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Abstract—Due to the recent overwhelming growth rate of
large-scale data, the development of faster processing algo-
rithms with optimal performance has become a dire need of
the time. In this paper, we propose two novel algorithms,
ADABOOST.PL (Parallel ADABOOST) and LOGITBOOST.PL
(Parallel LOGITBOOST), that facilitate simultaneous partici-
pation of multiple computing nodes to construct a boosted
classifier. Our algorithms can induce boosted models whose
generalization performance is close to the respective baseline
classifier. By exploiting their own parallel architecture both the
algorithms gain significant speedup. Moreover, the algorithms
do not require individual computing nodes to communicate
with each other, to share their data or to share the knowledge
derived from their data and hence, they are robust in preserv-
ing privacy of computation as well. We used the Map-Reduce
framework to implement our algorithms and experimented on
a variety of synthetic and real-world data sets to demonstrate
the performance in terms of classification accuracy, speedup
and scaleup.

Keywords-Boosting; parallel algorithms; classification; dis-
tributed computing.

I. INTRODUCTION

In several scientific and business applications, it has
almost become a common practice to gather information
which typically contains millions of training examples with
thousands of features. Furthermore, data is either generated
or gathered everyday at an unprecedented rate. To efficiently
handle such large-scale data, faster processing and optimiza-
tion is becoming more important. Hence, it has become
vital to develop new algorithms that are more suitable for
parallel architectures. One simple approach could be to de-
ploy a single inherently parallelizable data mining program
to multiple data (SPMD) on multiple computers. But, for
algorithms that are not inherently parallelizable in nature,
redesigning to achieve parallelization is the alternative.

Ensemble classifiers are a powerful set of learners in data
mining that use multiple models to obtain better predictive
performance compared to other methods [1]. Some of the
most popular ensemble methods are: Bagging [2], Boost-
ing [3], Random Forests [4]. The algorithmic structure of
Bagging and Random Forest are readily suitable for paral-
lelization in a SPMD architecture. However, for the case of
boosting, it becomes tricky because of the sequential nature
of the algorithm. Though not algorithmically constrained,
most boosting algorithms iteratively learn weak classifiers
with respect to a distribution and add them to a final strong
classifier. Thus, weak learners in next iterations focus more
on the examples that previous weak learners misclassified.
However, this dependent iterative setting of boosting makes

it inherently a serial algorithm. The task of making iterations
independent of each other and thus leveraging boosting
for parallel architectures is non-trivial and demands some
research attention.

In this paper, we address the problem of parallelizing
boosting from a different perspective. We propose two
novel algorithms, ADABOOST.PL (Parallel ADABOOST)
and LOGITBOOST.PL (Parallel LOGITBOOST), that achieve
parallelization in both time and space. Parallelization in
space is also important because of the limiting factor posed
by the memory size. Large data sets, that can not fit into
the main memory, are often needed to swap between the
main memory and the (slower) secondary storage, introduc-
ing latency cost which sometimes may even diminish the
speedup gained by parallelization in time. Both the proposed
algorithms are designed to work in cloud environments
where each node in the computing cloud works only on
a subset of the whole data. The combined effect of all the
parallel working nodes is a boosted classifier model induced
much faster and with an excellent generalization capability.

We empirically show that, while maintaining a com-
petitive test accuracy, the algorithms achieves significant
speedup compared to respective baseline (ADABOOST or
LOGITBOOST) implemented in a single machine. For
comparison purposes, we also experimented with MULT-
BOOST [5], which is a variation of ADABOOST capable
of being fitted in a parallel architecture; and showed that
ADABOOST.PL performs better than MULTBOOST both in
terms of prediction accuracy, speedup and scaleup. For the
implementation, we used Map-Reduce [6] framework, which
is a simple model for distributed cloud computing.

The main contributions of the paper are as follows. We:

• Propose a new parallel framework for boosting algo-
rithms that achieves parallelization in both time and
space.

• Prove the convergence of the proposed algorithm, AD-
ABOOST.PL.

• Efficiently implemented our algorithm using Map-
Reduce framework on Amazon EC21 cloud environ-
ment.

• Demonstrate experimentally the superiority of the pro-
posed algorithms over other methods in terms of pre-
diction accuracy, speedup and scaleup.

1http://aws.amazon.com/ec2/



Algorithm 1 ADABOOST(Dn, T )
Input: Training set of n examples (Dn)

Number of boosting iterations (T )
Output: The classifier (H)
Procedure:

1: w1 ←
(
1
n , ...,

1
n

)
2: for t← 1 to T do
3: h(t) ← LEARNWEAKCLASSIFIER(wt)
4: ϵ− ←

∑n
i=1 w

t
iI
{
h(t) (xi) ̸= yi

}
5: αt ← 1

2 ln
(

1−ϵ−
ϵ−

)
6: for i← 1 to n do
7: if h(t) (xi) ̸= yi then
8: wt+1

i ← wt
i

2ϵ−
9: else

10: wt+1
i ← wt

i

2(1−ϵ−)
11: end if
12: end for
13: end for
14: return H =

∑T
t=1 α

th(t)

Algorithm 2 ADABOOST.PL(D1
n1 , ... , DM

nM , T )

Input: The training sets of M workers (D1
n1 , ..., DM

nM )
Number of boosting iterations (T )

Output: The classifier (H)
Procedure:

1: for p← 1 to M do
2: Hp ← ADABOOST (Dp

np , T )
3: Hp∗ ← the weak classifiers in Hp sorted w.r.t. αp(t)

4: end for
5: for t← 1 to T do
6: h(t) ← MERGE

(
h1∗(t), ..., hM∗(t)

)
7: αt ← 1

M

∑M
p=1 α

p∗(t)

8: end for
9: return H =

∑T
t=1 α

th(t)

II. ADABOOST.PL

In this section, we describe our proposed algorithm
ADABOOST.PL. Before that, we would like to discuss
ADABOOST [7] in brief. The pseudocode for ADABOOST
is described in Algorithm 1. Let the data set Dn =
{(x1, y1) , (x2, y2) , ..., (xn, yn)}, where each example xi =(
x1, x2, ..., xd

)
is a vector with d attribute values and

each label yi ∈ {+1,−1}. The algorithm assigns weights
wt = {wt

1, w
t
2, ..., w

t
n} for all the examples in Dn, where

t ∈ [1, T ] and T is the total number of boosting iterations.
Before starting the first iteration these weights are uniformly
initialized (line 1) and they are updated in every consecutive
iteration (lines 7-10). It is important to note that, for all t,∑n

i=1 w
t
i = 1. At each iteration, a weak learner function

is applied to the weighted version of the data which then

returns an optimal weak hypothesis h(t) (line 3). This weak
hypothesis minimizes the weighted error:

ϵ− =

n∑
i=1

wt
iI
{
h(t) (xi) ̸= yi

}
(1)

Here, I {A} is an indicator function whose value is 1 if A
is true and 0 otherwise. At each iteration, a weight (αt) is
assigned to the weak classifier (line 5). At the end of T
iterations, the algorithm returns the final classifier H which
is a weighted average of all the weak classifiers. The sign
of H is used for the final prediction.

Computational Complexity of ADABOOST depends on the
weak learner algorithm in line 3. Rest of the operations
can be performed in Θ(n). Lets consider decision stump
(decision trees with only two leaf nodes) as weak learners.
The cost of finding the best decision stump is Θ(dn) if the
data examples are sorted in each attribute. Sorting all the
attributes will take Θ(dn log n) time and this has to be done
only once before starting the first iteration. So, the overall
cost of the T iterations is Θ(dn(T + log n)).

The pseudocode of ADABOOST.PL is given in Algo-
rithm 2. For a formal description of ADABOOST.PL, let Dp

np

is the data set for the pth worker. The workers compute the
ensemble classifier Hp by completing all the T iterations of
standard ADABOOST (Algorithm 1) on their respective data
sets (line 2). Hp is defined as follows:

{(hp(1), αp(1)), (hp(2), αp(2)), ..., (hp(T ), αp(T ))}

where hp(t) is the weak classifier of pth worker at tth

iteration and αp(T ) is the corresponding weight of that weak
classifier. The worker then reorders the weak classifiers,
hp(t), with increasing order of αp(t) (line 3). This new
ordering Hp∗

is expressed as follows:

{(hp∗(1), αp∗(1)), (hp∗(2), αp∗(2)), ..., (hp∗(T ), αp∗(T ))}

If, αp(k) = min{αp(t)|t ∈ {1, 2, ..., T}} then αp∗(1) =
αp(k) and hp∗(1) = hp(k). Now, the reordered hp∗(t)s are
considered for merging in the rounds of the final classifier.
Note that the number of rounds for the final classifier is
same as the number of iterations of the workers’ internal
ADABOOST. But, the tth round of final classifier does not
necessarily merges the tth iteration results of the workers.
For example, h(t) is formed by merging {h1∗(t), ..., hM∗(t)}
(line 6) where, these weak classifiers does not necessarily
come from the tth iteration of the workers. This merged
classifier, h(t) is a ternary classifier, a variant of weak
classifier proposed by Schapire and Singer [8] which along
with ‘+1’ and ‘−1’ might also return ‘0’ as a way of
abstaining from answering. It takes a simple majority vote
among the worker’s weak classifiers:

h(t)(x) =


sign

(
M∑
p=1

hp∗(t) (x)

)
if

M∑
p=1

hp∗(t) (x) ̸= 0

0 otherwise



The ternary classifier will answer ‘0’ if equal number of
positive and negative predictions are made by the workers’
weak classifiers. Otherwise, it will answer the majority
prediction. In line 7, the weights of the corresponding
classifiers are averaged to get the weight of the ternary
classifier. After all the ternary classifiers for T rounds are
generated, the algorithm returns their weighted combination
as the final classifier.

A. Convergence of AdaBoost.PL

ADABOOST.PL sorts the worker’s classifiers with respect
to their weights (αp(t)) and then merges them based on the
new reordering. One of the main concerns of this approach
is that we need to show this merging of classifiers from
different iterations will ensure algorithm’s convergence. In
the next few paragraphs we will address this issue.

Gambs et al. [5] showed that, any boosting algorithm will
eventually converge if the weak classifiers of the iterations
satisfy the following condition:

ϵ+ > ϵ− (2)

We will now show that ADABOOST.PL satisfies this
condition when the number of workers is 2. Let us consider
an environment with two workers. The ith iteration weak
classifier hA(i) of worker A is merged with the jth iteration
weak classifier hB(j) of worker B to form the merged
classifier h(k) for the kth round. wA = {wA

1 , w
A
2 , ..., w

A
nA}

is the state of the weight vector (during ith iteration) of
worker A’s data points. Similarly, wB can be defined as the
weight vector state during jth iteration. So, the weighted
errors and the weighted rate of correctly classified points
for hA(i) are:

ϵA− =
nA∑
l=1

wA
l I
{
hA(i)

(
xA
l

)
= −yAl

}
(3)

ϵA+ =
nA∑
l=1

wA
l I
{
hA(i)

(
xA
l

)
= yAl

}
(4)

ϵB− and ϵB+ can also be defined similarly for hB(j). Let us
also define:

ωA
− =

nA∑
l=1

wA
l I
{
h(k)

(
xA
l

)
= −yAl

}
(5)

ωA
+ =

nA∑
l=1

wA
l I
{
h(k)

(
xA
l

)
= yAl

}
(6)

Similarly, we can define ωB
− and ωB

+ . Note the difference
between ϵA and ωA. ϵA is defined for A’s weak classifier
and ωA is defined for the merged classifier. Using these
notations, the weighted error and the weighted rate of
correctly classified points for h(k) can be defined as follows:
ϵ∗− = ωA

− +ωB
− and ϵ∗+ = ωA

+ +ωB
+ . It should be noted that

these values are not normalized. ϵ∗− and ϵ∗+ might exceed 1

because both
∑nA

l=1 w
A
l and

∑nB

l=1 w
B
l are equal to 1. These

weight vectors were initialized by the corresponding worker
and through out all the ADABOOST iterations they always
sum up to 1. Hence, the normalized weighted error and the
normalized rate of correctly classified points for the merged
classifier will be:

ϵ− =
ωA
− + ωB

−
2

(7)

ϵ+ =
ωA
+ + ωB

+

2
(8)

Theorem 1: If hA(i) and hB(j) are both optimal, then
ϵ+ ≥ ϵ−.

Proof: According to Eq. (II) merged classifier h(k)

abstains when hA(i) does not agree with hB(j). So, we can
say that, h(k) abstains when hA(i) agrees with −hB(j) (−h
is a classifier that always predicts opposite of h; for example,
if h is a decision stump, changing the decisions of leaf
nodes to opposite sign would result in −h). Weighted error
of −hB(j) on A’s data can be divided into two mutually
exclusive regions of DA

nA : 1) the region where h(k) abstains
and 2) where h(k) does not abstain.

In the first region hA(i) agrees with −hB(j). Hence, in this
region the weighted error of −hB(j) is equal to the weighted
error of hA(i) which is (ϵA− − ωA

−).
In the second region hA(i) does not agree with −hB(j).

Hence, in this region the weighted error of −hB(j) is equal
to the weighted rate of correctly classified points of hA(i)

which is ωA
+.

So, the weighted error of −hB(j) on DA
nA is (ϵA− +ωA

+ −
ωA
−). If ωA

+ < ωA
−, then the weighted error of −hB(j) on

DA
nA will be less than ϵA−. Note that ϵA− is the error for

hA(i). This contradicts the optimality of hA(i) on DA
nA . So,

it is proved that ωA
+ ≥ ωA

−. Similarly, it can be shown that,
ωB
+ ≥ ωB

− . Adding the last two inequalities and diving both
sides by 2 will give us ϵ+ ≥ ϵ−.

According to Theorem 1 we can say that, in a two worker
environment, the merged classifiers in ADABOOST.PL will
satisfy ϵ+ ≥ ϵ−. ADABOOST.PL can discard any merged
classifier with ϵ+ = ϵ− and thus can satisfy the sufficient
condition for convergence described by the inequality given
in Eq. (2). ADABOOST.PL will only fail when all the
merged classifiers have ϵ+ = ϵ− which is very unlikely
to happen. It is hard to theoretically prove the convergence
of ADABOOST.PL when number of workers is more than 2.
But, still we can ensure the convergence by discarding any
classifier that violates condition in Eq. (2).

B. Computational Complexity
In a distributed setting, where M workers participates

parallelly and the data is distributed evenly among the
workers, the computational cost for ADABOOST.PL is
Θ(dnM log n

M + Tdn
M ). The sorting of the T weak classifiers

(line 3) will have an additional cost of Θ(T log T ) time,
which becomes a constant term if T is fixed.



Algorithm 3 LOGITBOOST(Dn, T )
Input: Training set of n examples (Dn)

Number of boosting iterations (T )
Output: The classifier (F )
Procedure:

1: F (x)← 0
2: p(xi) =

1
2 for i = 1, 2, ..., n.

3: for t← 1 to T do
4: zi ← y∗

i −p(xi)
p(xi)(1−p(xi))

for i = 1, 2, ..., n.

5: wi ← p(xi)(1− p(xi)) for i = 1, 2, ..., n.
6: ft ← FITFUNCTION(z, x, w)
7: F (xi)← F (xi) +

1
2ft(xi) for i = 1, 2, ..., n.

8: p(x)← eF (xi)

eF (xi)+e−F (xi)
for i = 1, 2, ..., n.

9: end for
10: return F =

∑T
t=1 ft

Algorithm 4 LOGITBOOST.PL(D1
n1 , ... , DM

nM , T )

Input: The training sets of M workers (D1
n1 , ..., DM

nM )
Number of boosting iterations (T )

Output: The classifier (F )
Procedure:

1: for p← 1 to M do
2: Hp ← LOGITBOOST (Dp

np , T )
3: Hp∗ ← the weak classifiers in Hp sorted w.r.t. their

unweighted error rate.
4: end for
5: for t← 1 to T do
6: f (t) ← MERGE

(
f1∗(t), ..., fM∗(t)

)
7: end for
8: return F =

∑T
t=1 f

(t)

III. LOGITBOOST.PL

LOGITBOOST [9] is another powerful boosting method
that utilizes additive logistic regression model. Unlike AD-
ABOOST, it uses regression functions instead of classifiers;
and these functions output real values as prediction. The
pseudocode for LOGITBOOST is described in Algorithm 3.
The algorithm maintains a vector of probability estimates
(p) for each data point which is initialized to 1/2 (line
2) and updated during each iteration (line 8). In each
iteration LOGITBOOST computes working responses (z) and
weights (w) for each data points (line 4,5)2. The subroutine
FITFUNCTION generates a weighted least-squares regression
function of z to x by using the weights w (line 6). The final
classifier (F ) is a additive model of these real valued regres-
sion functions. The final prediction is the sign of F . The cost
of finding the best regression function is Θ(dn) if the data
examples are sorted in each attribute. So, the Computational
Complexity of LOGITBOOST is Θ(dn(T + log n)).

2y∗ = (y + 1)/2, taking values 0, 1.

In Algorithm 4 we describe our parallel algorithm LOG-
ITBOOST.PL which follows the similar strategy described
in Algorithm 2. Like Algorithm 2 LOGITBOOST.PL also
distributes the data set among the workers where each
worker independently induces their own boosting model.
Note that, LOGITBOOST does not assign any weights for the
regression functions. Here, we sort the workers’ functions
with respect to their unweighted error rates:

ϵ =
n∑

i=1

I {sign (f (xi)) ̸= sign (yi)} (9)

This new reordered functions lists are used to get the merged
functions as before. The merged function averages the output
of the participating functions:

f (t)(x) =
1

M

M∑
i=1

f i∗(t) (10)

The final classifier is the addition of all the T merged
functions. For fixed T the computational cost for LOG-
ITBOOST.PL is Θ(dnM log n

M + Tdn
M ) which is same as

ADABOOST.PL.

IV. MAP-REDUCE FRAMEWORK

Map-Reduce is a new distributed programming paradigm
for cloud computing environment introduced by Dean et
al. [6]. The model is capable of parallelly processing large
data sets distributed across many nodes. The main goal
is to simplify large data processing by using inexpensive
cluster computers and to make this easy for users while
achieving both load balancing and fault tolerance. Map-
Reduce has two primary functions: the Map function and
the Reduce function. These functions are defined by the
user to meet the specific requirements. The original Map-
Reduce software is a proprietary system of Google, and
therefore, not available for public use. For our experiments
we considered two open source implementations of Map-
Reduce: Hadoop [10] and CGL-MapReduce [11]. Hadoop is
the most widely known Map-Reduce architecture. Hadoop
stores the intermediate results of the computations in local
disks and then informs the appropriate workers to retrieve
(pull) them for further processing. This strategy introduces
an additional step and a considerable communication over-
head. CGL-MapReduce is another Map-Reduce implemen-
tation that utilizes NaradaBrokering [12], a streaming-based
content dissemination network, for all the communications.
This feature of CGL-MapReduce eliminates the overheads
associated with communicating via a file system. Moreover,
Hadoop’s MapReduce API does not support configuring a
Map task over multiple iterations and hence, in the case
of iterative problems the Map task needs to load the data
again and again in each iteration. For these reasons, we have
chosen CGL-MapReduce for our experiments.



(a) (b) (c)

Figure 1. Map-Reduce work flow for: (a) ADABOOST.PL (b) LOGITBOOST.PL (c) MULTBOOST.

Figure 1 shows the work flows of ADABOOST.PL, LOG-
ITBOOST.PL and MULTBOOST in Map-Reduce framework.
Each of the Map functions represents a worker having
access to only a subset of the data. For ADABOOST.PL
and LOGITBOOST.PL each of the M Map functions runs
respective ADABOOST or LOGITBOOST algorithm on their
own subset of data to induce the set of weak classifiers (or
regression functions). LOGITBOOST.PL has an additional
step of calculating the unweighted error rates. Then the base
classifiers (or functions) are sorted. These weak classifiers
(or functions) along with their weights are transmitted (not
applicable for LOGITBOOST.PL) to the Reduce function.
After receiving from all the Map functions, the Reduce
function merges the weak classifiers (or functions) at the
same sorted level and averages (not required for LOG-
ITBOOST.PL) the classifier weights to derive the weights
of the merged classifiers. When all the T (total number
of boosting iterations) merged classifiers (or functions) are
ready, they are sent to the user program and the final
classifier is induced. Note that all the boosting iterations
are executed in a single burst within the Map function. So,
for ADABOOST.PL and LOGITBOOST.PL we need only one
cycle of Map-Reduce to complete the algorithms.

During each iteration of MULTBOOST [5], each worker
builds a weak classifier. These weak classifiers are merged to
a single classifier and then the workers measure the weighted
errors of this merged classifier on their respective portions
of data. The errors are added to get the total error for the
merged classifier and accordingly the workers updates the
data points’ weights. Then the next iteration begins. So, to
complete a single boosting iteration of MULTBOOST the
Map-Reduce cycle needs to iterate two times.

For the communication cost analysis, let the cost of
communications from user program to Map functions, from
Map functions to Reduce function and from Reduce func-
tion to user program be f , g and h respectively. Then
the communication cost for ADABOOST.PL and LOGIT-
BOOST.PL will be Θ(f + g + h). MULTBOOST will take
Θ(2T (f +g+h)) time where T is the number of iterations.
Note that, user program communicates with the Map work-
ers parallelly, so the cost does not depend on the number of
Map workers.

A. Privacy Preserving aspect of ADABOOST.PL and LOG-
ITBOOST.PL

From the Map-Reduce work flow of ADABOOST.PL and
LOGITBOOST.PL, it is evident that the Map workers do
not have to share their data or any knowledge derived from
the data with each other. The Map workers never get any
hint about the complete data set. Eventually, the Reducer
receives all the classifiers. Note that, we have only one
Reduce worker and while this Reduce worker is performing
its job, the user program waits for it to finish. So, we can
accommodate the task of Reducer within the user program
and eliminate any risk of leaking knowledge to any worker.
Thus, our algorithms have great potential for being used in
privacy preserving applications.

Table I
THE SYNTHETIC AND REAL-WORLD DATA SETS USED IN OUR

EXPERIMENTS.

no. of no. of
Datasets instances (n) attributes(d)
yeast 892 8
wineRed 1599 12
wineWhite 4898 12
pendigits 7494 16
spambase 4601 57
musk 6598 167
telescope 19020 11
swsequence 3527 6349
biogrid 4531 5367
isolet 6238 617
d1 200000 20
d2 150000 20
d3 100000 20
d4 5000 2000
d5 5000 1500
d6 5000 1000

Table III
COMPARISON OF THE 10-FOLD CROSS-VALIDATION ERROR RATES

(STANDARD DEVIATIONS) FOR LOGITBOOST.PL.

5 workers 10 workers 15 workers 20 workers
Data set LogitBoost LogitBoost.PL LogitBoost.PL LogitBoost.PL LogitBoost.PL

yeast 0.3408 (0.0500) 0.3577 (0.0562) 0.3610 (0.0435) 0.3408 (0.0337) 0.3398 (0.0304)
wineRed 0.2383 (0.0347) 0.2470 (0.0331) 0.2545 (0.0303) 0.2414 (0.0300) 0.2583 (0.0354)
wineWhite 0.2342 (0.0235) 0.2315 (0.0225) 0.2344 (0.0210) 0.2268 (0.0173) 0.2327 (0.0173)
pendigits 0.0657 (0.0113) 0.0591 (0.0081) 0.0602 (0.0094) 0.0634 (0.0093) 0.0654 (0.0086)
spambase 0.0550 (0.0080) 0.0539 (0.0094) 0.0541 (0.0069) 0.0578 (0.0090) 0.0596 (0.0076)
musk 0.0305 (0.0065) 0.0382 (0.0066) 0.0329 (0.0106) 0.0343 (0.0105) 0.0352 (0.0112)
telescope 0.1488 (0.0084) 0.1434 (0.0077) 0.1445 (0.0080) 0.1430 (0.0077) 0.1457 (0.0083)
swsequence 0.3296 (0.0215) 0.3243 (0.0229) 0.3314 (0.0216) 0.3307 (0.0258) 0.3342 (0.0221)
biogrid 0.3078 (0.0102) 0.3122 (0.0112) 0.3195 (0.0143) 0.3268 (0.0137) 0.3247 (0.0126)
isolet 0.1347 (0.0086) 0.1303 (0.0114) 0.1393 (0.0111) 0.1465 (0.0145) 0.1611 (0.0106)



Table II
COMPARISON OF THE 10-FOLD CROSS-VALIDATION ERROR RATES (STANDARD DEVIATIONS) FOR ADABOOST.PL.

5 workers 10 workers 15 workers 20 workers
Data set AdaBoost AdaBoost.PL MultBoost AdaBoost.PL MultBoost AdaBoost.PL MultBoost AdaBoost.PL MultBoost

yeast 0.3353 (0.0440) 0.3378 (0.0511) 0.3532 (0.0440) 0.3464 (0.0478) 0.3499 (0.0382) 0.3464 (0.0419) 0.3465 (0.0505) 0.3375 (0.0419) 0.3386 (0.0257)
wineRed 0.2514 (0.0221) 0.2470 (0.0343) 0.2658 (0.0300) 0.2464 (0.0317) 0.2602 (0.0374) 0.2589 (0.0392) 0.2733 (0.0348) 0.2564 (0.0297) 0.2739 (0.0468)
wineWhite 0.2317 (0.0212) 0.2523 (0.0213) 0.2425 (0.0147) 0.2313 (0.0228) 0.2542 (0.0140) 0.2346 (0.0232) 0.2536 (0.0181) 0.2309 (0.0199) 0.2517 (0.0117)
pendigits 0.0722 (0.0099) 0.0777 (0.0080) 0.0931 (0.0173) 0.0699 (0.0081) 0.0878 (0.0136) 0.0651 (0.0083) 0.1054 (0.0221) 0.0642 (0.0102) 0.1045 (0.0122)
spambase 0.0572 (0.0090) 0.0691 (0.0099) 0.0839 (0.0130) 0.0576 (0.0072) 0.0863 (0.0126) 0.0602 (0.0080) 0.0954 (0.0148) 0.0617 (0.0071) 0.0850 (0.0134)
musk 0.0515 (0.0067) 0.0605 (0.0066) 0.0720 (0.0115) 0.0565 (0.0094) 0.0727 (0.0121) 0.0585 (0.0093) 0.0820 (0.0095) 0.0612 (0.0111) 0.0788 (0.0103)
telescope 0.1551 (0.0063) 0.1668 (0.0116) 0.1675 (0.0054) 0.1599 (0.0086) 0.1694 (0.0119) 0.1659 (0.0104) 0.1727 (0.0112) 0.1595 (0.0132) 0.1685 (0.0100)
swsequence 0.3453 (0.0281) 0.3289 (0.0263) 0.3563 (0.0356) 0.3334 (0.0145) 0.3698 (0.0288) 0.3297 (0.0106) 0.3711 (0.0289) 0.3368 (0.0174) 0.3726 (0.0347)
biogrid 0.3136 (0.0050) 0.3229 (0.0521) 0.3556 (0.0671) 0.3180 (0.0134) 0.3625 (0.0356) 0.3447 (0.0401) 0.3613 (0.0412) 0.3291 (0.0511) 0.3746 (0.0421)
isolet 0.1577 (0.0146) 0.1577 (0.0160) 0.1922 (0.0105) 0.1601 (0.0162) 0.2050 (0.0169) 0.1605 (0.0127) 0.2344 (0.0103) 0.1661 (0.0150) 0.2358 (0.0177)

V. EXPERIMENTAL RESULTS

In this section, we demonstrate the performance of our
proposed algorithms in terms of several performance metrics
such as classification accuracy, speedup and scaleup. We
compared our results with standard ADABOOST, LOG-
ITBOOST and MULTBOOST in a parallel setup. All our
experiments were performed on Amazon EC23 cloud com-
puting environment. The computing nodes used were of
type m1.small configured with 1.7 GHz 2006 Intel Xeon
processor, 1.7 GB of memory, 160 GB storage and 32 bit
Fedora Core 8.

We performed several experiments on a wide range of
synthetic and real-world data sets. Table I summarizes the
10 publicly available [13] real-world datasets and 6 synthetic
data sets used in our experiments. The spambase data set is
a compilation of user experiences and spam reports about
incoming mails. The task of musk data set is to learn a model
that predicts a new molecule to be either musks or non-
musks based on its chemical properties. The telescope data
set contains scientific information collected by Cherenkov
Gamma Telescope to distinguish the two classes: Gamma
signals and hadron showers. The swsequence data [14] rep-
resents the homological function relations that exist between
genes belonging to the same functional classes. The problem
is to predict whether a gene belongs to a particular functional
class (Class 1) or not. The biogrid [15] is a protein-protein
interaction data that represents the presence or absence of
interactions. The pendigits data set classifies handwritten
digits collected through pressure sensitive writing pad. It was
originally designed to be used for multi-class classification
with a total of 10 classes (one for each digit from 0 to 9).
Instead, we chose to transform it into a binary classification
task by assigning the negative class to all even numbers and
the positive class to the odd numbers. Isolet is a data set
from speech recognition domain and the goal is to predict
the letter name that was spoken. We also modified this 26
class problem into a binary classification problem by putting
first 13 letters in one class and the rest in the other. The
biological dataset, yeast classifies the cellular localization
sites of Proteins. It is also a multi-class problem with a
total of 10 classes. We retained examples only from the

3http://aws.amazon.com/ec2/

two most frequent classes (CYT, NUC). The wineRed and
wineWhite data sets [16] model the wine quality based
on some physicochemical tests and enumerates the quality
score between 0 and 10. In this case, we assigned the
negative class to all scores that are less than or equal to five
and the positive class to the rest. For the 6 synthetic data
sets (d1-d6), we used the synthetic data generator RDG1
available in WEKA [17] data mining tool. RDG1 produces
data randomly by a decision list consisting of a set of rules.

A. Prediction Performance

Table II and Table III report the 10-fold cross validation
error rates on the real-world data sets for ADABOOST.PL
and LOGITBOOST.PL respectively. For ADABOOST.PL we
compare its generalization capability with MULTBOOST
and the standard ADABOOST algorithm. MULTBOOST is
a variation of ADABOOST, so we did not compare LOG-
ITBOOST.PL with MULTBOOST. In literature we found no
parallelizable version of LOGITBOOST to compare with, so
LOGITBOOST.PL is compared with standard LOGITBOOST
only.

The experiments for ADABOOST were performed using
a single computing node. For ADABOOST.PL and MULT-
BOOST, the experiments were parallelly distributed on a
cluster setup with 5, 10, 15 and 20 computing nodes. During
each fold of computation, the training set is distributed
equally among the working nodes and the induced model
is evaluated on the test set. The final result is the average
of the error rates for all the 10 folds. For ADABOOST, the
error rates are calculated in a similar manner except that, on
a single node there is no need for distributing the training
set. For all the algorithms the number of boosting iterations
is set to 100. In the exact same setting, LOGITBOOST.PL is
compared with standard LOGITBOOST.

From Table II, we observe that ADABOOST.PL (with
a single exceptions) always performs better than MULT-
BOOST. In the case where MULTBOOST beats AdaBoost.PL,
the differences of errors for the two methods is very low
whereas for most of the data sets our algorithm outperforms
MULTBOOST significantly. Furthermore, in some cases
(highlighted bold in AdaBoost.PL columns) our algorithm
performs even better than standard ADABOOST. In all other
cases, our results are very close to that of the standard
ADABOOST. Similarly, the results for LOGITBOOST.PL
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Figure 2. The computational and communication costs of the algorithms for musk and swsequence data set.

(Table III) are also very close to original LOGITBOOST
and sometimes even better. Such a small compromise in
the prediction performance is tolerable if the speedup in
computation is significant which really is the case for our
proposed algorithms (shown in the next section).

B. Results on Speedup

Speedup [18] is defined as the ratio of execution time
on a single processor to the execution time for an iden-
tical data set on p processors. In a distributed setup, we
study the speedup behavior by taking the ratio of baseline
(ADABOOST or LOGITBOOST) execution time (Ts) on a
single worker to the execution time of the algorithms (Tp)
on p workers for the same data set distributed equally. The
Speedup = Ts/Tp. In our experiments, the values of p are
5, 10, 15 and 20. For the algorithms:

Speedup = Θ

(
dn log n+ Tdn
dn
M log n

M + Tdn
M

)
(11)

= Θ

(
M

log n+ T

log n
M + T

)
(12)

For number of workers, M > 1, the inner fraction will be
greater than 1. So, we can expect speedup > M for the
algorithms.

All the algorithms were run 10 times for each data
set. We took the ratios of the mean execution times for
calculating the speedup. The number of boosting iterations
were set to 100. Figure 3 shows the speedup gained by
the algorithms on different data sets. From these plots, we

observe that, the bigger the data set is the better the speedups
are for both of our proposed algorithms, because of the
fact that communication cost of the algorithms on smaller
data sets tends to dominate the learning cost. For higher
number of workers, the data size per workers decreases
and so does the computation costs for the workers. But,
the communication cost does not change with increasing
number of workers. This fact can be observed from Figure 2.
For the smaller data set musk, the communication costs
are significantly large compared to the computaion cost,
resulting in a diminishing effect on the speedup. But, for
the larger data set swsequence, the computation cost is
so dominating that the effect of communication cost on
speedup is almost invisible. Due to MULTBOOST’s higher
communication cost, its performance is consistently poor in
terms of the speedup.

C. Results on Scaleup

Scaleup [18] is defined as the ratio of the time taken on
a single processor by the problem to the time taken on p
processors when the problem size is scaled by p. For a
fixed data set, speedup captures the decrease in runtime
when we increase the number of available cores. Scaleup
is designed to capture the scalability performance of the
parallel algorithm to handle large data sets when more
cores are available. We study scaleup behavior by keeping
the problem size per processor fixed while increasing the
number of available processors. For our experiments, we
divided each data set into 20 equal splits. A single worker
is given one data split and the execution time of baseline
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Figure 3. The speedup comparisons for AdaBoost.PL, LogitBoost.PL and MultBoost.
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Figure 4. The scaleup for the ADABOOST.PL, LOGITBOOST.PL and MULTBOOST.

(ADABOOST or LOGITBOOST) for that worker is measured
as Ts. Then we distribute p data splits among p workers and
the execution time of the parallel algorithm on p workers
is measured as Tp. Finally, we calculate scaleup using this
equation: Scaleup = Ts/Tp. In our experiments, the values
of p are 5, 10, 15 and 20. The execution times were measured
by averaging 10 individual runs. The number of boosting
iterations for all the algorithms were 100.

Figure 4 shows the scaleup of the algorithms for 3
synthetic and for 3 real-world data sets. Ideally, as we
increase the problem size, we must be able to increase the
number of workers in order to maintain the same runtime.
The high and consistent scaleup values for ADABOOST.PL
and LOGITBOOST.PL are evidences of their scalability. Re-
gardless of the increase in the problem size, all that is needed
is to increase the available resources and the algorithms will
continue to effectively utilize all the workers. Nevertheless,
the scaleup behavior of MULTBOOST is invariably lower.

VI. RELATED WORK

There has been some significant works in accelerating
ADABOOST in the literature. These methods essentially gain
acceleration by following one of the two approaches: (i) by
limiting the number of data points used to train the base
learners, or (ii) by cutting the search space by using only a
subset of the features. In order to ensure the convergence,
both of these approaches increase the number of iterations.
However, the net computational time using such methods
can be significantly decreased. FILTERBOOST [19] is a
recent algorithm of the former approach which is based on

a modification [20] of ADABOOST designed to minimize
logistic loss. Following the latter approach for accelerating
ADABOOST, Escudero et al. [21] proposed LAZYBOOST
which utilizes several feature selection and ranking meth-
ods. Another fast boosting algorithm in this category was
proposed by Busa-Fekete et al. [22], which utilizes multiple-
armed bandits(MAB) where each arm represents a subset
of the base classifier set. However, none of these works
described so far explore the idea of accelerating boosting
in a parallel or distributed setting.

The strategy of parallelizing of the weak learners instead
of parallelizing the boosting itself has seen considerable
research efforts. Recently, Wu et al. [23] proposed an
ensemble of C4.5 classifiers based on Map-Reduce called
MReC4.5. By providing a series of serialization operations
at the model level. PLANET [24] is a another recently pro-
posed framework for learning classification and regression
trees on massive datasets using Map-Reduce. Despite these
efforts, there has not been much research to parallelize the
boosting itself. Earlier versions of parallelized boosting [25]
were primarily designed for tightly coupled shared memory
systems. Fan et al. [26] proposed boosting for scalable and
distributed learning, where each classifier was trained either
from random samples (r-sampling) or from disjoint partitions
of the data set (d-sampling). Gambs et al. [5] proposed
MULTBOOST algorithm which allows participation of two
or more working nodes to construct a boosting classifier in
a privacy preserving setting. Though originally designed for
preserving privacy of computation, MULTBOOST’s algorith-
mic layout can fit into a parallel setting. In this paper, we



already discussed this algorithm in comparison with ours.
However, the main problem of these approaches is that they
are suited for low latency inter-computer communication
environment like: traditional shared memory architecture
or single machine multiple processors systems; but not
suitable for a distributed cloud environment where usually
the communication cost is higher.

VII. CONCLUSION AND FUTURE WORK

We proposed two parallel algorithms for boosting that
have excellent generalization performance. Due to the al-
gorithms’ parallel structure, the boosted models can be
induced much faster. We compared the performance of our
algorithm to the standard baseline algorithms in a parallel
distributed setting. The experiments were performed with
the Map-Reduce framework. Our results demonstrate that
the prediction accuracy of our algorithm is competitive to
the respective baseline and is even better in some cases.
We gain significant speedup while building accurate models
in a parallel environment. The scaleup performance of our
algorithms shows that they can efficiently utilize additional
resources when the problem size is scaled up.

In future, we plan to develop our method for other boost-
ing algorithms. For the experiments, our current version of
the algorithms divide the data using random stratification.
We plan to explore other data partitioning algorithms that
can improve the classification performance even further.
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