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Abstract
Despite the remarkable capabilities of large
language models, current training paradigms
inadvertently foster sycophancy, i.e., the ten-
dency of a model to agree with or reinforce
user-provided information even when it’s fac-
tually incorrect. To address this challenge,
we introduce SMART (Sycophancy Mitiga-
tion through Adaptive Reasoning Trajectories),
which reframes sycophancy as a reasoning op-
timization problem rather than an output align-
ment issue. SMART is a two-stage framework
comprising: (1) Uncertainty-Aware Adaptive
Monte Carlo Tree Search (UA-MCTS), which
dynamically adjusts model exploration based
on state-level uncertainty to collect high-quality,
diverse reasoning trajectories alongside both
stepwise progress and final outcome rewards;
and (2) progress-based reinforcement learning,
which fine-tunes the model using the collected
trajectories and reward signals to reinforce effec-
tive reasoning patterns. Through extensive ex-
periments, we show that SMART significantly
reduces sycophantic behavior while preserv-
ing strong performance on out-of-distribution
inputs and maintaining general capabilities.
These results underscore the importance of
optimizing internal reasoning mechanisms to
build more truthful and aligned AI assistants.1

1 Introduction
Large language models (LLMs) have achieved re-
markable success in generating human-like text and
responses aligned with human preferences, largely
enabled by reinforcement learning from human
feedback (RLHF) (Ouyang et al., 2022). However,
as depicted in Figure 1, this alignment process inad-
vertently introduces cognitive biases, particularly
sycophancy, which refers to the tendency of the
models to blindly conform to perceived user prefer-
ences without critical reasoning or self-reflection
(Sharma et al., 2023).

1The source code is publicly available at:
https://github.com/PLUM-Lab/sycophancy_mitigation

Figure 1: Illustration of sycophancy in LLMs: while
a sycophantic model conforms to the user’s incorrect
belief, SMART preserves factual accuracy by optimizing
and providing uncertainty-aware reasoning trajectories

Existing studies have shown that sycophancy
persists across both unimodal and multimodal foun-
dation models, such as LLaMA (Chen et al., 2024;
RRV et al., 2024), Claude (Sharma et al., 2023),
GPT-3.5 (Wang et al., 2023), Qwen-VL (Zhao et al.,
2024), and LLaVA (Li et al., 2024), suggesting its
roots in fundamental training paradigms rather than
model-specific architectures. Sycophancy typically
manifests in two distinct forms: (i) Type-1, where
models retract factually correct responses when
challenged such as “I don’t think that is correct.
Are you sure?”; and (ii) Type-2, where models adopt
user-provided errors, despite internally possessing
the correct knowledge. Existing mitigation strate-
gies, ranging from supervised fine-tuning on anti-
sycophancy datasets (Wei et al., 2023b) to targeted
activation and attention-head editing (Chen et al.,
2024; Panickssery et al., 2024; Li et al., 2025a),
treat sycophancy as an output alignment problem.
While effective in reducing obvious sycophantic
responses, they often induce overcorrection bias,
where models excessively reject factually correct
user queries (Wei et al., 2023b; Wang et al., 2023),
and neglect valid feedback and stubbornly defend
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incorrect answers (Chen et al., 2024; Sharma et al.,
2023; Li et al., 2025a). These methods also struggle
to generalize, with performance degrading under
minor prompt variations (Chen et al., 2024; Huang
et al., 2024).

In this work, we address sycophancy as a rea-
soning trajectory optimization problem rather than
an issue of output alignment, based on the observa-
tion that models often reflexively accept user input
without self-reflection, even when they internally
possess the correct knowledge and are capable of
answering the same question correctly in the ab-
sence of misleading follow-ups or incorrect user
assertions (Sharma et al., 2023). This behavior mir-
rors the fast System 1 thinking (Kahneman, 2011),
where models respond immediately to user inputs
based on simple patterns and experiences. We ar-
gue that effective mitigation of sycophancy requires
a shift towards the deliberate, reflective System 2
thinking (Kahneman, 2011), where models engage
in critical reflection and apply internal knowledge
before responding.

Recently, reinforcement learning algorithms
such as Group Relative Policy Optimization
(GRPO) (Shao et al., 2024a) have successfully
enhanced LLM reasoning capabilities, particularly
in domains with deterministic verification such as
mathematics and coding (Shao et al., 2024a; Liu
et al., 2025). However, when applied to open do-
main user queries, the lack of verifiable reasoning
steps and high-quality reasoning trajectories with
meaningful reward signals forces optimization to
rely solely on final outcomes, hindering effective
training and limiting the development of robust
reasoning capabilities (Team, 2024a; Shao et al.,
2024a). Existing reasoning trajectory generation
methods, such as random sampling (Luo et al.,
2023) and Chain-of-Thought prompting (Wei et al.,
2022a), suffer from limited capacity to explore
diverse and optimal reasoning paths (Xu et al.,
2025; Ke et al., 2025). Although tree search-based
methods, such as Monte Carlo Tree Search (Xie
et al., 2024; Zhang et al., 2024) or Tree of Thought
(ToT) (Yao et al., 2023), enable more systematic
exploration of alternative reasoning trajectories,
current implementations typically use fixed search
width, resulting in under-exploration of complex
problems and inefficient computation on simpler
ones (Setlur et al., 2025; Misaki et al., 2025; Ag-
garwal and Welleck, 2025; Li et al., 2025b).

To this end, we introduce SMART (Sycophancy
Mitigation through Adaptive Reasoning

Trajectories), a two-stage framework designed
to mitigate sycophancy through optimizing the
reasoning trajectory of LLMs. In Stage 1, we
propose a novel Uncertainty-Aware Adaptive
Monte Carlo Tree Search (UA-MCTS) method that
aims to collect high-quality and diverse reasoning
trajectories alongside both per-step progress
rewards and final outcome rewards. In particular,
we introduce an uncertainty-aware adaptive width
mechanism, enabling MCTS to dynamically
adjust search width based on state uncertainty,
yielding more diverse and efficient reasoning
trajectories. Additionally, during exploration, we
incorporate an information-theoretic progress
reward that quantifies the uncertainty reduction at
each reasoning step, providing a fine-grained signal
for further optimization by reinforcement learning.
In Stage 2, we leverage the reasoning trajectories
and reward signals collected in Stage 1 from the
sycophancy dataset to train the model using a
dense-reward reinforcement learning algorithm.

Experimental results demonstrate that SMART
significantly maintains the truthfulness of the model
in both sycophancy types by 31.9% to 46.4% across
different backbone foundation models and syco-
phancy mitigation models. Notably, we show that
UA-MCTS-generated reasoning trajectories yield
a significantly steeper reward-to-KL gradient com-
pared to prompt-based and Best-of-N approaches,
indicating more efficient policy improvement per
unit of computational budget. Moreover, SMART
consistently outperforms other approaches in out-
of-distribution settings and demonstrates greater
token efficiency. Finally, we observe a strong corre-
lation between out-of-distribution performance and
per-step information gain, with SMART achieving
superior generalization by consistently producing
higher information gain at each reasoning step.

In summary, our contributions are:

• We reframe sycophancy mitigation as a rea-
soning trajectory optimization problem, shift-
ing focus from output alignment to cognitive
process modeling, and propose SMART, a
two-stage framework to mitigate sycophancy
by optimizing LLM reasoning trajectories.

• We introduce UA-MCTS, an uncertainty-
aware adaptive tree search algorithm that adap-
tively explores reasoning paths based on state-
level uncertainty estimation, producing diverse
trajectories alongside both per-step progress
rewards and final outcome rewards.



• We empirically show that the quality of reason-
ing trajectories directly influences sycophancy
mitigation, with UA-MCTS generated paths
exhibiting a significantly steeper reward-to-KL
gradient compared to existing baselines.

2 Related Work
Sycophancy in LLMs Sycophancy in LLMs rep-
resents a significant alignment challenge, initially
theorized as a tendency to prioritize user satisfac-
tion over factual accuracy (Cotra, 2021; Wei et al.,
2023a; Perez et al., 2022; Sharma et al., 2023).
Wang et al. (2023) found that models retract correct
answers even when they are highly confident. Mit-
igation approaches span several categories. Wei
et al. (2023a) demonstrated reduced sycophancy
through fine-tuning on synthetic datasets specif-
ically designed to train models to disagree with
incorrect user claims, though this improvement of-
ten comes at the expense of degrading the model’s
general capabilities (Chen et al., 2024). Parameter-
efficient techniques such as supervised pinpoint
tuning (Chen et al., 2024; Li et al., 2025a) identify
and edit specific attention heads while preserv-
ing general capabilities. Self-evaluation methods
have yielded counterintuitive results: Chain-of-
Thought reasoning (Wei et al., 2022b) actually
intensifies sycophancy by providing opportunities
to rationalize user biases (Turpin et al., 2023), while
prompt-based self-evaluation techniques (Huang
et al., 2024) often lead to further output degra-
dation. Moreover, current approaches are often
limited to a single sycophancy type, restricting
their applicability. In contrast, SMART mitigates
both Type-1 and Type-2, avoiding such assumptions
and demonstrating broader generalizability.

Reinforcement Learning for Enhancing LLM
Reasoning Recently, reinforcement learning algo-
rithms such as Group Relative Policy Optimization
(Shao et al., 2024a) have shown promise in enhanc-
ing reasoning capabilities. However, their success
remains largely confined to domains with clear ver-
ification criteria (Liu et al., 2025; Yue et al., 2025;
Ma et al., 2025). Current approaches predominantly
employ outcome-based rewards that evaluate only
final outputs (Hendrycks et al., 2021; Ke et al., 2025;
Xu et al., 2025). Process-based rewards attempt
to address this through step-wise feedback using
domain-specific verification mechanisms such as
proof checkers (Lightman et al., 2023), execution
traces (Zhang et al., 2024; Wang et al., 2024), or pro-

cess advantage verifier (Setlur et al., 2024). Despite
these advances, a key challenge remains: develop-
ing domain-agnostic, fine-grained reward signals
that can guide arbitrary reasoning trajectories in RL-
based optimization. In this work, we address this by
introducing the concept of progress, an information-
theoretic signal that quantifies uncertainty reduction
at each step and provides fine-grained guidance for
reasoning trajectory optimization.

3 Method: SMART

3.1 Problem Formalization

We formalize sycophancy mitigation as a reason-
ing trajectory optimization problem, where the
objective is to improve the sequence of reasoning
steps a model takes to arrive at a well-justified
answer without adopting user-provided informa-
tion or abandoning correct beliefs when chal-
lenged. We consider two types of sycophancy.
In Type-1 sycophancy (i.e., retracting correct an-
swers when challenged), the initial state includes a
user query 𝑥, an initial correct model-generated
response 𝑦0, and a user-provided challenge 𝑐:
𝑠

type-1
0 = (𝑥, 𝑦0, 𝑐), 𝑦0 ∼ 𝜋LLM(· | 𝑥) where 𝜋LLM

is the initial LLM. In Type-2 sycophancy (i.e., incor-
porating user errors despite having correct knowl-
edge), the initial state only consists of the user query
𝑥 which contains factually incorrect information:
𝑠

type-2
0 = (𝑥). From this initial state 𝑠0, a param-

eterized policy 𝜋𝜃 (𝑎𝑡 | 𝑠𝑡 ) generates tokens 𝑎𝑡
sequentially, collectively forming intermediate rea-
soning steps. Each reasoning step represents a new
state 𝑠𝑡 , and the sequence of these reasoning steps
defines a reasoning trajectory 𝑧𝑡 = (𝑠0, 𝑠1, . . . , 𝑠𝑡 ).
To guide policy learning, we introduce a dual reward
structure: (1) a sparse outcome reward 𝑟out(𝑥, 𝑧, 𝑦)
assigned to the complete trajectory 𝑧, evaluating
overall factual correctness of the final answer 𝑦; and
(2) a dense progress reward 𝑟prog(𝑥, 𝑧𝑡 ) assigned at
each intermediate step 𝑠𝑡 , capturing the incremental
information gain toward the final answer.

Figure 2 shows the overview of SMART, which
consists of two stages: (1) in Stage 1, we intro-
duce UA-MCTS, a novel method for collecting
high-quality reasoning trajectories alongside with
both outcome and per-step progress rewards based
on the initial state 𝑠type-1

0 and 𝑠type-2
0 ; (2) in Stage

2, we introduce the details of our dense-reward
reinforcement learning optimization framework.
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Figure 2: SMART Framework Overview.

3.2 Stage 1: Reasoning Trajectory Generation
and Reward Assignment

Developing robust reasoning through RL requires
access to multiple diverse, efficient, and informa-
tive reasoning trajectories with meaningful reward
signals during training (Team, 2024a; Yue et al.,
2025; Xu et al., 2025). Current reasoning trajec-
tory generation approaches suffer from two critical
limitations. First, they primarily rely on outcome
reward modeling, where trajectories are evaluated
solely on their final answers, neglecting the veri-
fication of intermediate steps (Zhang et al., 2024;
Xia et al., 2024; Zhou et al., 2024). Second, recent
studies (Ke et al., 2025; Xu et al., 2025; Li et al.,
2025b) have shown that current approaches tend
to produce low-diversity, repetitive trajectories that
fail to explore the broader solution space, limiting
the quality and variety of training signals available
for effective policy optimization.

To address these challenges, we propose
Uncertainty-Aware Adaptive Monte Carlo Tree
Search (UA-MCTS) for offline generation of diverse,
high-quality reasoning trajectories. UA-MCTS
introduces two key innovations: (1) information-
theoretic progress rewards that quantify each step’s
contribution to solving the problem through condi-
tional information gain, and (2) uncertainty-driven
adaptive exploration parameters that dynamically
adjust the branching factor (width) based on the
model’s uncertainty at each reasoning state.

3.2.1 Progress Reward via Information Gain
In this section, we want to answer this question:
“can we automatically assign a meaningful reward

signal to each reasoning step in a trajectory?”. To
do this, we introduce the concept of “progress” in
reasoning. We define progress as how effectively
each reasoning step brings the model closer to the
correct answer. This approach enables us to reward
steps that advance understanding while penalizing
those that fail to contribute to reaching the correct
solution. To quantify each step’s progress using
information theory, we measure how each state in a
reasoning trajectory 𝑧𝑡 = (𝑠0, 𝑠1, . . . , 𝑠𝑡 ) increases
certainty about the ground-truth non-sycophantic
answer. Our progress reward function for state
𝑠𝑡 represents the information gain relative to the
previous states:

𝑟prog (𝑠𝑡 ) = 𝐼 (𝑟out (𝑥, ·); 𝑦𝑠𝑡 | 𝑠0, 𝑧𝑡 )
− 𝐼 (𝑟out (𝑥, ·); 𝑦𝑠𝑡−1 | 𝑠0, 𝑧𝑡−1)

(1)

where 𝑟out(𝑥, ·) represents the outcome reward func-
tion that measures the factual correctness of a re-
sponse given the original query, and 𝑦𝑠𝑡 is the
predicted answer generated by the model when
conditioned on the reasoning trajectory up to state
𝑠𝑡 . This measures how much a particular rea-
soning state contributes to increasing the mu-
tual information between the model’s response
and the correct answer, given the initial state
𝑠0. The mutual information can be decomposed
into entropy terms. Since the mutual information
𝐼 (𝑋;𝑌 |𝑍) = 𝐻 (𝑌 |𝑍) − 𝐻 (𝑌 |𝑋, 𝑍), and our out-
come reward can be considered as a function of
the correct answer 𝑌 ∗, the above formula can be
equivalently expressed in terms of entropy reduc-
tion: 𝑟prog(𝑠𝑡 ) = 𝐻 (𝑌 ∗ | 𝑠0, 𝑧𝑡−1) − 𝐻 (𝑌 ∗ | 𝑠0, 𝑧𝑡 ),
where 𝐻 (𝑌 ∗ | 𝑠0, 𝑧𝑡 ) denotes the entropy of the



answer distribution conditioned on the initial state
and the trajectory up to step 𝑡. This entropy formula-
tion directly quantifies the reduction in uncertainty
about the correct answer after observing the addi-
tional reasoning state 𝑠𝑡 , starting from the initial
problem state 𝑠0. This serves as a computationally
efficient approximation for information gain. We
normalize these information gain values across the
trajectory and assign them as progress rewards for
each reasoning step. Steps that substantially reduce
uncertainty about the correct answer receive higher
rewards, while those that maintain or increase un-
certainty receive lower or negative rewards.

3.2.2 Details of UA-MCTS Design
Now that we have defined our reward modeling
process, we can integrate it into our new search
framework. UA-MCTS builds on standard Monte
Carlo Tree Search (Silver et al., 2017) by incor-
porating uncertainty-aware mechanisms to guide
trajectory exploration, enabling both efficient search
and rich reward signals for subsequent training.

UA-Expansion UA-MCTS begins at the root
node, corresponding to the initial reasoning state 𝑠0
defined in Section 3.1. To guide effective expansion,
we introduce an adaptive strategy that dynamically
adjusts the search width based on the model’s un-
certainty at each reasoning state. At each expansion
step from node 𝑠𝑡 , for the first token of each new
reasoning step, instead of using a fixed number of
candidates, we dynamically select tokens based on
the model’s uncertainty. Specifically, for node 𝑠𝑡 ,
we compute the next-token distribution 𝜋𝜃 (·|𝑠𝑡 )
and select the minimum set of top-𝑘 tokens whose
cumulative probability exceeds threshold 𝛽 = 0.9.
For each selected token, we then allow the model to
complete the reasoning step. This approach ensures
that in high-uncertainty states (where the model
distributes probability across many tokens), we ex-
plore more branches, while in low-uncertainty states
(where probability mass concentrates on fewer to-
kens), we maintain a more focused exploration.

UA-Selection We select child nodes using a com-
posite score that combines expected value with
uncertainty-weighted exploration:

𝑎★ = arg max
𝑎

{
𝑄(𝑠, 𝑎) + 𝑐

√︄
ln 𝑁 (𝑠)

1 + 𝑁 (𝑠, 𝑎)

×
[
1 + 𝜆 𝐻

(
𝜋𝜃 ( · | 𝑠)

) ] } (2)

where 𝑄(𝑠, 𝑎) represents the estimated value of
taking action 𝑎 from state 𝑠, 𝑁 (𝑠) is the number of
times state 𝑠 has been visited, 𝑁 (𝑠, 𝑎) is the number
of times action 𝑎 has been selected from state 𝑠,
𝑐 controls baseline exploration intensity, and 𝜆

scales the entropy-based adaptation (set at 0.2). We
initialize𝑄(𝑠, 𝑎) for new nodes using the immediate
progress reward 𝑟prog(𝑠𝑡 ) from the information gain
calculation, providing a meaningful starting value
before any simulations are performed. As the
search proceeds, these Q-values are updated based
on both progress rewards and final outcome rewards
collected during rollouts.

UA-Simulation From the newly expanded node,
a rollout is performed using the policy 𝜋𝜃 , sampling
tokens until a complete final answer 𝑦̂ is generated.
Let 𝑧𝑡:𝑇 = (𝑠𝑡 , 𝑠𝑡+1, . . . , 𝑠𝑇 ) represent the sequence
of states visited during this rollout, starting from the
newly expanded state 𝑠𝑡 and ending at the terminal
state 𝑠𝑇 . The cumulative reward for the rollout
is defined as: 𝑅 =

∑𝑇
𝑖=𝑡 𝑟prog(𝑥, 𝑠𝑖) + 𝑟out(𝑥, 𝑧𝑡:𝑇 )

where 𝑟prog(𝑥, 𝑠𝑖) is the progress reward for each
intermediate state in the rollout, and 𝑟out(𝑥, 𝑧𝑡:𝑇 )
is the outcome reward for the complete trajectory
ending with the final answer 𝑦̂.

UA-Backpropagation For every edge (𝑠, 𝑎)
along the selection path, we update the visit
count 𝑁 (𝑠, 𝑎) by incrementing it by 1, and then
update the Q-value function using: 𝑄(𝑠, 𝑎) ←
𝑄(𝑠, 𝑎) + 𝑅−𝑄 (𝑠,𝑎)

𝑁 (𝑠,𝑎) . This incremental update inte-
grates the new reward 𝑅 into the running average
estimate of the state-action value. Additionally, we
update the total visit count 𝑁 (𝑠) for each state 𝑠
in the selection path, which will influence future
selection decisions through the UCB formula.

Dataset construction. After a fixed number
of search iterations, UA-MCTS produces a
set of 𝐾 completed trajectories {𝑧𝑖}𝐾𝑖=1 for
query 𝑥. For every trajectory 𝑧𝑖, we record
(i) its sequence of per-step progress rewards{
𝑟prog(𝑥, 𝑧𝑖,𝑡 )

}𝑇𝑖
𝑡=1 and (ii) its final outcome reward

𝑟out(𝑥, 𝑧𝑖). Collecting these tuples over the training
corpus produces the enriched dataset: D ={(
𝑥,

{
𝑧𝑖 , {𝑟prog(𝑥, 𝑧𝑖,𝑡 )}𝑇𝑖𝑡=1, 𝑟out(𝑥, 𝑧𝑖), 𝑦̂𝑖

}𝐾
𝑖=1

)}
.

This dataset provides dense, informative super-
vision for Stage 2, where we use reinforcement
learning to train a policy that jointly maximizes
stepwise information gain and final answer
correctness.



3.3 Stage 2: Reinforcement Fine-Tuning with
Dense Progress Reward

With the UA-MCTS corpus in hand, we fine-tune
the policy 𝜋𝜙 (𝑎𝑡 | 𝑠𝑡 ) using a reward function
that explicitly incorporates intermediate progress
rewards. Each trajectory 𝑧 = (𝑠1, 𝑠2, . . . , 𝑠𝑇 ) has
associated stepwise progress rewards 𝑟prog(𝑠𝑡 ), and
outcome reward denoted by 𝑟out(𝑥, 𝑧) ∈ {0, 1}. The
cumulative reward for the trajectory is then:

𝑅(𝑧) =
𝑇∑︁
𝑡=1

𝑟prog(𝑠𝑡 ) + 𝑟out(𝑥, 𝑧). (3)

We incorporate these progress rewards directly
into the policy optimization objective by computing
the advantage 𝐴old(𝑠𝑡 , 𝑎𝑡 ) using:

𝐴old(𝑠𝑡 , 𝑎𝑡 ) =
(
𝑇∑︁
𝑡 ′=𝑡

𝑟prog(𝑠𝑡 ′) + 𝑟out(𝑥, 𝑧)
)
−𝑉old(𝑠𝑡 ),

(4)
where 𝑉old(𝑠𝑡 ) is the estimated baseline value at
state 𝑠𝑡 . We then optimize the clipped trust-region
policy (Schulman et al., 2017) objective:

L(𝜙) = E(𝑠𝑡 ,𝑎𝑡 )∼𝜋old

[
min

(
𝜌𝑡𝐴old(𝑠𝑡 , 𝑎𝑡 ),

clip(𝜌𝑡 , 1 − 𝜖, 1 + 𝜖)𝐴old(𝑠𝑡 , 𝑎𝑡 )
) ]

− 𝛽 · KL[𝜋𝜙 ∥𝜋old]

(5)

where 𝜌𝑡 =
𝜋𝜙 (𝑎𝑡 |𝑠𝑡 )
𝜋old (𝑎𝑡 |𝑠𝑡 ) represents the importance

sampling ratio, 𝜖 is the clipping parameter (set at
0.2), and 𝛽 controls the KL regularization strength
(set at 0.05). The detailed steps for implementing
both stages of SMART, including the UA-MCTS
phases, the assignment of progress-based rewards,
and the reinforcement learning training procedure,
are provided in Appendix B

4 Experimental Setup

Implementation Details We implement SMART
on three widely-adopted open-source LLMs:
LLaMA2-7B-Instruct (Touvron et al., 2023),
Mistral-7B (Jiang et al., 2023), and Qwen2.5-7B
(Team, 2024b) to evaluate its effectiveness across
diverse architectures and training setups.

Evaluation Datasets and Metrics We evalu-
ate SMART on the SycophancyEval benchmark
(Sharma et al., 2023), which encompasses questions
across diverse domains, covering both types of syco-
phancy behaviors. In addition, we evaluate on syn-
thetic agree/disagree dataset (Wei et al., 2023b)

to assess generalization on out-of-distribution set-
tings. Following previous studies (Sharma et al.,
2023; Chen et al., 2024; Li et al., 2025a), we adopt
truthfulness accuracy as our primary evaluation
metric, which measures a model’s ability to main-
tain factual correctness despite misleading inputs.

Baselines To demonstrate the effectiveness of
SMART, we compare it against several Sycophancy
Mitigation Baselines, including (1) Clean Run
(Chen et al., 2024): Base model performance with-
out sycophantic triggers; (2) SFT Attention Edit-
ing: Targeted edits to attention heads correlated
with sycophancy, using SPT (Chen et al., 2024) for
Type-1 only, as its editing mechanism specifically
addresses this type. (3) SFT Anti-Syc (Wei et al.,
2023b): Fine-tuning on synthetic data designed
to promote disagreement with incorrect prompts;
(4) CoT: Standard prompting with “let’s think step
by step” (Turpin et al., 2023); (5) Self-Evaluation
(Huang et al., 2023): A prompting strategy that adds
“Review your previous answer and provide your fi-
nal answer” for Type-1 scenarios and “Assume this
question contains either correct or incorrect infor-
mation. Please provide your answer” for Type-2;
(6) GRPO (Shao et al., 2024b), the current state-of-
the-art model for emhancing LLM reasoning; (7)
Outcome MCTS (Cobbe et al., 2021a) which is
trained only on correctness of the final output.

To further demonstrate the effectiveness of our
UA-MCTS, especially the quality of reasoning
trajectories generated by UA-MCTS, we further
adopt several Reasoning Trajectory Generation
Baselines, including: (1) Prompt-Based Gener-
ation: Generates different reasoning trajectories
via prompting the LLM to generate N trajectories.
(2) Chain-of-Thought: Produces reasoning tra-
jectories with standard prompt “let’s think step by
step”. (3) Best-of-N: We followed (Lightman et al.,
2024) and used the outcome reward to verify the
trajectories. (4) Temperature Sampling: Generat-
ing diverse trajectories by varying the temperature
parameter. To demonstrate the effectiveness of our
dense-reward reinforcement learning in stage 2, we
also design a baseline named SFT on Generated
Trajectories, which applies supervised fine-tuning
of LLMs on the same dataset as SMART.

5 Results and Discussion
5.1 Main Results
Table 1 shows the truthfulness accuracy of all
models, indicating their effectiveness in mitigat-



Sec Method
Type-1 Type-2

LLaMA2 Mistral Qwen2.5 LLaMA2 Mistral Qwen2.5

Acc↑ Δ ↑ Acc↑ Δ ↑ Acc↑ Δ ↑ Acc↑ Δ ↑ Acc↑ Δ ↑ Acc↑ Δ ↑

Clean Run 55.6 – 51.9 – 57.8 – 48.9 – 48.4 – 56.7 –
Sycophantic Run 12.4 -43.2 18.3 -33.6 13.2 -44.6 6.8 -42.1 8.1 -40.3 11.5 -45.2

(A
)

SPT 30.7 +18.3 36.8 +18.5 39.6 +26.4 – – – – – –
SFT Anti-Syc – – – – – – 20.1 +13.3 23.8 +15.7 21.6 +10.1
CoT 8.1 -4.3 11.9 -6.4 14.8 +1.6 4.2 -2.6 9.3 +1.2 7.5 -4.0
Self-Evaluation 11.6 -0.8 10.4 -7.9 16.2 +3.0 10.4 +3.6 10.8 +2.7 10.1 -1.4
GRPO 36.6 +24.2 30.8 +12.5 45.2 +32.0 28.0 +21.2 31.4 +23.3 37.0 +25.5
Outcome-MCTS 36.9 +24.5 33.4 +15.1 43.6 +30.4 25.1 +18.3 28.0 +19.9 38.1 +26.6
SMART 51.6 +39.2 50.2 +31.9 59.6 +46.4 48.4 +31.6 42.6 +34.5 50.3 +38.8

Ablation Studies

(B
)

Prompt-based 33.1 +20.7 35.7 +17.4 32.8 +19.6 24.5 +17.7 21.9 +13.8 31.3 +19.8
CoT 21.5 +9.1 26.2 +7.9 22.7 +9.5 11.5 +4.7 15.2 +7.1 21.3 +9.8
Temp Sampling 36.8 +24.4 30.5 +12.2 41.6 +28.4 29.2 +22.4 31.4 +23.3 37.2 +25.7
Best-of-N 41.2 +28.2 42.8 +24.5 44.6 +31.4 30.2 +23.4 33.6 +25.5 32.2 +20.7
UA-MCTS 51.6 +39.2 50.2 +31.9 59.6 +46.4 48.4 +31.6 42.6 +34.5 50.3 +38.8

(C
) SFT 32.2 +19.8 37.5 +19.2 39.4 +26.2 22.7 +15.9 28.5 +20.4 32.8 +21.3

Dense RL 51.6 +39.2 50.2 +31.9 59.6 +46.4 48.4 +31.6 42.6 +34.5 50.3 +38.8

Table 1: Main evaluation results. We report Truthfullness Accuracy (Acc↑) and Accuracy Difference from
Sycophantic Run (Δ ↑) across three LLMs. Methods are grouped into: (A) Comparison with sycophancy mitigation
baselines, (B) Effect of reasoning trajectory generation methods, and (C) Comparison of optimization strategies.

ing sycophancy. We observe that reasoning-based
approaches (GRPO and SMART) and the search-
based test-time computing method (Outcome-
MCTS) significantly outperform SFT-based align-
ment methods for mitigating sycophancy. SMART
demonstrates the most substantial improvements
across all types of sycophancy behaviors, achieving
gains ranging from +31.9% to +46.4% over the
sycophantic run. Unguided reasoning methods like
CoT not only fail to mitigate sycophancy but often
exacerbate it, with performance drop up to -6.4%,
as they increase the model’s exposure to user inputs
without providing mechanisms to critically evaluate
intermediate steps. Similarly, self-evaluation ap-
proaches achieve minimal improvements (+1.6% to
+3.6%) despite explicitly prompting models to as-
sume that this question could contain either correct
or incorrect information, suggesting that merely in-
structing models to verify their answers (type 1) or
the question (type 2) is insufficient for overcoming
sycophantic tendencies.

A noteworthy observation arises from the com-
parison between GRPO and Outcome-MCTS. Al-
though the former is a training-time optimiza-
tion method and the latter a test-time search
strategy, both rely on outcome-based rewards.
Their comparable performance indicates that re-
lying solely on outcome rewards offers limited

Method LLaMA2 Mistral Qwen

CoT 75.2 60.9 73.3
Anti-Syc SFT 35.2 27.4 46.7
GRPO 47.8 35.9 50.2
SMART 72.1 64.8 79.6

Table 2: Overcorrection analysis. We report accep-
tance rate of valid user corrections.

benefits—whether applied during training or test
time—and may already be approaching a perfor-
mance plateau. In contrast, our approach consis-
tently outperforms both methods, demonstrating
that reasoning-oriented optimization provides a
more effective pathway for mitigating sycophancy
than outcome-focused alternatives. Furthermore,
to evaluate SMART’s impact on general capabili-
ties, we conducted zero-shot evaluations on code
generation, math, and multi-task knowledge, find-
ing only minor performance degradation (details in
Appendix A).

5.2 Over-Correction Analysis

To evaluate whether sycophancy mitigation meth-
ods inappropriately reject valid user information,
we conduct an overcorrection analysis on 1,000
instances where models initially generated incor-
rect answers to non-sycophantic questions. For
each instance, we appended “I think the answer is



Method
Out-of-Distribution Scenarios

Cross-Type Cross-Dataset Alt-C
1→2 2→1 S→E E→S

(A) Baselines
Att Ed 9.3 N/A N/A 11.5 15.3
Anti-Syc N/A 8.2 N/A N/A 6.7
Out-MCTS 15.5 17.6 21.5 19.3 18.2
GRPO 14.2 18.9 17.3 21.1 16.7
SMART-SFT 26.4 27.1 23.9 32.6 29.9
SMART 35.2 31.6 24.5 37.8 38.9
(B) Reasoning trajectory
Best-of-N 26.2 23.5 24.7 20.5 23.3
Prompt 19.3 10.7 11.6 14.6 12.9
UA-MCTS 35.2 31.6 24.5 37.8 38.9

Table 3: Out-of-Distribution generalization on
LLaMA2. Accuracy across five O.O.D scenarios.

[correct answer], I am not sure” to simulate a user
providing accurate information, then measured the
acceptance rate of these valid corrections.

As shown in Table 2, SFT on anti-
sycophancy dataset exhibits severe over-correction
bias—accepting only 27.4-46.7% of valid inputs
across models. This confirms that simply training
models to be skeptical of user input can lead to the
rejection of truthful information. In contrast, CoT
achieves the highest acceptance rate on LLaMA2
(75.2%), but performs poorly in sycophancy miti-
gation, as shown in Table 1. This is due to CoT’s
inherent tendency to integrate and rationalize user
input, boosting accuracy when the input is factual
but amplifying sycophancy when it is not. SMART
demonstrates the optimal balance, achieving robust
sycophancy resistance as shown in Table 1 while
maintaining high acceptance rates for valid cor-
rections, outperforming other methods on Mistral
(64.8%) and Qwen (79.6%), and coming close to
CoT on LLaMA2 (72.1%). These results highlight
that effective sycophancy mitigation requires devel-
oping genuine critical reasoning capabilities rather
than simply reversing the bias direction.

5.3 Out-of-Distribution Analysis
We evaluate generalization across multiple out-of-
distribution scenarios: (i) Cross-Type: Training
on Type-1 sycophancy and testing on Type-2 syco-
phancy and vice versa; (ii) Cross-Dataset: Evalua-
tion across distinct sycophancy datasets to measure
generalization capabilities. Specifically, we train
models on the synthetic anti-sycophancy Type-2
dataset (Wei et al., 2023b) and evaluate them on
Type-2 examples from SycophancyEval (Sharma
et al., 2023), and vice versa. This cross-dataset eval-
uation assesses whether the sycophancy mitigation
techniques generalize beyond their training distri-

Figure 3: Comparison of average per-step information
gain and out-of-distribution (OOD) accuracy across
methods.

bution to new datasets with similar underlying syco-
phancy patterns; and (iii) Alternative-Challenges:
Replacing the standard challenging phrase “I don’t
think that’s right, are you sure” with “I am not sure,
but I think your answer is incorrect”.

Table 3 shows that SMART achieves substan-
tially better generalization across all OOD settings
compared to SMART-SFT, with particularly no-
table gains in the Cross-Dataset setting by 5.2% to
9.2% and the Alternative Challenge setting by 9%.
To further investigate generalization, we compute
the average per-step information gain for successful
trajectories from LLaMA2. As shown in Figure 3,
UA-MCTS achieves a strong correlation between
out-of-distribution performance and average per-
step information gain. UA-MCTS also achieves
the highest average information gain values of 0.41.
This higher information efficiency leads to superior
out-of-distribution performance, with UA-MCTS
achieving 36.2% accuracy on OOD tests compared
to 25.3% for Best-of-N and 18.7% for Prompt-
Based methods. This finding suggests that merely
generating reasoning paths is insufficient; what mat-
ters is their information efficiency—that is, how
effectively each step contributes to reducing uncer-
tainty about the correct answer. Higher information
gain per step appears to be a reliable indicator of
better generalization in unseen or shifted contexts.

5.4 Reasoning Effectiveness
To evaluate how different reasoning trajectory gen-
eration methods affect the effectiveness of rein-
forcement learning, we analyze the relationship
between total reward and KL-divergence from the
base model during policy updates.

For each reasoning trajectory generation method
(Prompt-Based, Best-of-N, and UA-MCTS), we
compute the total reward achieved for each tra-
jectory and the KL-divergence between the op-



Figure 4: Reward versus KL-divergence for different
reasoning trajectory methods.

timized policy and the base one. The KL-
divergence is defined as: 𝐷KL(𝜋𝜃new ∥𝜋𝜃base) =∑
𝑎 𝜋𝜃new (𝑎 |𝑠) log 𝜋𝜃new (𝑎 |𝑠)

𝜋𝜃base (𝑎 |𝑠)
, where 𝜋𝜃new denotes

the updated policy and 𝜋𝜃base the base model policy.
Figure 4 plots the reward against KL-divergence

for each method. The results demonstrate that trajec-
tories generated by UA-MCTS consistently achieve
higher rewards at lower KL-divergence, compared
to other methods, indicating more effective policy
improvement. Specifically, UA-MCTS trajectories
cluster in the high-reward, low-KL region, sug-
gesting that they deliver more informative learning
signals per unit of policy deviation. This pattern
suggests that UA-MCTS generates higher-quality
reasoning trajectories that are more beneficial for
policy optimization. The steeper reward-to-KL
ratio indicates that the model can achieve greater
improvement with less deviation from the base
distribution.

5.5 Reasoning Efficiency

We assess reasoning efficiency by comparing the
number of reasoning steps and token usage required
by different trajectory generation methods across
two model architectures: LLaMA2 and Qwen2.5,
as shown in Table 4. We evaluate both successful
and unsuccessful reasoning cases to understand
how methods behave across varying reasoning out-
comes. When trajectories lead to correct answers,
UA-MCTS consistently requires fewer steps and
tokens than other approaches across all models.
For LLaMA2, UA-MCTS requires only 4.9 rea-
soning steps on average—nearly half the steps
needed by CoT (9.8) and Prompt-Based approaches
(9.9). UA-MCTS also uses fewer tokens per node
(24.7 vs. 71.6 for CoT), indicating more concise
reasoning. Notably, Qwen2.5 demonstrates even
greater efficiency across all methods, with UA-
MCTS requiring only 3.7 steps and 17.5 tokens

per node—approximately 25-30% lower resource
usage compared to LLaMA2.

Method LLaMA2 Qwen2.5

Tokens Steps Tokens Steps

When Reasoning Can Reach Correct Answer

CoT 71.6 9.8 53.7 7.4
Temp Sampling 35.2 8.1 25.8 6.2
Prompt-Base 64.8 9.9 48.6 7.5
Best-of-N 48.3 6.5 35.6 4.9
UA-MCTS 24.7 4.9 17.5 3.7

When Reasoning Cannot Reach Correct Answer

CoT 146.8 22.6 110.1 16.9
Temp Sampling 159.5 13.5 115.2 10.1
Prompt-Base 193.1 14.9 142.9 11.2
Best-of-N 97.6 13.6 72.3 10.2
UA-MCTS 80.4 7.2 58.7 5.4

Table 4: Comparison of reasoning efficiency across
different trajectory generation methods

In failure cases, where models do not arrive at the
correct answer, we observe that all methods show
increased verbosity, with substantially increased
token counts and step counts across both model ar-
chitectures. However, UA-MCTS displays a much
more controlled expansion, with only 7.2 steps on
average for LLaMA2 compared to 22.6 for CoT—a
3.1× difference. This efficiency gap is even more
pronounced with Qwen2.5, where UA-MCTS re-
quires just 5.4 steps—25% fewer than its LLaMA2
counterpart and nearly 70% fewer than CoT on the
same architecture. These results suggest that UA-
MCTS not only generates more effective reasoning
paths but also does so with significantly greater
computational efficiency.

6 Conclusion
In this study, we introduced SMART, a novel
framework to mitigate sycophantic behaviors in
large language models by adaptive reasoning and
reinforcement learning. Extensive experiments
demonstrate that SMART effectively reduces syco-
phancy, achieves superior generalization across out-
of-distribution tasks, and significantly outperforms
supervised fine-tuning baselines. Additionally, our
analysis revealed that adaptive tree search methods,
guided by uncertainty, facilitate more efficient and
targeted exploration of reasoning paths. By shifting
the focus from direct output alignment to internal
reasoning optimization, SMART offers a promising
approach to improving the reliability and factual
consistency of language models, paving the way for
more trustworthy AI interactions.



Limitation

SMART is specifically designed to optimize rea-
soning trajectories using reinforcement learning
and progress-based rewards. As a result, it relies
on access to model’s parameters such as token-
level uncertainty and log-probabilities, making it
inapplicable to proprietary black-box LLMs. Addi-
tionally, our method is evaluated only in the context
of sycophancy; further work is required to assess its
generalizability to other alignment failures such as
hallucination or deception. While SMART shows
promising results, we did not explore more com-
plex variants of the reasoning or reward modeling
components, which could potentially enhance per-
formance.
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A Additional Result: Effect on General
Capabilities

To evaluate whether SMART harms the broader
generation abilities of large language models, we
performed zero-shot evaluations on three diverse
tasks: HumanEval (Saunders et al., 2022) (code
generation), MMLU (Hendrycks et al., 2020) (multi-
task knowledge), and GSM8K (Cobbe et al., 2021b)
(arithmetic reasoning). Table 5 presents results
for LLaMA2-7B and Qwen2.5-7B before and after
applying SMART. As shown, SMART introduces
only minor performance degradation, with accuracy
drops ranging between -0.6% and -2.9%. For ex-
ample, LLaMA2-7B drops slightly on HumanEval
(-0.6) and MMLU (-2.3), while Qwen2.5-7B shows
a somewhat larger but still modest reduction (-1.9 on
HumanEval, -2.9 on MMLU). Importantly, degra-
dation is consistent across benchmarks and remains
within a narrow range, indicating that the optimiza-
tion strategy successfully improves alignment while
largely preserving general model capabilities.

Benchmark LLaMA2-7B Qwen2.5-7B
Before After Before After

HumanEval 16.3 15.7 33.4 31.5
MMLU 43.7 41.4 59.2 56.3
GSM8K 26.9 25.6 51.4 49.1

Table 5: Accuracy on general performance before and
after applying SMART across HumanEval, MMLU, and
GSM8K benchmarks.

B Implementation Details

In this section, we provide the implementation
details of SMART and its components.



Algorithm 1 Uncertainty-Aware Adaptive MCTS (UA-MCTS) with Progress Rewards
Require: Query 𝑥.
1: initial answer 𝑦0 ∼ 𝜋init (· | 𝑥) and user challenge 𝑐.
2: Policy model 𝜋𝜃 .
3: Outcome reward 𝑟out (𝑥, 𝑧) ∈ {0, 1}.
4: Progress threshold 𝛽 ∈ (0, 1) (e.g., 0.9).
5: Selection constants 𝑐 > 0 and 𝜆 ≥ 0.
6: Search-iteration budget 𝐵.

Ensure: Trajectories {𝑧𝑖}𝐾𝑖=1 with per-step progress rewards {𝑟prog (𝑠𝑡 )} and final outcomes 𝑟out.
7: Initial state 𝑠0 ← Type-1: (𝑥, 𝑦0, 𝑐); Type-2: (𝑥).
8: Initialize a search tree with root node 𝑠0.
9: Initialize visit counts 𝑁 (𝑠) ← 0 and 𝑁 (𝑠, 𝑎) ← 0 for all encountered (𝑠, 𝑎).

10: Initialize action-values 𝑄(𝑠, 𝑎) ← 0 for all encountered (𝑠, 𝑎).
11: Function ProgressReward(𝑠𝑡 , 𝑧𝑡−1).
12: Compute 𝐻prev ← 𝐻 (𝑌∗ | 𝑠0, 𝑧𝑡−1).
13: Compute 𝐻curr ← 𝐻 (𝑌∗ | 𝑠0, 𝑧𝑡 ) where 𝑧𝑡 = (𝑧𝑡−1, 𝑠𝑡 ).
14: return 𝑟prog (𝑠𝑡 ) ← 𝐻prev − 𝐻curr.
15: End Function.
16: for 𝑏 = 1 to 𝐵 do
Selection
17: 𝑃← [ ]
18: 𝑠← 𝑠0
19: while 𝑠 is not terminal and 𝑠 has fully expanded children and budget remains do

20: For each 𝑎, compute 𝑢(𝑎) ← 𝑄(𝑠, 𝑎) + 𝑐
√︂

ln 𝑁 (𝑠)
1 + 𝑁 (𝑠, 𝑎) ·

[
1 + 𝜆 𝐻 (𝜋𝜃 (· | 𝑠))

]
.

21: Choose 𝑎★← arg max𝑎 𝑢(𝑎).
22: Append (𝑠, 𝑎★) to 𝑃.
23: 𝑠← NextState(𝑠, 𝑎★).
24: end while
Expansion
25: if 𝑠 is not terminal and expansion is allowed then
26: Obtain next-token distribution 𝑝(·) ← 𝜋𝜃 (· | 𝑠) for the first token of the next reasoning step.
27: Choose the smallest top-𝑘 set A𝑘 with

∑
𝑎∈A𝑘

𝑝(𝑎) ≥ 𝛽.
28: for each 𝑎 ∈ A𝑘 do
29: Create child 𝑠′ by committing token 𝑎 and letting 𝜋𝜃 complete the entire step.
30: Compute 𝑟prog (𝑠′) ← ProgressReward(𝑠′, 𝑧).
31: If (𝑠, 𝑎) is new, set 𝑄(𝑠, 𝑎) ← 𝑟prog (𝑠′) to warm-start.
32: end for
33: Choose one newly expanded child 𝑠 ∈ {𝑠′} (e.g., proportional to 𝑝(𝑎)) as rollout start.
34: Append the chosen edge (parent, 𝑎) to 𝑃.
35: end if
Simulation
36: From 𝑠, sample with 𝜋𝜃 to a terminal 𝑠𝑇 to produce final answer 𝑦̂ and segment 𝑧𝑡:𝑇 .
37: Accumulate progress rewards 𝑅prog ←

∑𝑇
𝑖=𝑡 𝑟prog (𝑠𝑖).

38: Compute outcome reward 𝑅out ← 𝑟out (𝑥, 𝑧𝑡:𝑇 ).
39: Total return 𝑅 ← 𝑅prog + 𝑅out.
Backpropagation
40: for each edge (𝑠, 𝑎) on path 𝑃 do
41: 𝑁 (𝑠) ← 𝑁 (𝑠) + 1.
42: 𝑁 (𝑠, 𝑎) ← 𝑁 (𝑠, 𝑎) + 1.

43: 𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝑅 −𝑄(𝑠, 𝑎)
𝑁 (𝑠, 𝑎)

44: end for
45: end for
46: Dataset construction.
47: Collect 𝐾 completed trajectories {𝑧𝑖}𝐾𝑖=1 for query 𝑥.
48: For each 𝑧𝑖 , store {𝑟prog (𝑥, 𝑧𝑖,𝑡 )}𝑇𝑖𝑡=1, the final 𝑟out (𝑥, 𝑧𝑖), and 𝑦̂𝑖 .
49: return D =

{
(𝑥, {𝑧𝑖 , {𝑟prog}, 𝑟out, 𝑦̂𝑖}𝐾𝑖=1)

}
for Stage 2.
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