PySR, and uDSR. Upon examination, it becomes evident
that the predictions generated by LLM-SR exhibit a notable degree of alignment with both
the in-domain and out-of-domain regions of these systems. This alignment suggests that
LLM-SR effectively captures the underlying patterns and dynamics of the data, enabling it
to better generalize to unseen data points beyond the training domain.

27

Figure 20: Discovered equations from LLM-SR and other SR baseline methods for E. coli bacterial
growth rate problem.

Figure 21: Discovered equations from LLM-SR and other SR baseline methods for Stress-Strain
problem.

Figure 22: Qualitative evaluation of the performance of LLM-SR on Oscillation 2 problem compared to
uDSR and PySR baselines. Plots show the target acceleration ẍ with respect to time (t), displacement
(x), and velocity (v).

28

Figure 23: Qualitative evaluation of LLM-SR performance for Stress-Strain problem compared to
uDSR and PySR baselines.

29

	Introduction
	LLM-SR Methodology
	Problem Formulation
	Hypothesis Generation
	Prompt
	Hypothesis Sampling

	Data-driven Evaluation
	Hypothesis Optimization
	Fitness Assessment

	Experience Management
	Buffer Maintenance
	Experience Sampling

	Experimental Setup
	Benchmarks and Datasets
	Baselines
	LLM-SR Configuration

	Findings
	LLM-SR Discovers more Accurate Equations
	LLM-SR has better OOD generalization
	LLM-SR Discovers Equations More Efficiently

	Analysis
	Ablation Study
	Qualitative Analysis

	Related Work
	Discussion and Conclusion
	Implementation Details
	SR Baselines
	LLM-SR

	Additional Details of LLM-SR method
	Limitation of Feynman Benchmark Problems
	Additional Details on Benchmark Problems and Datasets
	Nonlinear Oscillator Equations
	E. coli Growth Rate Equations
	Material Stress Behavior Analysis

	Further Results and Visualizations

