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Abstract—Survival Regression models play a vital role in
analyzing time-to-event data in many practical applications
ranging from engineering to economics to healthcare. These
models are ideal for prediction in complex data problems where
the response is a time-to-event variable. An event is defined as
the occurrence of a specific event of interest such as a chronic
health condition. Cox regression is one of the most popular
survival regression model used in such applications. However,
these models have the tendency to overfit the data which is not
desirable for healthcare applications because it limits their gen-
eralization to other hospital scenarios. In this paper, we address
these challenges for the cox regression model. We combine two
unique correlation based regularizers with cox regression to
handle correlated and grouped features which are commonly
seen in many practical problems. The proposed optimization
problems are solved efficiently using cyclic coordinate descent
and Alternate Direction Method of Multipliers algorithms. We
conduct experimental analysis on the performance of these
algorithms over several synthetic datasets and electronic health
records (EHR) data about heart failure diagnosed patients from
a hospital. We demonstrate through our experiments that these
regularizers effectively enhance the ability of cox regression to
handle correlated features. In addition, we extensively compare
our results with other regularized linear and logistic regression
algorithms. We validate the goodness of the features selected by
these regularized cox regression models using the biomedical
literature and different feature selection algorithms.

Keywords-cox regression; regularization; feature selection;
healthcare

I. INTRODUCTION

Survival regression analysis [13], [11] on time-to-event
data is an important component in analyzing complex
datasets in many practical applications ranging from
engineering to economics to healthcare. Time-to-event data
analysis deals with prediction of the time to a particular
event directly. An event here is defined as the occurrence of
a specific interest point. We consider a real-world healthcare
application problem to demonstrate the meaning of the
time-to-event data. Large number of patients get readmitted
at different time points for chronic conditions such as heart
failure. It is critical to build robust regression methods that
can predict the probability of readmission for a particular
patient. Traditional linear and logistic regression models
have a limited purview in this domain. These models
require certain constraints to be satisfied before they can be
applied on such time-to-event clinical data.

We explain the shortcomings of the linear and logistic

regression models using the example of readmission risk
prediction for heart failure. For this problem, these models
generally require a risk stratification scheme on the class
label consisting of predefined categories such as low risk,
intermediate risk and high risk. However, it is observed
that one cannot generalize this stratification scheme to all
hospitals. Another inherent flaw of these traditional models
is that they do not provide any insight on how different
are the patients from intermediate risk category to low risk
and high risk categories. Survival regression models can
inherently overcome such limitations.

Survival models are more effective than linear and
logistic regression models as they directly model the
probability of occurrence of an event for each patient in
contrast to assigning a nominal label to the patient. They
are more adept at handling the non symmetry in time to
failure data for different patients than linear or logistic
learners. The predictions obtained by using these models
provide the healthcare physician with a more thorough
understanding on the expected probability of readmission
for a given patient.

Cox regression [4] is one of the most popularly used
survival regression models. The unique formulation of
cox regression and it’s proportional hazards assumption
makes it ideal for many practical applications. However,
it is observed that cox regression models tend to overfit
the data; thus, limiting their generalization ability to future
unseen data. Regularization [3], [15] is a method used
effectively in statistics and machine learning to improve the
generalization ability of a learner.

Regularized cox regression models such as the lasso cox
regression (LASSO-COX) and elastic net cox regression
(EN-COX) have been studied in the literature[22], [20].
These cox regression models provide sparsity and good
generalization ability. However, the LASSO-COX algorithm
does not work effectively in the presence of correlation in
the data, and EN-COX is only partially effective at handling
structured sparsity in the data.

Structured sparsity in high dimensional data is difficult
to capture using LASSO-COX and EN-COX. In order
to mitigate these defects of regularized cox regression
models; we propose a framework which combines cox
regression with novel regularization functions to capture
correlation and grouping of features effectively. The major



contributions of our work are as follows

1) Propose a Kernel elastic net regularized Cox regres-
sion (KEN-COX) algorithm which uses a novel kernel
elastic net penalty term as a regularization factor. Our
experimental results demonstrate that this method is
more effective than the standard elastic net at han-
dling correlated features. The novel pairwise feature
similarity regularizer in this method is obtained using
kernel functions.

2) Propose a Graph-based OSCAR (Octagonal Shrinkage
and Clustering Algorithm for Regression) regularized
Cox regression method (OSCAR-COX). This method
is effective since it can capture structured sparsity.
It exploits the graph structure of the features in the
dataset to capture the grouping of the features.

3) Demonstrate the improved discriminative ability of
KEN-COX and OSCAR-COX using standard eval-
uation metrics. We also compare their performance
to the state-of-the-art linear and logistic regression
models using several synthetic and healthcare datasets
of varying diversity.

4) Demonstrate the non redundancy of the features se-
lected by KEN-COX and OSCAR-COX in comparison
to the state-of-the-art feature selection algorithms.
In addition, we use the parsimonious models from
KEN-COX and OSCAR-COX to identify important
biomarkers for the heart failure readmission from EHR
data. We validate the biomarkers identified using the
clinical literature.

In this paper, we propose two algorithms which integrate
novel regularizers in the cox regression framework to build a
system which is effective and has good generalization ability.
Experimental analysis conducted over real EHR data with
more than 8,000 patients from a large hospital shows that
our proposed algorithms can obtain models with lower mean
squared error (MSE) values compared to the cox regression
model and it’s variants. Further experimental results obtained
on synthetic datasets demonstrate the good generalization
ability of the proposed algorithms in comparison to different
linear and logistic regression algorithms.

This paper is organized as follows: In Section II,
we introduce the basic survival regression framework, the
concept of censoring in healthcare applications and discuss
the cox regression model in detail. In Section III, we provide
the details of the two algorithms proposed in this paper.
We discuss the structure of the embedded optimization of
both these approaches in detail. We show the experimental
results in detail for the proposed algorithms in Section IV.
In Section V, we discuss the related work on regularized
cox regression models. In Section VI, we conclude our
discussion and discuss the possible future directions.

II. SURVIVAL REGRESSION MODELS

In this section, we explain the basic components of
a survival regression model. We begin by explaining the
patient readmission cycle briefly and then explaining the
concepts associated with survival regression. We will then
discuss these important concepts in a survival regression
framework using the patient readmission cycle in a hospital.

The patient readmission cycle consists of the different
stages a patient goes through from the initial admission to
the next readmission. The different kinds of information
obtained from the patient beginning from the admission
to discharge includes demographics, comorbidities, medica-
tions, procedures and pharmacy claims. All these constitute
an EHR for that particular hospitalization of the patient.
We now describe the basic concepts, input and output
components in the survival regression framework for the
particular case of 30 day readmission [10] where a patient
is readmitted within 30 days of discharge from a hospital.

A. Concepts in Survival regression

1) Event of interest: A patient is readmitted within 30
days.

2) Time to event: The time from entry into a study
(date hospitalized) until the subject has experienced
the event of interest (30 day readmission).

3) Right Censoring: A patient who does not experience
the event of interest for the duration of the study is said
to be right censored. The survival time for this patient
is considered to be at least as long as the duration of
the study. Another case of right censoring is when the
patient drops out of the study before the end of the
study and he does not experience the event of interest.
In this paper, we use the term censoring instead of
right censoring with a slight abuse of the original term.

4) Survival function: The survival function s(t) gives
the probability of surviving (or not experiencing the
event of interest) until time t.

5) Hazard function :The hazard function h(t) gives the
potential that the event of interest will occur per time
unit given that an individual has survived up to a given
specified time t.

6) Input: Input data X , Censored Times C and Time to
event T .
Output: Survival function s(t), Regression coefficient
vector β̂.

B. Importance of censoring in healthcare applications

Censoring is an important part of clinical data analysis
as explained in the patient readmission cycle. Traditional
regression methods such as linear and logistic regression
cannot handle survival times which are typically positive
numbers and hence they would need to be transformed in
a way to apply these methods. Standard linear and logistic
regression methods cannot handle censoring directly which



Table I
AN EXAMPLE TO DEMONSTRATE RIGHT CENSORING WITH C=12 DAYS

Patient ID T Event δ Interpretation
122 2 HF Readmission 1 Patient readmitted 2 days after discharge
61 12 End of Study 0 Patient not readmitted even 12 days after discharge
45 6 Drop from Study 0 Lost follow up of patient 6 days after discharge
21 4 HF Readmission 1 Patient readmitted 4 days after discharge

enforces the requirement of survival regression methods for
EHR data.

We explain the application of right censoring through
a simple example. We consider a simple EHR dataset in
Table I consisting of 4 instances. In this example, the time
is measured in days. The censored times C is set to 12 days
for all the patients.

One can observe that instances with patient ID 122 and
21 are not censored and hence δ is set to 1 with the survival
time equivalent to the time to event of interest (T ). Instances
with patient ID 61 and 45 are censored with δ set to 0. In this
manner, censoring is applied on the instances in the dataset.

With a brief understanding of the survival regression
framework we now introduce some notations that will help
in comprehending the cox regression framework in Table II.
Given a dataset X which consists of n data points. Let
xi denote the ith feature vector. Let T = {t1 < t2 <
t3 < . . . < tk} represent the set of sorted k unique time
to failure values. δi represents the censoring status for the
ith patient. δi=1 represents a failure and δi=0 represents a
censored instance.

Table II
NOTATIONS USED IN THIS PAPER

Name Description
X n x m matrix of feature vectors.
T k x 1 vector of sorted unique failure times.
Ri set of all patients j at risk at time ti (yj > ti).
Ck set of all times for which patient k is still at risk. (ti < yk)
di number of patients readmitted within time ti .
δ n x 1 vector of censored status.
β̂ m x 1 regression coefficient vector
W n x n symmetric weight matrix
Z n x 1 pseudo response vector

C. Cox Regression Model

The Cox regression model [4], is a survival regression
model which provides useful and easy to interpret informa-
tion regarding the relationship of the hazard function to the
predictors. It is by far the most popular survival regression
model and is implemented in a large number of statistical
software packages.

The Cox regression model is a semi parametric method
of estimation. This means that we specify a model for the
effect of the covariates but we do not specify a model for

the baseline hazard function. This implies that we can esti-
mate the regression coefficient vector β̂ without having any
knowledge of the baseline hazard function. The regression
coefficient vector can then be used to estimate the baseline
hazard and survival functions.

Notation: In the equations used throughout this paper we
will be using the following notations. A represents a matrix
and A(i, :) represents the ith row vector in the matrix. A(:, j)
represents the jth column vector of the matrix. A(i, j)
represents the i, jth element of the matrix.

In Equation (1), we provide the formulation for the
estimation of β̂ and Equation (4) provides the formulae
for computing the survival function and hazard function in
cox regression. Equation (1) provides the steps associated in
estimating β̂ in a weighted least squares framework. A more
detailed derivation of the formulae for the weight matrix
W and the pseudo response vector Z which are provided
here [20].

β̂ = min
β

1

n

n∑
k=1

(W (k, k)((Z(k, :)−X(k, :)β)2) (1)

W (k, k) =
∑
i∈Ck

[
eη̃(k,:)

∑
j∈Ri

eη̃(j,:) − (eη̃(k,:))2

(
∑

j∈Ri
eη̃(j,:))2

] (2)

Z(k, :) = η̃(k, :) +
1

W (k, k)
[δk −

∑
i∈Ck

(
eη̃(k,:)∑

j∈Ri
eη̃(j,:)

)] (3)

Using the value of β̂ obtained from Equation (1)
we now compute the probability of survival for a given
patient with feature vector xi at time t. η̃ is set to Xβ̃. To
compute the survival probability, we compute the baseline
hazard function h0(t) at a given time t. We then compute
the survival probability s(t|xi) using the baseline hazard
function and the values of ith patient feature vector xi.

h0(t) =
∑
ti≤t

δi∑
j∈Ri

exp(β̂Txj)
(4)

s0(t) = exp(−h0(t))

s(t|xi) = s0(t)
exp(β̂T xi)

In Algorithm (1), we present the basic steps involved in
the cox regression framework. We formulate cox regression
as a weighted least squares problem.



Algorithm 1 Cox Regression
Require: Input X , Censored Times C, Failure Times T

1: repeat
2: Initialize β̃
3: Compute W and Z using Equations (2) and (3)
4: Solve for β̂ in Equation (1) using a convex solver
5: β̃ = β̂
6: until Convergence of β̂
7: Output β̂, hazard and survival functions for each time t

III. COX REGRESSION WITH CORRELATION BASED
REGULARIZATION

In this section, we describe the algorithms developed
by combining two novel correlation regularizers with cox
regression. We denote a regularizer as Pα(β) where β is
the regression coefficient vector. Generally, most regular-
izers considered here are convex loss functions because
of their desirable properties. The motivation for applying
convex functions in the clinical domain arises from the
success achieved by using convex non-smooth functions
such as the L1 and the L2,1 norms for different biomed-
ical applications [15], [3]. Their properties of sparsity and
group sparsity have proven to be very effective for such
applications. Our novel regularizers are functions which
use the L1, L2, and L∞ norms. Regularizers also need a
parameter which governs their importance in the framework.
In Equation (5), λ is called the regularization parameter.
The quadratic optimization problem in Equation (5) can be
solved using methods such as conjugate gradient descent and
cyclic coordinate descent.

L(β) =
1

n

n∑
k=1

(W (k, k)((Z(k, :)−X(k, :)β)2)

β̂ = min
β
L(β) + λPα(β) (5)

A. KEN-COX

In this subsection, we describe the kernel elastic net
cox regression (KEN-COX) algorithm. The goal of this
algorithm is to compensate for the drawbacks of the
elastic net regularized cox regression (EN-COX) which is
only partially effective at handling correlated attributes in
EHR data [20]. We propose to modify this formulation
by introducing kernels and proposing the kernel elastic
net (KEN-COX) regularized cox regression. Kernel
functions [5] can be used to find out the pairwise similarity
between a set of features. In our formulation, we use the
individual features as the input and build a kernel similarity
matrix over the set of features (columns of the original
data). The motivation behind using this is to introduce the
pairwise feature similarity in the cox regression formulation.

β̂ = min
β
L(β) + λ(α ‖ β ‖1) + λ(1− α)βTKβ (6)

K(xi, xj) = exp(
− ‖ xi − xj ‖22

2σ2
)

Equation (6) provides the formulation of KEN-COX regres-
sion. K is a symmetric RBF kernel matrix. The formulation
of KEN-COX here consists of one smooth and one non
smooth L1 term. This optimization problem can be solved
using the cyclic coordinate descent procedure. In Line 6 of
Algorithm 2, the cyclic coordinate descent step for KEN-
COX is provided. In this equation, S refers to the soft
thresholding function. In this step, the pth coordinate of the
new coefficient vector β̂ is calculated at each iteration by
cyclically setting all the remaining p-1 coordinates constant
from β̃ and keeping the pth coordinate alone as the variable
for minimization.

Algorithm 2 KEN-COX
Require: Input Data X , Censored times C, Time to event

T , Regularization parameter λ, Elastic Net parameter α
1: Initialize β̃ = zeros(m, 1)
2: repeat
3: Compute W and Z using Equations (2) and (3)
4: repeat
5: p=1:1:m
6: β̂(p, :) =

S( 1
n

∑n
k=1 W (k,k)X(k,p)[Z(k,:)−

∑
j 6=p X(k,j)β̃(j,:)],λα)

1
n

∑n
k=1 W (k,k)X(k,p)2+λαK(p,p)

7: until p 6= m
8: β̃ = β̂
9: until Convergence of β̂

10: Output β̂

B. OSCAR-COX

Grouping of features in high dimensional EHR data is a
property where a set of features are correlated with similar
strength to the prediction label (response). An unbiased
model must deal with such attributes on the same scale
and assign similar prediction coefficients to them. In this
algorithm, we incorporate the OSCAR (Octagonal Shrinkage
and Clustering Algorithm for Regression) regularizer into
the cox regression framework [1].

OSCAR performs variable selection for regression with
many highly correlated predictors. The advantage of using
this penalty over other penalties such as the elastic net and
LASSO is that this method promotes equality of coefficients
which are similarly related to the response. OSCAR obtains
the advantages of both individual sparsity due to the L1 norm
and the group sparsity because of the pairwise L∞ norm.
It can select features and form different groups of features.
In this way, OSCAR also does supervised clustering of the
features.

In this paper, we use the modified Graph OSCAR



(GOSCAR) regularizer [25], [24] in the cox regression
formulation. The formulation of the GOSCAR penalty is
given in Equation (7). In this formulation, T is the sparse
symmetric (m x m) egde set matrix obtained after building a
graph using the set of features alone as individual nodes. The
sparse adjacency graph is built using the Euclidean distance
among the features.

In this manner, a pairwise feature regularizer is added
to the cox regression formulation. OSCAR has proven to
be more effective than the elastic net in handling correlation
among variables and hence is more suited for EHR data. For
the sake of brevity, we refer to the GOSCAR-COX algorithm
as OSCAR-COX throughout this paper.

β̂ = min
β
L(β) + λ1(‖ β ‖1) + λ2(‖ Tβ ‖1) (7)

In contrast to the KEN-COX algorithm, the formulation
in OSCAR-COX is completely non smooth. This problem
can be solved using the Alternate Direction Method of
Multipliers (ADMM) method effectively [2]. The ADMM
method has proven to have a very fast convergence rate and
is particularly useful for our application.

β̂ = min
β,q,p

L(β) + λ1 ‖ q ‖1 +λ2 ‖ p ‖1

s. t. β − q = 0, Tβ − p = 0

In Equation (8), we provide the steps involved in solving
OSCAR-COX using the ADMM procedure. In the first step
we convert Equation (7) into a form that is suitable for
applying ADMM optimization. We then express the aug-
mented lagrangian Lρ where ρ is the augmented lagrangian
parameter. µ and v are the lagrange multiplier vectors. β̃,
q̃ and p̃ are the initial values to begin the optimization
routine. We provide equations for estimating β̂, q̂ and p̂.
We use the conjugate gradient descent method for solving
the unconstrained minimization problems to determine β̂, q̂
and p̂ during each iteration.

Lρ(β, q, p) = L(β) + λ1 ‖ q ‖1 +λ2 ‖ p ‖1 (8)

+ µT (β − q) + vT (Tβ − p)

+
ρ

2
‖ β − q ‖2 +

ρ

2
‖ Tβ − p ‖2

β̂ = min
β
Lρ(β, q̃, p̃) (9)

q̂ = min
q
Lρ(β̂, q, p̃) (10)

p̂ = min
p
Lρ(β̂, q̂, p) (11)

C. Discussion

The difference between the KEN-COX and OSCAR-
COX algorithm lies in their uniqueness in handling corre-
lated variables in the EHR data. KEN-COX uses a kernel
based pairwise regularizer in the elastic net formulation
to supplement the original elastic net algorithm to handle

Algorithm 3 OSCAR-COX
Require: Input Data X , Censored Times C, Time to event

T , Regularization Param λ1 Regularization Param λ2,
AugLag Param ρ

1: Initialize β̃ = zeros(m, 1)
2: repeat
3: Compute W and Z using Equations (2) and (3)
4: Compute the adjacency matrix from the features X .
5: Compute the sparse edgeset matrix T from the adja-

cency matrix
6: Compute β̂ using Equation (9)
7: Compute q̂ and p̂ from Equations (10), (11)
8: β̃ = β̂
9: until Convergence of β̂

10: Output β̂

correlated variables effectively. In this algorithm, the choice
of the kernel function is important but it does not cause
great variation in the performance. KEN-COX uses the L1

and L2 norms in it’s regularizer. In OSCAR-COX, we use
the L1 norm and a pairwise L∞ norm term. The pairwise
L∞ function encourages similar coefficient values for cor-
related variables. This helps us understand that both these
algorithms handle correlated variables in their own unique
ways.

IV. EXPERIMENTAL RESULTS

In this section, we discuss the experimental results ob-
tained by using the proposed KEN-COX and OSCAR-COX
regression algorithms on both real world EHR and synthetic
datasets. We evaluate the goodness of these algorithms in
terms of non redundancy in feature selection , goodness of
fit using mean squared error (MSE) , R2 coefficients and
the AUC metric. We compare the goodness of fit of these
algorithms against cox regression and it’s popular variants.
We assess the performance of these algorithms on synthetic
survival analysis datasets we generated. We also compare
the AUC values for these algorithms against state of the art
regularized least-squares and logistic loss regression.

In addition, we also conduct a study on the redundancy
of the features selected by the proposed algorithms on EHR
datasets. We run and tabulate the results obtained from using
popular feature selection algorithms [28] implemented in
the ASU feature selection repository1. In this experiment,
we also conduct a study on the biomarkers obtained by
using these algorithms and validate those biomarkers using
existing clinical literature.

A. Experimental Setup

We generate synthetic datasets by setting the pairwise
correlation ρ between any pair of covariates to 0.2. We

1http://featureselection.asu.edu



generate the feature vectors using this correlation and a
normal distribution N(0, 1). We generate feature vectors of
different dimensionality to construct five synthetic datasets.
For each of these synthetic datasets we generate the failure
times T using a Weibull distribution with γ set to 1.5.
The Weibull distribution is used here to generate positive
responses (failure times) to suit the constraints of synthetic
survival data. Censoring times C for each dataset was set
to the average of all the failure times in that dataset. In
Table III, further description on the dimensionality of these
synthetic datasets is provided.

We use the electronic health records (EHR) retrieved
from the Henry Ford Health System at Detroit, Michigan.
We considered 18,701 hospitalization records for 8,692
patients admitted for heart failure over a duration of 10
years. We generated individual longitudinal EHR datasets
from this raw data file. Each DS1-DS5 represents the set of
records for the first to fifth readmission for these patients.
We summarize some of the important steps in the process
of generating this longitudinal data

We create binary variables from the procedures and
medications list which indicate the presence or absence of
that particular procedure or medication for the patient. For
the labs, we apply the logarithm transformation to make
the data follow a normal distribution. For each distinct lab
variable we compute the maximum, minimum and average
values and create separate variables for each of them. We
also create a new feature which signifies the % of abnormal
labs for a patient.

In Table III, we provide the details about the number
of records in these datasets. The variation in the number
of columns for these EHR datasets arises from the dif-
ference in the number of common lab tests, procedures
and medications administered to the patients during their
different readmissions. In this longitudinal data, we observe
the phenomenon that as the readmission index increases the
number of patients readmitted decreases.

The KEN-COX and OSCAR-COX algorithms were im-
plemented in the MATLAB environment. The regularization
parameters for both of these algorithms were determined
using 5 fold cross validation. In the OSCAR-COX algorithm
the augmented lagrangian parameter ρ was set to 5 and we
use the same values for both the regularization parameters λ1

and λ2. In the KEN-COX algorithm, the elastic net parameter
α was varied from 0.4 to 0.7 with increments of 0.05. We
observed that an α value of 0.6 gave us the best performance.

B. Goodness of Fit

In this subsection, we compare the proposed KEN-COX
and OSCAR-COX regression with the elastic net regularized
cox regression (EN-COX) and cox regression algorithms.
We precede this by providing a brief description of the
EN-COX optimization formulation.

Table III
DESCRIPTION OF DATASETS

Dataset # Features # Instances
Syn1 15 5000
Syn2 50 5000
Syn3 100 100
Syn4 1000 100
Syn5 500 50
DS1 732 5675
DS2 709 4379
DS3 668 3543
DS4 658 2826
DS5 609 2278

Elastic Net COX (EN-COX) Regression: [20] The
formulation of the loss function to be minimized in
the elastic net regularized cox regression is given in
Equation (12). This optimization problem is solved using
the cyclic coordinate descent procedure. We implemented
this algorithm using MATLAB.

β̂ = min
β
L(β) + λPα(β) (12)

Pα(β) = α ‖ β ‖1 +(1− α) ‖ β ‖22

In Table IV, we provide the mean squared error (MSE)
and R2 coefficients to assess the goodness of fit. The
Martingale residual for a given patient xi is defined as
δi − exp(xT

i β̂)h0(ti). The mean squared error (MSE) is
calculated as the mean of the squared martingale residuals
for all the patients. The R2 coefficient is calculated using
the formula R2 = 1−exp(− 2

n (l(β̂)−l(0))). In this formula,
l represents the partial log likelihood function from cox
regression.

For each EHR dataset, we consider the case of 30 day
readmission to determine the censoring status (δ). The rea-
son for choosing a 30 day readmission scheme for censoring
is because this duration is clinically relevant in practice. The
30 day time period post discharge from a hospitalization is
considered to be the most important time period where a
relapse is expected [10]. Hence, the censoring times C is
set to 30 for all the instances and then δ is determined as
shown in the example in Section II. Each of the algorithms in
Table IV is run on the dataset through 5 fold cross validation
to report the MSE and R2 coefficient values in this format.

In Table IV, we highlight the algorithm with the best fit
using bold. A model is considered to be a good one if the
mean squared error (MSE) is low and the R2 coefficient is
high. The value of the R2 coefficient ranges from 0 to 1. We
observe that for all the five datasets our proposed algorithms
provide a better fit compared to standard cox regression and
EN-COX algorithms. This demonstrates the effectiveness of
our approach in real world clinical settings.



Table IV
COMPARISON OF MSE AND R2 VALUES OF KEN-COX AND OSCAR-COX WITH EN-COX AND COX

Dataset OSCAR-COX KEN-COX EN-COX COX
MSE R2 MSE R2 MSE R2 MSE R2

DS1 2.85 0.41 2.96 0.29 2.9825 0.21 2.96 0.3
DS2 2.78 0.40 2.97 0.31 2.988 0.24 3.41 0.19
DS3 2.27 0.35 2.95 0.29 3.05 0.24 3.22 0.22
DS4 2.03 0.48 2.79 0.36 3.03 0.23 3.14 0.15
DS5 2.9 0.29 2.8 0.32 3.10 0.20 3.25 0.17

C. Redundancy in Features

In the proposed regularized cox regression algorithms,
we use sparsity inducing norms with specific mathematical
structure to handle correlation among attributes. Due to
the sparsity induced, these methods also perform feature
selection implicitly. We compare the goodness of the features
selected by these methods against state of the art feature
selection methods. The metric we use for comparing is
the redundancy of features given in Equation 13. In this
equation, ρij is the Pearson correlation coefficient , F is the
set of features selected by the corresponding parsimonious
model and m is the number of features present in the dataset.

Redundancy =
1

m(m− 1)

∑
fi,fj∈Fi>j

ρij (13)

We compare the redundancy scores of our algorithms
with prominent feature selection methods in the literature.

1) SPEC [27]: Spectral Feature Selection uses a kernel
function and determines the Laplacian matrix for the
data. It’s formulation also consists of the degree and
affinity matrices of the dataset. Using these compo-
nents a scoring function is evaluated for each feature.

2) mRmR [18]: Minimum redundancy and maximum rel-
evance feature selection minimizes the correlation and
mutual information between features and maximizes
the correlation between features and class label.

3) Fisher Score [6]: Fisher score gives higher rank to
those features that have similar values in the samples
from the same class and have different values in the
samples from different classes.

4) Relief-F [12]: Relief-F is a more recent extension
of Relief to handle multi-class problems. It basically
computes the values on the corresponding feature of
the nearest points to the instance in consideration with
the same and different class label respectively. In this
manner, it selects the features with good discriminative
ability.

In Table V, we compute the redundancy scores using
Relief-F, Fisher Score, SPEC and mRmR against the features
in the parsimonious models of KEN-COX and OSCAR-COX.
We observe that our methods provide the least redundancy
scores for 3 out of 5 datasets considered. The redundancy
scores in the case of the other two datasets are also compet-

itive. This suggests that our methods retain the best set of
explanatory features in the dataset for prediction.

Table V
COMPARISON IN THE REDUNDANCY OF FEATURES SELECTED BY
KEN-COX AND OSCAR-COX AGAINST STANDARD FEATURE

SELECTION ALGORITHMS

Method DS1 DS2 DS3 DS4 DS5
Relief-F 0.05 0.039 0.07 0.055 0.06
Fisher Score 0.042 0.043 0.05 0.067 0.07
SPEC 0.042 0.045 0.05 0.054 0.06
mRmR 0.04 0.046 0.054 0.051 0.058
KEN-COX 0.039 0.047 0.051 0.048 0.052
OSCAR-COX 0.042 0.045 0.052 0.043 0.045

D. Comparison with linear and logistic learners

In this experiment, we compare the performance
of KEN-COX and OSCAR-COX against different set of
regularized linear and logistic regression algorithms. For
this experiment, we segregate the original data and build
two different datasets. We consider both the time-to-event
data for the survival regression and the data with nominal
labels for the linear and logistic learners. We generate
nominal labels for the data using a simple binary labelling
scheme. To construct the nominal dataset we assign a label
0 if the time to event is > 30 and a label 1 if the time to
event is <= 30.

For the regression models constructed for the time to
event synthetic data the discrimination ability is evaluated
using a metric called the survivalROC [9]. This metric
considers censored survival data and predicts the survival
probability for the subjects in the dataset.

FLA =‖ Y −Xβ ‖22 +λ1 ‖ β ‖1 +λ2

p∑
j=1

‖ βj − βj−1 ‖1

(14)

TLA =‖ Y −Xβ ‖22 +λ ‖ XDiag(β) ‖∗

To compare the goodness of the models we apply the
LASSO [21], ELASTIC NET (EN) [30], FUSED-LASSO
(FLA) [23] and TRACE-LASSO (TLA) [8] regression mod-
els for the given synthetic datasets. The motivation to use
EN, FLA and TLA models is due to their inherent ability



Table VI
COMPARISON OF AUC VALUES FOR KEN-COX AND OSCAR-COX AGAINST REGULARIZED LINEAR AND LOGISTIC LEARNERS

Dataset OSCAR-COX KEN-COX LASSO EN FLA TLA SPLOG ENLOG
Syn1 0.81 0.8472 0.64 0.68 0.80 0.7978 0.7454 0.7701
Syn2 0.8814 0.8605 0.76 0.784 0.8918 0.8449 0.7342 0.8101
Syn3 0.8909 0.8412 0.76 0.762 0.874 0.8179 0.7071 0.67
Syn4 0.881 0.8605 0.72 0.69 0.8533 0.8446 0.68 0.63
Syn5 0.8875 0.859 0.71 0.75 0.8575 0.8553 0.64 0.7

to handle correlations effectively and provide better perfor-
mance than the LASSO. The FLA imposes both sparsity and
smoothness constraints in the model by imposing individual
sparsity and sparsity in the differences of the coefficient
values. TLA imposes the nuclear norm regularization in
the least squares regression framework. We report the AUC
values in Table VI using 5 fold cross validation. We
report the AUC values for KEN-COX and OSCAR-COX
using survivalROC. The regularization parameter for each
of these algorithms was obtained through cross validation.
The maximum number of iterations for convergence was set
to 100.

The TLA algorithm [8] is implemented as described
in the original paper. SLEP [16] package is used to im-
plement the linear regression regularized lasso and elastic
net algorithms along with the FLA algorithm. Similarly,
loss function in SLEP is modified to implement the sparse
logistic regression (SPLOG) [14] and elastic net penalized
logistic loss regression (ENLOG) algorithms respectively.

In Table VI, the first and second best performing
algorithms are marked in bold. We observe that for 4
out of 5 datasets either KEN-COX or OSCAR-COX is the
best performing algorithm. The better performance of these
algorithms can be attributed to their inherent capability of
handling the non symmetry in time to event data. The
improved discriminative ability in correlated feature spaces
over both FLA and TLA algorithms is due to the novelty of
the regularizers. KEN-COX and OSCAR-COX effectively use
the kernel and graph based structure to exploit correlation
and grouping of features more effectively.

E. Biomarker identification from Heart Failure EHR data

Biomarkers are important indicators (variables) of the
progression of a disease in real world clinical setting. In this
section, we provide a comparative analysis of the biomarkers
obtained by applying our methods on the real EHR data. We
begin by explaining how we created the baseline to evaluate
the biomarkers obtained.
Baseline generation: In a recent clinical review [19], the
authors conducted a survey over medical journal articles to
determine the important variables for predicting readmission
risk for heart failure. The survey statistics included capturing
the % of studies where the clinical variable was included in
the model, % of studies where the variable was included and
found to be statistically associated with readmission risk and

other related measurements.
In Table VII, the second column represents the % of

Table VII
STATISTICAL ASSOCIATION BETWEEN BIOMARKERS AND HEART

FAILURE READMISSION

Variable Assoc LASSO COX OSCAR-
COX

KEN-
COX

HGB 0.81 6 4 4 4

ckd2 0.75 6 4 4 4
diabetes 0.71 6 6 4 4
hypertension 0.70 6 4 4 4
BUN/CREAT 0.66 4 4 4 4
age 0.66 4 6 6 6

cad3 0.61 6 6 4 4
heart failure 0.60 4 6 4 4

afib4 0.60 6 6 4 4
HAP 0.57 6 6 4 4

pvd5 0.56 6 6 4 4

studies which reported a statistical association between the
candidate variable and heart failure readmission risk. We use
this number as the baseline and sort the important biomark-
ers in the descending order of their statistical association. For
each important biomarker, we use a 4 mark to represent
that this variable is selected in the parsimonious feature
model and 6 to mark it’s absence from the model. The
sparse regression models we consider in this experiment
are those of KEN-COX, OSCAR-COX and LASSO. We
also consider the top 11 variables with highest absolute
regression coefficient values from the Cox regression model.

We observe that both KEN-COX and OSCAR-COX iden-
tify 10 out of 11 important baseline biomarkers and use them
in their model. Cox ranks only 4 out of these 11 biomarkers
in it’s top ranked feature list. LASSO also identifies only
3 out of the 11 important biomarkers. This proves that our
methods identify clinically relevant variables from the entire
set and retain those variables in their parsimonious models
effectively.

V. RELATED WORK

In this section, we discuss the relevant work conducted
in the field of regularized cox regression models and their

2chronic kidney disease
3coronary artery disease
4atrial fibrillation
5peripheral vascular disease



applications to healthcare.
In the literature, cox regression has been combined with

regularizers such as the LASSO [21] which uses the L1 norm
regularization and encourages sparsity in the regression
coefficient values. In [22], the LASSO penalty was used
along with the cox scaled partial log likelihood function
to obtain the LASSO-COX algorithm. This algorithm was
used to identify important predictors in lung cancer and liver
data. LASSO-COX proved to be a strong competitor to naive
feature selection approaches.

In [7], the SCAD penalty was used as a regularizer in
the cox regression framework. It was observed that this
method had the quality of behaving like an oracle and
can obtain the most important predictors with the optimal
regularization parameters. A generalized formulation of the
SCAD penalty has spawned the inception of many different
sparsity inducing norms.

In [26], [29], the adaptive LASSO penalty was used as
a regularizer in the cox regression framework resulting in
a robust regression algorithm. This improved over LASSO-
COX by considering a weighted L1 norm in the formulation.
The weights were also determined using the regression
coefficients from the LASSO-COX regression. This solution
obtained good sparsity and was also proclaimed to have the
oracle property.

The elastic net uses a convex combination of the L1 and
squared L2 norm (ridge) penalty to obtain both sparsity and
handle correlated feature spaces [30]. Using prostate cancer
data, the authors have shown that elastic net outperformed
other competing methods including the LASSO. In [20],
the elastic net penalty was used as a regularizer in the cox
regression framework to propose a elastic net cox (EN-COX)
algorithm.

In [17], the problem of diabetes risk prediction was
tackled using real patient data consisting of around 200,000
patients. For the risk prediction, the authors used methods
such as LASSO-COX and cox regression coupled with
strong feature selection mechanisms. They also applied
different variants of cox and other machine learning tech-
niques such as k-nearest neighbour method to obtain highly
discriminative models. The problem with this approach is
that they do not capture the clinical data semantics such as
variable correlations and structured sparsity. In contrast our
algorithms KEN-COX and OSCAR-COX specifically address
these challenges and combine the effectiveness of cox with
novel regularizers to build algorithms which are effective
and non-redundant.

VI. CONCLUSION AND FUTURE WORK

In this paper, we combine cox regression with two novel
regularizers to propose the KEN-COX and OSCAR-COX
algorithms respectively. The motivation behind choosing
these regularizers is to handle correlation and structured
sparsity in high dimensional EHR data effectively. We solve

both these problems using scalable optimization procedures
to obtain faster convergence.

We conduct different kinds of experiments to evaluate
the discriminative ability and the feature selection quality
for these two algorithms over a wide range of synthetic
and real EHR datasets. Experimental results suggest that
our algorithms provide a good fit for the data points and
the AUC is better compared to state of the art linear and
logistic regularized learners. Our algorithms also improve
over the original cox and elastic net cox regression. This
suggests the effectiveness of our approach.

The directions for future work include building cox
regression models which can deal with multiple outputs at
the same time and combine cox with multi-task learning and
multi-output regression models. Through this we can explore
the true power of these models in dealing with longitudinal
clinical data.
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