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Abstract

In spite of the initialization problem, the Expectation-
Maximization (EM) algorithm is widely used for estimating
the parameters in several data mining related tasks. Most
popular model-based clustering techniques might yield
poor clusters if the parameters are not initialized properly.
To reduce the sensitivity of initial points, a novel algorithm
for learning mixture models from multivariate data is intro-
duced in this paper. The proposed algorithm takes advan-
tage of TRUST-TECH (TRansformation Under STability-
reTaining Equilibra CHaracterization) to compute neigh-
borhood local maxima on likelihood surface using stability
regions. Basically, our method coalesces the advantages of
the traditional EM with that of the dynamic and geometric
characteristics of the stability regions of the corresponding
nonlinear dynamical system of the log-likelihood function.
Two phases namely, the EM phase and the stability region
phase, are repeated alternatively in the parameter space to
achieve improvements in the maximum likelihood. Though
applied to Gaussian mixtures in this paper, our technique
can be easily generalized to any other parametric finite mix-
ture model. The algorithm has been tested on both synthetic
and real datasets and the improvements in the performance
compared to other approaches are demonstrated. The ro-
bustness with respect to initialization is also illustrated ex-
perimentally.

1 Introduction

Finite mixtures allow a probabilistic model-based ap-
proach to unsupervised learning [10] which plays an impor-
tant role in predictive data mining applications. One of the
most popular methods used for fitting mixture models to the
observed data is the Expectation-Maximization (EM) algo-
rithm which converges to the maximum likelihood estimate
of the mixture parameters locally [4, 6]. The usual steepest
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descent, conjugate gradient, or Newton-Raphson methods
are too complicated for use in solving this problem [19].
EM has become a popular method since it takes advantages
of problem specific properties. EM based approaches have
been successfully used to solve problems that arise in vari-
ous other applications [12, 2].

In this paper, we consider the problem of learning pa-
rameters of Gaussian Mixture Models (GMM). Fig 1 shows
data generated by three Gaussian components with different
mean and variance. Note that every data point has a proba-
bilistic (or soft) membership that gives the probability with
which it belongs to each of the components. Points that
belong to component 1 will have high probability of mem-
bership for component 1. On the other hand, data points be-
longing to components 2 and 3 are not well separated. The
problem of learning mixture models involves not only es-
timating the parameters of these components but also find-
ing the probabilities with which each data point belongs to
these components. Given the number of components and
an initial set of parameters, EM algorithm can be applied to
compute the optimal estimates of the parameters that maxi-
mize the likelihood of the data given the estimates of these
components. However, the main problem with the EM al-
gorithm is that it is a ‘greedy’ method which is very sensi-
tive to the given initial set of parameters. To overcome this
problem, a novel two phase algorithm based on stability re-
gion analysis is proposed. The main research concerns that
motivated the new algorithm presented in this paper are :

• EM algorithm for mixture modeling converges to a lo-
cal maximum of the likelihood function very quickly.

• There are many other promising local optimal solu-
tions in the close vicinity of the solutions obtained
from the methods that provide good initial guesses of
the solution.

• Model selection criteria usually assumes that the
global optimal solution of the log-likelihood function
can be obtained. However, achieving this is computa-
tionally intractable.



Figure 1. Data generated by three Gaussian
components. The problem of learning mix-
ture models is to obtain the parameters of
these Gaussian components and the mem-
bership probabilities of each datapoint.

• Some regions in the search space do not contain
any promising solutions. The promising and non-
promising regions coexist and it becomes challenging
to avoid wasting computational resources to search in
non-promising regions.

Of all the concerns mentioned above, the fact that most
of the local maxima are not distributed uniformly [16]
makes it important for us to develop algorithms that not only
help us to avoid searching in the low-likelihood regions but
also emphasize the importance of exploring promising sub-
spaces more thoroughly. This subspace search will also be
useful for making the solution less sensitive to the initial set
of parameters. In this paper, we propose a novel two phase
algorithm for estimating the parameters of mixture models.
Using concepts of dynamical systems and EM algorithm si-
multaneously to exploit the problem specific features of the
mixture models, our algorithm obtains the optimal set of pa-
rameters by searching for the global maximum on the like-
lihood surface in a systematic manner.

The rest of this paper is organized as follows: Section 2
gives some relevant background about various methods pro-
posed in the literature for solving the problem of learning
mixture models. Section 3 discusses some preliminaries
about mixture models, EM algorithm and stability regions.
Section 4 discusses our new framework and the details of
our implementation are given in Section 5. Section 6 shows
the experimental results of our algorithm on synthetic and
real datasets. Finally, Section 7 concludes our discussion
with future research directions.

2 Relevant Background

Although EM and its variants have been extensively used
for learning mixture models, several researchers have ap-
proached the problem by identifying new techniques that
give good initialization. More generic techniques like de-
terministic annealing [16], genetic algorithms [13] have
been applied to obtain a good set of parameters. Though,
these techniques have asymptotic guarantees, they are very
time consuming and hence cannot be used for most of
the practical applications. Some problem specific algo-
rithms like split and merge EM [17], component-wise EM
[6], greedy learning [18], incremental version for sparse
representations[11], parameter space grid [8] are also pro-
posed in the literature. Some of these algorithms are either
computationally very expensive or infeasible when learning
mixtures in high dimensional spaces [8]. Inspite of all the
expense in these methods, very little effort has been taken
to explore promising subspaces within the larger parameter
space. Most of these algorithms eventually apply the EM
algorithm to move to a locally maximal set of parameters
on the likelihood surface. Simpler practical approaches like
running EM from several random initializations, and then
choosing the final estimate that leads to the local maximum
with higher value of the likelihood are also successful to
certain extent [15].

Though some of these methods apply other additional
mechanisms (like perturbations [5]) to escape out of the
local optimal solutions, systematic methods are yet to be
developed for searching the subspace. The dynamical sys-
tem of the log-likelihood function reveals more information
on the neighborhood stability regions and their correspond-
ing local maxima [3]. Hence, the difficulties of finding
good solutions when the error surface is very rugged can
be overcome by adding stability region based mechanisms
to escape out of the convergence zone of the local maxima.
Though this method might introduce some additional cost,
one has to realize that existing approaches are much more
expensive due to their stochastic nature. Specifically, for a
problem in this context, where there is a non-uniform distri-
bution of local maxima, it is difficult for most of the meth-
ods to search neighboring regions [20]. For this reason, it
is more desirable to apply TRUST-TECH based Expecta-
tion Maximization (TT-EM) algorithm after obtaining some
point in a promising region. The main advantages of the
proposed algorithm are that it:

• Explores most of the neighborhood local optimal solu-
tions unlike the traditional stochastic algorithms.

• Acts as a flexible interface between the EM algorithm
and other global methods.

• Allows the user to work with existing clusters obtained
from the traditional approaches and improves the qual-



ity of the solutions based on the maximum likelihood
criteria.

• Helps the expensive global methods to truncate early.

• Exploits the fact that promising solutions are obtained
by faster convergence of the EM algorithm.

3 Preliminaries

We now introduce some necessary preliminaries on mix-
ture models, EM algorithm and stability regions. First, we
describe the notation used in the rest of the paper:

Table 1. Description of the Notations used in the paper
Notation Description

d number of features
n number of data points
k number of components
s total number of parameters
Θ parameter set
θi parameters of ith component
αi mixing weights for ith component
X observed data
Z missing data
Y complete data
t timestep for the estimates

3.1 Mixture Models

Lets assume that there are k Gaussians in the mixture
model. The form of the probability density function is as
follows:

p(x|Θ) =
k∑

i=1

αip(x|θi) (1)

where x = [x1, x2, ..., xd]T is the feature vector of d
dimensions. The αk’s represent the mixing weights. Θ rep-
resents the parameter set (α1, α2, ...αk, θ1, θ2, ...θk) and p
is a univariate Gaussian density parameterized by θi(i.e. µi

and σi):

p(x|θi) =
1√

(2π)σi

e
− (x−µi)

2

2σ2
i (2)

Also, it should be noticed that being probabilities αi

must satisfy

0 ≤ αi ≤ 1 , ∀i = 1, .., k, and

k∑
i=1

αi = 1 (3)

Given a set of n i.i.d samples X = {x(1), x(2), .., x(n)},
the log-likelihood corresponding to a mixture is

log p(X|Θ) = log

n∏
j=1

p(x(j)|Θ)

=
n∑

j=1

log

k∑
i=1

αi p(x(j)|θi)

(4)

The goal of learning mixture models is to obtain the pa-
rameters Θ̂ from a set of n data points which are the samples
of a distribution with density given by (1). The Maximum
Likelihood Estimate (MLE) is given by :

Θ̂MLE = arg max
Θ̃

{ log p(X|Θ) } (5)

where Θ̃ indicates the entire parameter space. Since, this
MLE cannot be found analytically for mixture models, one
has to rely on iterative procedures that can find the global
maximum of log p(X|Θ). The EM algorithm described in
the next section has been used successfully to find the local
maximum of such a function [9].

3.2 Expectation Maximization

The EM algorithm assumes X to be observed data. The
missing part, termed as hidden data, is a set of n labels
Z = {z(1), z(2), .., z(n)} associated with n samples, indi-
cating which component produced each sample [9]. Each
label z(j) = [z(j)

1 , z
(j)
2 , .., z

(j)
k ] is a binary vector where

z
(j)
i = 1 and z

(j)
m = 0 ∀m �= i, means the sample x(j)

was produced by the ith component. Now, the complete
log-likelihood (i.e. the one from which we would estimate
Θ if the complete data Y = { X ,Z } is

log p(X ,Z|Θ) =
n∑

j=1

log

k∏
i=1

[ αi p(x(j)|θi) ]z
(j)
i

log p(Y|Θ) =
n∑

j=1

k∑
i=1

z
(j)
i log [ αi p(x(j)|θi) ] (6)

The EM algorithm produces a sequence of estimates
{Θ̂(t), t = 0, 1, 2, ...} by alternately applying the follow-
ing two steps until convergence:

• E-Step : Compute the conditional expectation of the
hidden data, given X and the current estimate Θ̂(t).
Since log p(X ,Z|Θ) is linear with respect to the miss-
ing data Z , we simply have to compute the condi-
tional expectationW ≡ E[Z|X , Θ̂(t)], and plug it into
log p(X ,Z|Θ). This gives the Q-function as follows:



Q(Θ|Θ̂(t)) ≡ EZ [log p(X ,Z)|X , Θ̂(t)] (7)

Since Z is a binary vector, its conditional expectation
is given by :

w
(j)
i ≡ E [ z

(j)
i |X , Θ̂(t) ]

= Pr [ z
(j)
i = 1|x(j), Θ̂(t) ]

=
α̂i(t)p(x(j)|θ̂i(t))∑k
i=1 α̂i(t)p(x(j)|θ̂i(t))

(8)

where the last equality is simply the Bayes law (αi is
the a priori probability that z

(j)
i = 1), while w

(j)
i is the

a posteriori probability that z
(j)
i = 1 given the obser-

vation x(j).

• M-Step : The estimates of the new parameters are
updated using the following equation :

Θ̂(t + 1) = arg max
Θ

{Q(Θ, Θ̂(t))} (9)

3.3 EM for GMMs

Several variants of the EM algorithm have been exten-
sively used to solve this problem. The convergence prop-
erties of the EM algorithm for Gaussian mixtures are thor-
oughly discussed in [19]. The Q − function for GMM is
given by:

Q(Θ|Θ̂(t)) =
n∑

j=1

k∑
i=1

w
(j)
i [log

1
σi

√
2π

− (x(j) − µi)2

2σ2
i

+ log αi]

(10)

where

w
(j)
i =

αi(t)
σi(t)

e
− 1

2σi(t)2
(x(j)−µi(t))

2

∑k
i=1

αi(t)
σi(t)

e
− 1

2σi(t)2
(x(j)−µi(t))2

(11)

The maximization step is given by the following equa-
tion :

∂

∂Θk
Q(Θ|Θ̂(t)) = 0 (12)

where Θk is the parameters for the kth component. Because
of the assumption made that each data point comes from
a single component, solving the above equation becomes

trivial. The updates for the maximization step in the case of
GMMs are given as follows:

µi(t + 1) =

∑n
j=1 w

(j)
i x(j)∑n

j=1 w
(j)
i

σ2
i (t + 1) =

∑n
j=1 w

(j)
i (x(j) − µi(t + 1))2∑n

j=1 w
(j)
i

αi(t + 1) =
1
n

n∑
j=1

w
(j)
i

3.4 Stability Regions

This section mainly deals with the transformation of the
original log-likelihood function into its corresponding non-
linear dynamical system and introduces some terminology
pertinent to comprehend our algorithm. This transformation
gives the correspondence between all the critical points of
the s-dimensional likelihood surface and that of its dynami-
cal system. For the case of spherical Gaussian mixtures with
k components, we have the number of unknown parameters
s = 3k − 1. For convenience, the maximization problem
is transformed into a minimization problem defined by the
following objective function :

min
Θ

f(Θ) = min
Θ

{ − log p(Y|Θ) }
= max

Θ
{ log p(Y|Θ) } (13)

where f(Θ) is assumed to be in C2(�s,�).

Definition 1 Θ̄ is said to be a critical point of (13) if it sat-
isfies the following condition

∇f(Θ̄) = 0 (14)

A critical point is said to be nondegenerate if at the crit-
ical point Θ̄ ∈ �s, dT∇2f(Θ̄)d �= 0 (∀d �= 0). We
construct the following gradient system in order to locate
critical points of the objective function (13):

Θ̇(t) = −∇f(Θ) (15)

where the state vector Θ belongs to the Euclidean space
�s, and the vector field f : �s → �s satisfies the sufficient
condition for the existence and uniqueness of the solutions.
The solution curve of Eq. (15) starting from Θ at time t = 0
is called a trajectory and it is denoted by Φ(Θ, ·) : � → �s.
A state vector Θ is called an equilibrium point of Eq. (15)
if f(Θ) = 0. An equilibrium point is said to be hyperbolic
if the Jacobian of f at point Θ̄ has no eigenvalues with zero



real part. The gradient system for the log-likelihood func-
tion in the case of spherical Gaussians is constructed as fol-
lows :

[µ̇1(t) .. µ̇k(t) σ̇1(t) .. σ̇k(t) α̇1(t) .. α̇k−1(t)]
T

= −
[

∂f

∂µ1
..

∂f

∂µk

∂f

∂σ1
..

∂f

∂σk

∂f

∂α1
..

∂f

∂αk−1

]T

where

∂f

∂µi
=

n∑
j=1

w
(j)
i

(x(j) − µi)
2σ2

i

∀i = 1, .., k

∂f

∂σi
=

n∑
j=1

w
(j)
i

[
− 1

σi
+

(x(j) − µi)2

σ3
i

]
∀i = 1, .., k

∂f

∂αi
=

1
αi

n∑
j=1

w
(j)
i ∀i = 1, .., k − 1

(16)

For simplicity, we show the construction of the gradient
system for the case of spherical Gaussians. It can be easily
extended to the full covariance Gaussian mixture case. It
should be noted that only (k-1) α values are considered in
the gradient system because of the unity constraint. The
dependent variable αk is written as follows:

αk = 1 −
k−1∑
j=1

αj (17)

Definition 2 A hyperbolic equilibrium point is called a
(asymptotically) stable equilibrium point (SEP) if all the
eigenvalues of its corresponding Jacobian have negative
real part. Conversely, it is an unstable equilibrium point
if some eigenvalues have a positive real part.

An equilibrium point is called a type-k equilibrium
point if its corresponding Jacobian has exact k eigenvalues
with positive real part. The stable (W s(x̃)) and unstable
(Wu(x̃)) manifolds of an equilibrium point, say x̃, is de-
fined as:

W s(x̃) = {x ∈ �s : lim
t→∞ Φ(x, t) = x̃} (18)

Wu(x̃) = {x ∈ �s : lim
t→−∞ Φ(x, t) = x̃} (19)

The task of finding multiple local maxima on the log-
likelihood surface is transformed into the task of finding
multiple stable equilibrium points on its corresponding gra-
dient system. The advantage of our approach is that this
transformation into the corresponding dynamical system
will yield more knowledge about the various dynamic and
geometric characteristics of the original surface and leads to
the development a powerful method for finding improved
solutions. In this paper, we are particularly interested in
the properties of the local maxima and their one-to-one cor-
respondence to the stable equilibrium points. To compre-
hend the transformation, we need to define energy func-
tion. A smooth function V (·) : �s → �s satisfying
V̇ (Φ(Θ, t)) < 0 , ∀ x /∈ {set of equilibrium points (E)}
and t ∈ �+ is termed as energy function.

Theorem 3.1 [3]: f(Θ) is a energy function for the gradi-
ent system (15).

Definition 3 A type-1 equilibrium point xd (k=1) on the
practical stability boundary of a stable equilibrium point
xs is called a decomposition point.

Definition 4 The practical stability region of a stable equi-
librium point xs of a nonlinear dynamical system (15), de-
noted by Ap(xs) and is the interior of closure of the stability
region A(xs) which is given by :

A(xs) = {x ∈ �s : lim
t→∞Φ(x, t) = xs} (20)

The boundary of practical stability region is called the
practical stability boundary of xs and will be denoted by
∂Ap(xs). Theorem 3.2 asserts that the practical stability
boundary is contained in the union of the closure of the sta-
ble manifolds of all the decomposition points on the practi-
cal stability boundary. Hence, if the decomposition points
can be identified, then an explicit characterization of the
practical stability boundary can be established using (21).
This theorem gives an explicit description of the geometri-
cal and dynamical structure of the practical stability bound-
ary.

Theorem 3.2 (Characterization of practical stability
boundary)[7]: Consider a negative gradient system de-
scribed by (15). Let σi , i=1,2,... be the decomposition
points on the practical stability boundary ∂Ap(xs) of a
stable equilibrium point, say xs. Then

∂Ap(xs) =
⋃

σi∈∂Ap

W s(σi). (21)



(a) Parameter Space (b) Function Space

Figure 2. Various stages of our algorithm in (a) Parameter space - the solid lines indicate the practical
stability boundary. Points highlighted on the stability boundary (σ1, σ2) are the decomposition points.
The dotted lines indicate the convergence of the EM algorithm. dj are the promising directions
generated at the local maximum LMi. The dashed lines indicate the stability region phase. x1, x2

and x3 are the exit points on the practical stability boundary (b) Different variables in the function
space and their corresponding log-likelihood values.

Our approach takes advantage of TRUST-TECH
(TRansformation Under STability-reTaining Equilibra
CHaracterization) to compute neighborhood local maxima
on likelihood surface using stability regions. Originally,
the basic idea of our algorithm was to find decomposition
points on the practical stability boundary. Since, each
decomposition point connects two local maxima uniquely,
it is important to obtain the saddle points from the given
local maximum and then move to the next local maximum
through this decomposition point [14]. Though, this
procedure gives a guarantee that the local maximum is not
revisited, the computational expense for tracing the stability
boundary and identifying the decomposition point is high
compared to the cost of applying the EM algorithm directly
using the exit point without considering the decomposition
point. One can use the saddle point tracing procedure
described in [14] for applications where the local methods
like EM are much expensive.

4 Our Algorithm

Our framework consists mainly of two phases which are
repeated in the promising subspaces of the parameter search
space. It is more effective to use our algorithm at only these
promising subspaces which are usually obtained by stochas-
tic global methods. The first phase is the local phase (or the

EM phase) where the promising solutions are refined to the
corresponding locally optimal parameter set. The second
phase which is the main contribution of this paper, is the
stability region phase, where the exit points are computed
and the neighborhood solutions are systematically explored
through these exit points. Fig. 2 shows the different steps
of our algorithm both in (a) the parameter space and (b) the
function space.

This approach can be treated as a hybrid between global
methods for initialization and the EM algorithm which gives
the local maxima. One of the main advantages of our ap-
proach is that it searches the parameter space more deter-
ministically. This approach differs from traditional local
methods by computing multiple local solutions in the neigh-
borhood region. This also enhances user flexibility by al-
lowing the users to choose between different sets of good
clusterings. Though global methods give promising sub-
spaces, it is important to explore this subspace more thor-
oughly especially in problems like parameter estimation.
Algorithm 1 describes our approach.

In order to escape out of this local maximum, our meth-
ods needs to compute certain promising directions based on
the local behaviour of the function. One can realize that
generating these promising directions is one of the impor-
tant aspects of our algorithm. Surprisingly, choosing ran-
dom directions to move out of the local maximum works



Algorithm 1 Stability Region based EM Algorithm
Input: Parameters Θ, Data X , tolerance τ , Step Sp

Output: Θ̂MLE

Algorithm:
Apply global method and store the q promising solutions
Θinit = {Θ1, Θ2, .., Θq} Initialize E= φ
while Θinit �= φ do

Choose Θi ∈ Θinit, set Θinit = Θinit\{Θi}
LMi = EM(Θi,X , τ) E = E ∪ {LMi}
Generate promising direction vectors dj from LMi

for each dj do
Compute Exit Point (Xj) along dj starting from
LMi by evaluating the log-likelihood function given
by (4)
Newj = EM(Xj + ε · dj ,X , τ)
if newj /∈ E then

E = E ∪ Newj

end if
end for

end while
Θ̂MLE = max{val(Ei)}

well for this problem. One might also use other direc-
tions like eigenvectors of the Hessian or incorporate some
domain-specific knowledge (like information about priors,
approximate location of cluster means, user preferences on
the final clusters) depending on the application that they are
working on and the level of computational expense that they
can afford. We used random directions in our work because
they are very cheap to compute. Once the promising direc-
tions are generated, exit points are computed along these
directions. Exit points are points of intersection between
any given direction and the practical stability boundary of
that local maximum along that particular direction. If the
stability boundary is not encountered along a given direc-
tion, it is very likely that one might not find any new local
maximum in that direction. With a new initial guess in the
vicinity of the exit points, EM algorithm is applied again to
obtain a new local maximum.

5 Implementation Details

Our program is implemented in MATLAB and runs on
Pentium IV 2.8 GHz machine. The main procedure imple-
mented is TT EM described in Algorithm 2. The algo-
rithm takes the mixture data and the initial set of parame-
ters as input along with step size for moving out and tol-
erance for convergence in the EM algorithm. It returns the
set of parameters that correspond to the Tier-1 neighbor-
ing local optimal solutions. The procedure eval returns the
log-likelihood score given by (4). The Gen Dir procedure
generates promising directions from the local maxima. Exit

points are obtained along these generated directions. The
procedure update moves the current parameter to the next
parameter set along a given kth direction Dir[k]. Some of
the directions might have one of the following two prob-
lems: (i) Exit points might not be obtained in these direc-
tions. (ii) Even if the exit point is obtained it might con-
verge to a less promising solution. If the exit points are not
found along these directions, search will be terminated af-
ter Eval MAX number of evaluations. For all exit points
that are successfully found, EM procedure is applied and
all the corresponding neighborhood set of parameters are
stored in the Params[ ] 1. Since, different parameters will
be of different range, care must be taken while multiplying
with the step sizes. It is important to use the current esti-
mates to get an approximation of the step size with which
one should move out along each parameter in the search
space. Finally, the solution with the highest likelihood score
amongst the original set of parameters and the Tier-1 solu-
tions is returned.

Algorithm 2 Params[ ] TT EM(Pset, Data, T ol, Step)
V al = eval(Pset)
Dir[ ] = Gen Dir(Pset)
Eval MAX = 500
for k = 1 to size(Dir) do

Params[k] = Pset ExtP t = OFF
Prev V al = V al Cnt = 0
while (! ExtP t) && (Cnt < Eval MAX) do

Params[k] = update(Params[k], Dir[k], Step)
Cnt = Cnt + 1
Next V al = eval(Params[k])
if (Next V al > Prev V al) then

ExtP t = ON
end if
Prev V al = Next V al

end while
if count < Eval MAX then

Params[k] = update(Params[k], Dir[k], ASC)
Params[k] = EM(Params[k], Data, T ol)

else
Params[k] = NULL

end if
end for
Return max(eval(Params[ ]))

6 Results and Discussion

Our algorithm has been tested on both synthetic and real
datasets. The initial values for the centers and the covari-

1To ensure that the new initial points are in the different stability re-
gions, one should move along the directions ‘ε’ away from the exit points.



(a) (b) (c) (d)

Figure 3. Parameter estimates at various stages of our algorithm on the three component Gaussian
mixture model (a) Poor random initial guess (b) Local maximum obtained after applying EM algorithm
with the poor initial guess (c) Exit point obtained by our algorithm (d) The final solution obtained by
applying the EM algorithm to the initial point in the neighboring stability region.

ances were chosen uniformly random. Uniform priors were
chosen for initializing the components. For real datasets,
the centers were chosen randomly from the sample points.

Figure 4. Graph showing likelihood vs Eval-
uations. A corresponds to the original local
maximum (L=-3235.0). B corresponds to the
exit point (L=-3676.1). C corresponds to the
new initial point in the neighboring stability
region (L=-3657.3) after moving out by ‘ε’. D
corresponds to the new local maximum (L=-
3078.7).

6.1 Synthetic Datasets

A simple synthetic data with 40 samples and 5 spherical
Gaussian components was generated and tested with our al-
gorithm. Priors were uniform and the standard deviation
was 0.01. The centers for the five components are given as

follows: µ1 = [0.3 0.3]T , µ2 = [0.5 0.5]T , µ3 = [0.7 0.7]T ,
µ4 = [0.3 0.7]T and µ5 = [0.7 0.3]T .

The second dataset was that of a diagonal covariance
case containing n = 900 data points. The data generated
from a two-dimensional, three-component Gaussian mix-
ture distribution with mean vectors at [0 −2]T , [0 0]T , [0 2]T

and same diagonal covariance matrix with values 2 and 0.2
along the diagonal [16]. All the three mixtures have uni-
form priors. Fig. 3 shows various stages of our algorithm
and demonstrates how the clusters obtained from existing
algorithms are improved using our algorithm. The initial
clusters obtained are of low quality because of the poor ini-
tial set of parameters. Our algorithm takes these clusters
and applies the stability region step and the EM step simul-
taneously to obtain the final result. Fig. 4 shows the value
of the log-likelihood during the stability region phase and
the EM iterations.

In the third synthetic dataset, a more complicated over-
lapping Gaussian mixtures are considered [6]. The param-
eters are as follows: µ1 = µ2 = [−4 − 4]T , µ3 = [2 2]T

and µ4 = [−1 − 6]T . α1 = α2 = α3 = 0.3 and α4 = 0.1.

Σ1 =
[

1 0.5
0.5 1

]
Σ2 =

[
6 −2
−2 6

]

Σ3 =
[

2 −1
−1 2

]
Σ4 =

[
0.125 0

0 0.125

]

6.2 Real Datasets

Two real datasets obtained from the UCI Machine Learn-
ing repository [1] were also used for testing the performance
of our algorithm. Most widely used Iris data with 150 sam-
ples, 3 classes and 4 features was used. Wine data set with



Table 2. Performance of our algorithm on an average of 100 runs on various synthetic and real datasets
Dataset Samples Clusters Features EM (mean ± std) TRUST-TECH-EM (mean ± std)

Spherical 40 5 2 38.07±2.12 43.55±0.6
Elliptical 900 3 2 -3235±0.34 -3078.7±0.03

Full covariance 1 500 4 2 -2345.5 ±175.13 -2121.9± 21.16
Full covariance 2 2000 4 2 -9309.9 ±694.74 -8609.7 ±37.02

Iris 150 3 4 -198.13±27.25 -173.63±11.72
Wine 178 3 13 -1652.7±1342.1 -1618.3±1349.9

178 samples was also used for testing. Wine data had 3
classes and 13 features. For these real data sets, the class
labels were deleted thus treating it as unsupervised learning
problem. Table 2 summarizes our results over 100 runs. The
mean and the standard deviations of the log-likelihood val-
ues are reported. The traditional EM algorithm with random
starts is compared against our algorithm on both synthetic
and real data sets. Our algorithm not only obtains higher
likelihood value but also produces it with high confidence.
The low standard deviation of our results indicates the ro-
bustness of obtaining the global maximum. In the case of
the wine data, the improvements with our algorithm are not
much significant compared to the other datasets. This might
be due to the fact that the dataset might not have Gaussian
components. Our method assumes that the underlying dis-
tribution of the data is mixture of Gaussians. Table 3 gives
the results of TRUST-TECH compared with other methods
like split and merge EM and k-means+EM proposed in the
literature.

Table 3. Comparison of TRUST-TECH-EM with other
methods

Method Elliptical Iris
RS+EM -3235 ± 14.2 -198 ± 27

K-Means+EM -3195 ± 54 -186 ± 10
SMEM -3123 ± 54 -178.5 ± 6

TRUST-TECH-EM -3079 ± 0.03 -173.6 ± 11

6.3 Discussion

It will be effective to use our algorithm for those solu-
tions that appear to be promising. Due to the nature of the
problem, it is very likely that the nearby solutions surround-
ing the existing solution will be more promising. One of
the primary advantages of our method is that it can be used
along with other popular methods available and improve the
quality of the existing solutions. In clustering problems, it
is an added advantage to perform refinement of the final

clusters obtained. Most of the focus in the literature was
on new methods for initialization or new clustering tech-
niques which often do not take advantage of the existing
results and completely start the clustering procedure “from
scratch”. Though shown only for the case of multivariate
Gaussian mixtures, our technique can be effectively applied
to any parametric finite mixture model.

Table 4 summarizes the average number of iterations
taken by the EM algorithm for the convergence to the lo-
cal optimal solution. We can see that the most promising
solution produced by our TRUST-TECH methodology con-
verges much faster. In other words, our method can effec-
tively take advantage of the fact that the convergence of the
EM algorithm is much faster for high quality solutions. This
is an inherent property of the EM algorithm when applied
to the mixture modeling problem. We exploit this property
of the EM for improving the efficiency of our algorithm.
Hence, for obtaining the Tier-1 solutions using our algo-
rithm, the threshold for the number of iterations can be sig-
nificantly lowered.

Table 4. Number of iterations taken for the convergence
of the best solution.

Dataset Avg. no. of No. of iterations
iterations for the best solution

Spherical 126 73
Elliptical 174 86

Full covariance 292 173

7 Conclusion and Future Work

A novel stability region based EM algorithm has been in-
troduced for estimating the parameters of mixture models.
The EM phase and the stability region phase are applied al-
ternatively in the context of the well-studied mixture model
parameter estimation problem. The concept of stability re-
gion helps us to understand the topology of the original log-
likelihood surface. Our method computes the neighborhood



local maxima on likelihood surface using stability regions
of the corresponding nonlinear dynamical system. The al-
gorithm has been tested successfully on various synthetic
and real datasets and the improvements in the performance
are clearly manifested. Some properties of the EM algo-
rithm about the rate of convergence have been exploited ef-
ficiently.

Our algorithm can be easily extended to popularly used
k-means clustering technique. In the future, we plan to work
on applying these stability region based methods for other
widely used EM related parameter estimation problems like
training Hidden Markov Models, Mixture of Factor Analyz-
ers, Probabilistic Principal Component Analysis, Bayesian
Networks etc. We would also plan to extend our technique
to Markov Chain Monte Carlo strategies like Gibbs sam-
pling for the estimation of mixture models.
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