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Abstract. Instance-based transfer learning methods utilize labeled ex-
amples from one domain to improve learning performance in another
domain via knowledge transfer. Boosting-based transfer learning algo-
rithms are a subset of such methods and have been applied successfully
within the transfer learning community. In this paper, we address some of
the weaknesses of such algorithms and extend the most popular transfer
boosting algorithm, TrAdaBoost. We incorporate a dynamic factor into
TrAdaBoost to make it meet its intended design of incorporating the ad-
vantages of both AdaBoost and the “Weighted Majority Algorithm”. We
theoretically and empirically analyze the effect of this important factor
on the boosting performance of TrAdaBoost and we apply it as a “cor-
rection factor” that significantly improves the classification performance.
Our experimental results on several real-world datasets demonstrate the
effectiveness of our framework in obtaining better classification results.

Keywords: Transfer learning, AdaBoost, TrAdaBoost, Weighted Ma-
jority Algorithm

1 Introduction

Transfer learning methods have recently gained a great deal of attention in
the machine learning community and are used to improve classification of one
dataset (referred to as target set) via training on a similar and possibly larger
auxiliary dataset (referred to as the source set). Such knowledge transfer can
be gained by integrating relevant source samples into the training model or by
mapping the source set training models to the target models. The knowledge as-
sembled can be transferred across domain tasks and domain distributions with
the assumption that they are mutually relevant, related, and similar. One of
the challenges of transfer learning is that it does not guarantee an improvement
in classification since an improper source domain can induce negative learning
and degradation in the classifier’s performance. Pan and Yang [13] presented a
comprehensive survey of transfer learning methods and discussed the relation-
ship between transfer learning and other related machine learning techniques.
Methods for transfer learning include an adaptation of Gaussian processes to
the transfer learning scheme via similarity estimation between source and tar-
get tasks [2]. A SVM framework was proposed by Wu and Dietterich [18] where
scarcity of target data is offset by abundant low-quality source data. Pan, Kwok,
and Yang [11] used learning a low-dimensional space to reduce the distribution
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difference between source and target domains by exploiting Borgwardt’s Maxi-
mum Mean Discrepancy Embedding (MMDE) method [1], which was originally
designed for dimensionality reduction. Pan et al. [12] proposed a more efficient
feature-extraction algorithm, known as Transfer Component Analysis (TCA), to
overcome the computationally expensive cost of MMDE. Several boosting-based
algorithms have been modified for transfer learning and will be more rigorously
analyzed in this paper. The rest of the paper is organized as follows: In Section
2, we discuss boosting-based transfer learning methods and highlight their main
weaknesses. In Section 3, we describe our algorithm and provide its theoretical
analysis. In Section 4, we provide an empirical analysis of our theorems. Our ex-
perimental results along with related discussion are given in Section 5. Section
6 concludes our work.

2 Boosting-based Transfer Learning

Consider a domain (D) comprised of feature space (X). We can specify a map-
ping function to map the feature space to the label space as “X → Y ” where
Y ∈ {−1, 1}. Let us denote the domain with auxiliary data as the source domain
set (Xsrc) and denote (Xtar) as the target domain set that needs to be mapped
to the label space (Ytar).

Table 1. Summary of the Notations

Notation Description

X feature space, X ∈ Rd

Y label space = {−1, 1}
d number of features
F mapping function X → Y
D domain
src source (auxiliary) instances
tar target instances
εt classifier error at boosting iteration “t”
w weight vector
N number of iterations
n number of source instances
m number of target instances
t index for boosting iteration
..

f t weak classifier at boosting iteration “t”
1I Indicator function

Boosting-based transfer learning methods apply ensemble methods to both source
and target instances with an update mechanism that incorporates only the source
instances that are useful for target instance classification. These methods per-
form this form of mapping by giving more weight to source instances that im-
prove target training and vice-versa.
TrAdaBoost [5] is the first and most popular transfer learning method that uses
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boosting as a best-fit inductive transfer learner. As outlined in Algorithm 13,
TrAdaBoost trains the base classifier on the weighted source and target set in
an iterative manner. After every boosting iteration, the weights of misclassi-
fied target instances are increased and the weights of correctly classified target
instances are decreased. This target update mechanism is based solely on the
training error calculated on the normalized weights of the target set and uses a
strategy adapted from the classical AdaBoost [8] algorithm. The Weighted Ma-
jority Algorithm (WMA) [10] is used to adjust the weights of the source set by
iteratively decreasing the weight of misclassified source instances by a constant
factor, set according to [10], and preserving the current weights of correctly clas-
sified source instances. The basic idea is that the source instances that are not
correctly classified on a consistent basis would converge to zero by N

2 and would
not be used in the final classifier’s output since that classifier only uses boosting
iterations N

2 → N .

Algorithm 1 TrAdaBoost

Require: Source and Target Instances : D = {(xsrci , ysrci) ∪ (xtari , ytari)},
Maximum number of iterations(N), Base Learning algorithm(

..

f )

Ensure: Weak classifiers for boosting iterations : N
2
→ N

Procedure:

1: for t = 1 to N do

2: Find the candidate weak learner for
..

f t : X → Y that minimizes error for D
3: Update source weights via WMA to decrease weights of misclassified instances
4: Update target weights via AdaBoost using target error rate

(
εttar

)
5: Normalize weights for D
6: end for

The main weaknesses of TrAdaBoost are highlighted in the list below:

1. Weight Mismatch: As outlined in [14], when the size of source instances is
much larger than that of target instances, many iterations might be required
for the total weight of the target instances to approach that of the source
instances. This problem can be alleviated if more initial weight is given to
target instances.

2. Disregarding First Half of Ensembles: Eaton and desJardins [6] list
the choice to discard the first half of the ensembles as one of TrAdaBoost’s
weaknesses since it is these classifiers that fit the majority of the data, with
later classifiers focusing on “harder” instances. Their experimental analyses
along with the analyses reported by Pardoe and Stone [14] and our own
investigation show mixed results. This is the outcome of a final classifier
that makes use of all ensembles and thus infers negative transfer introduced
from non-relevant source instances whose weights had yet to converge to
zero.

3 Detailed algorithm can be found in the referenced paper
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3. Introducing Imbalance: In [7], it was noted that TrAdaBoost sometimes
yields a final classifier that always predicts one label for all instances as it
substantially unbalances the weights between the different classes. Dai et
al. [5] re-sampled the data at each step to balance the classes.

4. Rapid Convergence of Source Weights: This seems to be the most seri-
ous problem with TrAdaBoost. Various researchers observed that even source
instances that are representative of the target concept tend to have their
weights reduced quickly and erratically. This quick convergence is examined
by Eaton and desJardins [6] as they observe that in TrAdaBoost’s reweighing
scheme, the difference between the weights of the source and target instances
only increases and that there is no mechanism in place to recover the weight
of source instances in later boosting iterations when they become beneficial.
This problem is exacerbated since TrAdaBoost, unlike AdaBoost, uses the
second half of ensembles when the weights of these source instances have
already decreased substantially from early iterations. These weights may be
so small that they become irrelevant and will no longer influence the output
of the combined boosting classifier. This rapid convergence also led Pardoe
and Stone [14] to the use of an adjusted error scheme based on experimental
approximation.

TrAdaBoost has been extended to many transfer learning problems including
regression transfer [14] and multi-source learning [19]. Some of the less popu-
lar methods use AdaBoost’s update mechanism for target and source instances.
TransferBoost [6] is one such method and is used for boosting when multiple
source tasks are available. It boosts all source weights for instances that belong
to tasks exhibiting positive transferability to the target task. TransferBoost cal-
culates an aggregate transfer term for every source task as the difference in error
between the target only task and the target plus each additional source task. Ad-
aBoost was also extended in [17] for concept drift, where a fixed cost is incorpo-
rated, via AdaCost [16], to the source weight update. This cost is pre-calculated
using probability estimates as a measure of relevance between source and target
distributions. Since such methods update the source weights via AdaBoost’s up-
date mechanism, they create a conflict within this update mechanism. A source
task that is unrelated to the target task will exhibit negative transferability and
its instances’ weights would be diminished by a fixed [17] or dynamic rate [6]
within AdaBoost’s update mechanism. This update mechanism will be simulta-
neously increasing these same weights since AdaBoost increases the weights of
misclassified instances. A source update strategy based on the WMA would be
more appropriate.

3 Proposed Algorithm

We will theoretically and empirically demonstrate the cause of early convergence
in TrAdaBoost and highlight the factors that cause it. We will incorporate an
adaptive “Correction Factor” in our proposed algorithm, Dynamic-TrAdaBoost,
to overcome some of the problems discussed in the previous section.
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Algorithm 2 Dynamic-TrAdaBoost

Require:
• Source domain instances Dsrc = {(xsrci , ysrci)}
•Target domain instances Dtar = {(xtari , ytari)}
•Maximum number of iterations : N

• Base learner :
..

f

Ensure: Target Classifier Output :
{ .

f : X → Y
}

.

f = sign

[∏N

t= 1
2

(
β

t

tar

−
..

ft
)
−
∏N

t= 1
2

(
β

t

tar

− 1
2

)]

Procedure:

1: Initialize the weight vector D = {Dsrc ∪Dtar}, where:
wsrc =

{
w1

src, . . . , w
n
src

}
wtar =

{
w1

tar, . . . , w
m
tar

}
w = {wsrc ∪ wtar}

2: Setβsrc = 1

1+

√
2 ln(n)

N

3: for t = 1 to N do
4: Normalize Weights: w = w

n∑
i

wsrci
+

m∑
j

wtarj

5: Find the candidate weak learner
..

f t : X → Y that minimizes error for D
weighted according to w

6: Calculate the error of
..

f t on Dtar:

εttar =
m∑

j=1

[wj
tar]1I

[
ytarj

6=
..

ft
j

]
m∑

i=1
[wi

tar]

7: Set βtar =
εttar

1− εttar
8: Ct = 2

(
1− εttar

)
9: wt+1

srci = Ctwt
srciβsrc

1I
[
ysrci

6=
..
ft
i

]
where i ∈ Dsrc

10: wt+1
tari

= wt
tariβ

t
1I
[
ytari

6=
..
ft
i

]
tar where i ∈ Dtar

11: end for

3.1 Algorithm Description

Algorithm 2, Dynamic-TrAdaBoost, uses TrAdaBoost’s concept of ensemble
learning as per training on the combined set of source and target instances. The
weak classifier is applied to the combined set where the features of the source
and target distributions are the same even though the distributions themselves
may differ. The weight update of the source instances uses the WMA update
mechanism on line 9. This update mechanism converges at a rate that is set by
the WMA rate (βsrc) and the cost term (Ct). The target instances’ weights are
updated on line 10 using AdaBoost’s update mechanism. The target instances’
weights are updated using only the target error rate (εttar), which is calculated on
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line 7. As per the transfer learning paradigm, the source distribution is relevant
and target instances can benefit from incorporating relevant source instances.

3.2 Theoretical Analysis of the Algorithm

We will refer to the cost (Ct) on line 8 as “Correction Factor” and prove that it
addresses the source instances’ rapid weight convergence, which will be termed
as “Weight Drift”.

Axiom 1: All source instances are correctly classified by the weak classifiers{
ysrci = f̈ ti ,∀i ∈ {1, . . . , n}

}
and thus according to the Weighted Majority Al-

gorithm:
n∑
i=1

wt+1
srci =

n∑
i=1

wtsrci = nwtsrc

This assumption will not statistically hold true for real datasets. It allows us
to ignore the stochastic difference in the classifiers’ error rates at individual
boosting iterations. This is done so we can calculate a “Correction Factor” value
for any boosting iterations. It will be later demonstrated in (Theorem 5) and
subsequent analysis that there is an inverse correlation between Axiom 1 and
the impact of the “Correction Factor”. The impact of the “Correction Factor”
approaches unity (no correction needed) as the source error (εtsrc) increases and
the assumption in Axiom 1 starts to break down.

Theorem 1: In TrAdaBoost, unlike the Weighted Majority Algorithm, source
weights are converging even when they are correctly classified.

Proof. To analyze the source convergence rate of TrAdaBoost, the weight of
the source instances’ update as per the Weighted Majority Algorithm is exam-
ined. In the WMA, the weights are updated as:

wt+1
src =



wt
src∑

{yi=fi}
wt

src+
∑

{yi 6=fi}
βsrcwt

src
ysrc =

..

f t

βsrcw
t
src∑

{yi=fi}
wt

src+
∑

{yi 6=fi}
βsrcwt

src
ysrc 6=

..

f t

With all source instances classified correctly, the source weights would not change
as:

wt+1
src =

wtsrc
n∑
i=1

wtsrci

= wtsrc

TrAdaBoost, on the other hand, updates the same source weights as:

wt+1
src =

wtsrc

n∑
i=1

wtsrci +
m∑
j=1

wttarj

(
1−εttar

εttar

)1I[ytarj
6=

..

ft
j

]
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This indicates that in TrAdaBoost, all source weights are converging by a factor
in direct correlation to the value of:

m∑
j=1

wttarj

(
1− εttar
εttar

)1I[ytarj
6=

..

ft
j

]

This weight convergence will be referenced as “Weight Drift” since it causes
weight entropy to drift from source to target instances. We will skip proving
that weights for target instances are increasing since we already proved that
source instance weights are decreasing and (nw

t
src +mwttar) = 1. �

Now that the cause of quick convergence of source instances was examined, the
factors that bound this convergence and make it appear stochastic will be ana-
lyzed. It is important to investigate these bounds as they have significant impact
when trying to understand the factors that control the rate of convergence. These
factors will reveal how different datasets and classifiers influence that rate.

Theorem 2: For n source instances, TrAdaBoost’s rate of convergence at iter-
ation t is bounded by:

1. Number of target training samples (m).

2. Target error rate at every iteration (εttar).

Proof. The fastest convergence rate is bounded by minimizing the weight at
each subsequent boosting iteration, min

m,n,εttar

(
wt+1
src

)
. This is minimized as:

min
m,n,εttar

(
wt+1
src

)
=

wtsrc

max
m,n,εttar

{
n∑
i=1

wtsrci +
m∑
j=1

wttarj

(
1−εttar

εttar

)1I[ytarj
6=

..

ft
j

]}

This equation shows that the rate of convergence can be maximized as:

1. εttar → 0.

2. m/n→∞.

It should be noted that the absolute value of m also indirectly bounds εttar as
1

m−1 ≤ ε
t
tar < 0.5. �

Theorem 2 illustrates that a fixed cost cannot control the convergence rate since
the cumulative effect of m, n, and εttar changes at every iteration. A new term has
to be calculated at every boosting iteration to compensate for “Weight Drift”.

Theorem 3: A correction factor of 2 (1− εttar) can be applied to the source
weights to prevent their “Weight Drift” and make the weights converge as out-
lined by the Weighted Majority Algorithm.
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Proof. Un-wrapping the TrAdaBoost source update mechanism yields:

wt+1
src =

wt
src

n∑
i=1

wt
srci

+
m∑

j=1
wt

tarj

(
1−εttar
εttar

)1I[ytarj
6=

..
ft
j

]

=
wt

src

nwt
src+A+B

Where A and B are defined as:

A = Sum of correctly classified target weights at boosting iteration“t + 1”

= mwttar (1− εttar)
(

1−εttar

εttar

)1I[ytarj
=

..

ft
j

]

= mwttar (1− εttar)
{
since 1I

[
ytarj =

..

f tj

]
= 0
}

B = Sum of misclassified target weights at boosting iteration“t + 1”

= mwttar (εttar)
(

1−εttar

εttar

)1I[ytarj
6=

..

ft
j

]

= mwttar (1− εttar)
{
since 1I

[
ytarj 6=

..

f tj

]
= 1
}

Substituting for A and B would simplify the source update of TrAdaBoost to:

wt+1
src =

wtsrc
nwtsrc + 2mwttar (1− εttar)

We will introduce and solve for a correction factor Ct to equate (wt+1
src = wtsrc)

as per the WMA.
wtsrc = wt+1

src

wtsrc =
Ctwt

src

Ctnwt
src+2mwt

tar(1−εttar)

Ct =
2mwt

tar(1−ε
t
tar)

(1−nwt
src)

=
2mwt

tar(1−ε
t
tar)

mwt
tar

= 2 (1− εttar) �

The correction factor equates the behavior of Dynamic-TrAdaBoost to the Weighted
Majority Algorithm. (Theorem 4) will examine the effect of this “Correction Fac-
tor” on the target instances’ weight updates.

Theorem 4: Applying a correction factor of 2 (1− εttar) to the source weights
would cause the target weights to converge as outlined by AdaBoost.

Proof. In AdaBoost, without any source instances (n = 0), target weights for
correctly classified instances would be updated as:

wt+1
tar =

wt
tar

m∑
j=1

wt
tarj

(
1−εttar
εttar

)1I[ytarj
6=

..
ft
j

]

=
wt

tar

A+B =
wt

tar

2mwt
tar(1−εttar)

=
wt

tar

2(1)(1−εttar)
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Applying the “Correction Factor” to the source instances’ weight update would
equate the target instances’ weight update mechanism of Dynamic-TrAdaBoost
to that of AdaBoost since:

wt+1
tar =

wt
tar

nwt
src+2mwt

tar(1−εttar)

=
wt

tar

Ctnwt
src+2mwt

tar(1−εttar)

=
wt

tar

2(1−εttar)nw
t
src+2mwt

tar(1−εttar)

=
wt

tar

2(1−εttar)(nw
t
src+mw

t
tar)

=
wt

tar

2(1−εttar)(1) �

Theorem 5: The assumptions in Axiom 1 can be approximated,

(
n∑
i=1

wt+1
srci ≈

n∑
i=1

wtsrci

)
,

regardless of εtsrc, by increasing the number of boosting iterations (N).

Proof. In the Weighted Majority Algorithm, the source weights at iteration t
would be updated as:

P = Sum of correctly classified source weights at boosting iteration“t + 1”

= nwtsrc (1− εtsrc)βsrc
1I
[
ysrci=

..

ft
i

]

= nwtsrc (1− εtsrc)
{
since 1I

[
ysrcj =

..

f tj

]
= 0
}

Q = Sum of misclassified source weights at boosting iteration“t + 1”

= nwtsrc (1− εtsrc)βsrc
1I
[
ysrci=

..

ft
i

]

= nwtsrc (εtsrc)βsrc
1I
[
ysrci 6=

..

ft
i

]

= nwtsrc (εtsrc)βsrc

{
since 1I

[
ysrcj 6=

..

f tj

]
= 1
}

The sum of source weights at boosting iteration “t+1” is (S = P +Q). It can
now be calculated as:

S = Sum of source weights at boosting iteration“t + 1”

= nwtsrc (1− εtsrc) + nwtsrc (εtsrc)βsrc

= nwttar

[
1−

(
εtsrc

1+
√

N
2 ln(n)

)] {
since βsrc = 1

1+

√
2 ln(n)

N

}

As the number of boosting iterations (N) increases, the assumptions in Axiom
1 can be approximated as:

lim
N→∞

{S} = lim
N→∞

nwttar
1−

 εtsrc

1 +
√

N
2 ln(n)

 = nwttar

�
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Theorem 5 proves that the assumption of Axiom 1 can be approximated by
increasing the number of boosting iterations N →∞. It will be later empirically
demonstrated that a reasonable value of N will suffice once the other variables
((n, εtsrc)) that contribute to the total weight are analyzed.
It was proven that a dynamic cost can be incorporated into TrAdaBoost to
correct for weights drifting from source to target instances. This factor would
ultimately separate the source instance updates which rely on the WMA and
βsrc, from the target instance updates which rely on AdaBoost and εttar.

4 Empirical Analysis

4.1 “Weight Drift” and “Correction Factor” (Theorems 1, 2, 3, 5)

A simulation is used to demonstrate the effect of “Weight Drift” on source and
target weights. In Figure 1(a), the number of instances was constant (n =
10000,m = 200) and the source error rate was set to zero as per Axiom 1.
According to the WMA, the weights should not change,

{
wt+1
src =wtsrc

}
, since

εtsrc = 0. The ratio of the weights of TrAdaBoost to that of the WMA was
plotted at different boosting iterations and with different target error rates
εttar ∈ {0.1, 0.2, 0.3, 0.4}. The simulation validates the following theorems:

1. In TrAdaBoost, source weights converge even when correctly classified.

2. Dynamic-TrAdaBoost matches the behavior of the WMA.

3. If correction is not applied, strong classifiers cause faster convergence than
weak ones as proven in (Theorem 2).

The figure also demonstrates that for N = 30 and a weak learner with εttar ≈ 0.1,
TrAdaBoost would not be able to benefit from all 10,000 source instances even
though they were never misclassified. The final classifier uses boosting
iterations N/2 → N , or 15 → 30, where the source instances’ weights would
have already converged to zero. Dynamic-TrAdaBoost conserves these instances’
weights in order to utilize them for classifying the output label.

4.2 Rate of Convergence (Theorem 2)

In Figure 1(b), the number of source instances was set (n = 1000), while
the number of target instances was varied m

n ∈ {1%, 2%, 5%} and plotted for
εttar ∈ {0.1, . . . , 0.5}. It can be observed that after a single boosting iteration,
the weights of correctly classified source instances start converging at a rate
bounded by m/n and the error rate εtar (which is also bounded by m).
It should be noted that for both plots in Figure 1, the weight lost by the source in-
stances is drifting to the target instances. The plots for the target weights would

look inversely proportional to the plots in Figure 1 since
n∑
i=1

wtsrci +
m∑
j=1

wttarj = 1.
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Fig. 1. The ratio of a correctly classified source weight for TrAdaBoost/WMA (a) For
20 iterations with different target error rates (b) After a single iteration with different
number of target instances and error rates.

4.3 Sum of Source Weights (Theorem 5, Axiom 1)

In Theorem 5, we proved that minimizing

(
εtsrc

1+
√

N
2 ln(n)

)
would relax the as-

sumption made in Axiom 1. The following steps can be applied to minimize this
term:

1. Minimize (εtsrc): The weak classifier can be strengthened. This is addi-
tionally required for boosting as will be explained in more details in our
experimental setup.

2. Minimize the number of source instances (n): Evidently, not desired.

3. Maximize the number of boosting iterations (N): This can be easily
controlled and increases linearly.

The first experiment analyzed the effects of N and n on the sum of source
weights. The source error rate (εtsrc) was set to 0.2, while the number of source
instances (n) varied from 100 to 10,100 and N ∈ {20, 40, 60, 80}. The plot in
Figure 2(a) demonstrates that the number of source instances (n) has little im-
pact on the total sum of source weights while N has more significance. This is
expected since the logarithmic value of n is already small and increases logarith-
mically with the increase in the number of source instances.
The second experiment considered the effects of N and εtsrc on the sum of
source weights. The number of source instances (n) was set to 1000 with εttar ∈
{0.05, . . . , 0.5} and N ∈ {20, 40, 60, 80}. It can be observed in Figure 2(b) that
the error rate does have a significant effect on decreasing the total weight for
t + 1. This effect can be only partially offset via increasing N and it would re-
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Fig. 2. (a) The ratio of a correctly classified source weight for “t + 1”/“t” (a) For
different number of source instances and number of boosting iterations (N) (b) For
different source error rate

(
εtsrc

)
and number of boosting iterations (N)

quire a large value of N for a reasonable adjustment. However, this problem is
negated by the fact that the correction factor, C = 2 (1− εttar), is inversely pro-
portional to εttar and its impact decreases as the target error rate increases. Since
the source data comprises the majority training data, we can generally expect
εtsrc ≤ εttar or εtsrc ≈ εttar. Here is a summary of this experiment’s findings:

1. The number of source instances (n) has a negligible impact on the sum of
source weights as it increases logarithmically.

2. The number of boosting iterations (N) has significant impact on the sum of
source weights and can be used to strengthen the assumption in Axiom 1.

3. High source error rates, εtsrc → 1, weakens the assumption in Axiom 1 but
this will be negated by the fact that the impact of the correction factor is
reduced at high error as since it reaches unity (No Correction) as:

lim
εttar→0.5

{C} = lim
εttar→0.5

{
2
(
1− εttar

)}
≈ lim
εtsrc→0.5

{
2
(
1− εtsrc

)}
= 1

5 Experimental Results on Real-World Datasets

5.1 Experiment Setup

We tested several popular transfer learning datasets and compared AdaBoost [8]
(using target instances), TrAdaBoost [5], TrAdaBoost with fixed costs of (1.1,
1.2, 1.3) and Dynamic-TrAdaBoost. Instances were balanced to have an equal
number of positive and negative labels. We ran 30 iterations of boosting.
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Base Learner
( ..
f
)
: We did not use decision stumps as weak learners since the

majority of training data belongs to the source and we need to guarantee an
error rate of less than 0.5 on the target to avoid early termination of boost-
ing (as mandated by AdaBoost). For example, applying decision stumps on data
with 95% source and 5% target is not guaranteed (and will certainly not work for
many boosting iterations) to get an error rate of less than 0.5 on target instances
that compromise a small subset of the training data. We used a strong classifier,
classification trees, and applied a top-down approach where we trimmed the tree
at the first node that achieved a target error rate that is less than 0.5.

Cross Validation: We did not use standard cross validation methods since
the target datasets were generally too large and did not need transfer learning
to get good classification rates. We generated target datasets by using a small
fraction for training and left the remainder for testing. A 2% ratio means that we
had two target instances, picked randomly, for each 100 source instances and we
used the remaining target instances for validation. We also used all the minor-
ity labels and randomly picked an equal number of instances from the majority
labels, as we tried to introduce variation in the datasets whenever possible. We
applied each experiment 10 times and reported the average accuracy to reduce
bias.

5.2 Real-World Datasets

20 Newsgroups4: The 20 Newsgroups dataset [9] is a text collection of ap-
proximately 20,000 newsgroup documents, partitioned across 20 different news-
groups. We generated 3 cross-domain learning tasks with a two-level hierarchy
so that each learning task would involve a top category classification problem
where the training and test data are drawn from different sub categories with
around 2300 source instances (Rec vs Talk, Rec vs Sci, Sci vs Talk) as outlined
in further detail in [4]. We used the threshold of Document Frequency with the
value of 188 to maintain around 500 attributes. We used a 0.5% target ratio in
our tabulated results and displayed results of up to 10% target ratio in our plots.

Abalone5: This dataset’s features include the seven physical measurements of
male, source, and female, target, abalone sea snails. The goal is to use these
physical measurements to determine the age of the abalone instead of endur-
ing the time consuming task of cutting the shell through the cone, staining it,
and counting the number of rings through a microscope. We used 160 source
instances with 11 target instances for training and 77 for testing.

Wine5: The task is to determine the quality of white wine samples by us-
ing red white samples as source set. The features are the wine’s 11 physical and
chemical characteristics and the output labels are given by experts’ grades of 5

4 http://people.csail.mit.edu/jrennie/20Newsgroups/
5 http://archive.ics.uci.edu/ml/
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and 6. We used 3655 source instances and 14 target instances for training and
1306 for testing.

5.3 Experimental Results

The comparison of classification accuracy is presented in Table 2. The results
show that Dynamic-TrAdaBoost significantly improved classification on real-
world datasets. We performed the following tests to show significance of our
results:

1. Tested the null hypothesis that transfer learning is not significantly better
than standard AdaBoost. We applied the Friedman Test with p < 0.01. Only
Dynamic-TrAdaBoost was able to reject the hypothesis.

2. We performed paired t-tests with α = 0.01 to test the null hypothesis
that classification performance was not improved over TrAdaBoost. For all
datasets, Dynamic-TrAdaBoost rejected the hypothesis while “Fixed-Cost
TrAdaBoost” did not.

3. Paired t-tests with α = 0.01 also rejected the null hypothesis that Dynamic-
TrAdaBoost did not improve classification over “Fixed-Cost TrAdaBoost”
for all datasets.

Table 2. Classification accuracy of AdaBoost (Target), TrAdaBoost, Fixed-
Cost (best result reported for TrAdaBoost with costs fixed at (1.1,1.2,1.3),
Dynamic (Dynamic-TrAdaBoost)

Dataset AdaBoost TrAdaBoost Fixed-Cost (1.1,1.2,1.3) Dynamic

Sci vs Talk 0.552 0.577 0.581 0.618

Rec vs Sci 0.546 0.572 0.588 0.631

Rec vs Talk 0.585 0.660 0.670 0.709

Wine Quality 0.586 0.604 0.605 0.638

Abalone Age 0.649 0.689 0.682 0.740

In Figure 3, the accuracy of the “20Newsgroups” dataset is plotted at different
target/source ratios. The plots demonstrate that incorporating a dynamic cost
into Dynamic-TrAdaBoost improved classification at different ratios as compared
to TrAdaBoost or a fixed correction cost.

5.4 Discussion and Extensions

The “Dynamic Factor” introduced in Dynamic-TrAdaBoost can be easily ex-
tended and modified to improve classification because it allows for strict control
of source weights’ convergence rate. In TrAdaBoost’s analysis, it was noted by
researchers [7] that it introduces imbalance to the classifier and sampling had to
be applied to remedy this problem [5]. SMOTEBoost [3] can be used to generate
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Fig. 3. Accuracy of TrAdaBoost, Best of Fixed-Cost-TrAdaBoost (1.1,1.2,1.3) and
Dynamic-TrAdaBoost on the “20 Newsgroup” dataset at different target/source ratios.
(a) REC vs TALK. (b) SCI vs TALK. (c) REC vs SCI.

synthetic data within boosting, while AdaCost [16] could integrate cost to the
target update scheme. The “Correction Factor” can be extended to integrate
cost into the source instances’ weight update. Balancing can be done manually
by means of limiting the maximum value of C for a given label. It can be done
dynamically as:

Ct
label

= 2
{

1− εttar(1− εttarlabel
)
costlabel

}
label ∈ {majority,minority}, cost ∈ {R}

This extension can dynamically speed up the weight convergence of the labels
that exhibit low error rate and would slow it for labels that exhibit high error
rates. The value cost ∈ {R} was also included to allow the user to set the em-
phasis on balancing the labels’ error rate. This cost value controls the steepness
of the convergence rate for a given label as mandated by this label’s error rate
(εttarlabel

).

6 Conclusion

We investigated boosting-based transfer learning methods and analyzed their
main weaknesses. We proposed an algorithm with an integrated dynamic cost
to resolve a major issue in the most popular boosting-based transfer algorithm,
TrAdaBoost. This issue causes source instances to converge before they can be
used for transfer learning. We theoretically and empirically demonstrated the
cause and effect of this rapid convergence and validated that the addition of our
dynamic cost improves classification of several popular transfer learning datasets.
In the future, we will explore the possibility of using multi-resolution boosted
models [15] in the context of transfer learning.
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