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Abstract. Boosting is a simple yet powerful modeling technique that
is used in many machine learning and data mining related applications.
In this paper, we propose a novel scale-space based boosting framework
which applies scale-space theory for choosing the optimal regressors dur-
ing the various iterations of the boosting algorithm. In other words, the
data is considered at different resolutions for each iteration in the boost-
ing algorithm. Our framework chooses the weak regressors for the boost-
ing algorithm that can best fit the current resolution and as the iterations
progress, the resolution of the data is increased. The amount of increase
in the resolution follows from the wavelet decomposition methods. For
regression modeling, we use logitboost update equations based on first
derivative of the loss function. We clearly manifest the advantages of us-
ing this scale-space based framework for regression problems and show
results on different real-world regression datasets.

1 Introduction

In statistical machine learning, boosting techniques have been proven to be ef-
fective for not only improving the classification/regression accuracies but also in
reducing the bias and variance of the estimated classifier. The most popular vari-
ant of boosting, namely the AdaBoost (Adaptive Boosting) in combination with
trees has been described as the “best off-the-shelf classifier in the world” [1]. In
simple terms, boosting algorithms build multiple models from a dataset, using
some learning algorithm that need not be a strong learner. Boosting algorithms
are generally viewed as functional gradient descent schemes and obtain the opti-
mal updates based on the global minimum of the error function [2]. In spite of its
great success, boosting algorithms still suffer from a few open-ended problems
such as the choice of the parameters for the weak regressor.

In this paper, we propose a novel boosting framework for regression prob-
lems using the concepts of scale-space theory. In the scale-space based approach
to boosting, the weak regressors are determined by analyzing the data over a
range of scales (or resolutions). Our algorithm provides the flexibility of choosing
the weak regressor dynamically compared to static weak regressor with certain
pre-specified parameters. For every iteration during the boosting process, the res-
olution is either maintained or doubled and a weak regressor is used for fitting
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the data. This method of manipulating different resolutions and modeling them
accurately looks similar to wavelet decomposition methods for multi-resolution
signal analysis. Throughout this paper, we used a Gaussian kernel as an approxi-
mate (or weak) regressor for every iteration during boosting. The data is modeled
at multiple resolutions and the final boosted (or additive) model will combine the
weak models obtained at various resolutions. In this way, we propose a hierarchi-
cal (or scale-space) approach for modeling the data using Gaussian kernels. This
approach is similar to decomposing a signal using wavelets. Basically, the low
frequency components in wavelet decomposition correspond to fitting a Gaussian
for the entire dataset and the high frequency components correspond to fitting
fewer data points. We formulate this scale-space based boosting regressor using
logitboost with exponential L2 norm loss function. Though our method can be
potentially applied with any base regressor, we chose to have Gaussian model
because of its nice theoretical scale-space properties [3].

The rest of this paper is organized as follows: Section 2 gives some relevant
background on various boosting techniques. It also gives the problem formula-
tion in detail and discusses the concepts necessary to comprehend our algorithm.
Section 3 describes our scale-space based boosting algorithm for regression prob-
lems. Section 4 gives the experimental results of our algorithm on different real-
world datasets. Finally, Section 5 concludes our discussion with future research
directions.

2 Background

Ensemble learning is one of the fundamental data mining operations that has
become popular in recent years. As opposed to other popular ensemble learning
techniques like bagging [4], boosting methods reduce the bias and the variance
simultaneously. A comprehensive study on boosting algorithms and their the-
oretical properties are given in [5]. One main advantage of boosting methods
is that the weak learner can be a black-box which can deliver only the result
in terms of accuracy and can potentially be any model [2]. The additive model
provides a reasonable flexibility in choosing the optimal weak learners for a de-
sired task. Various extensions for the original adaboost algorithm had also been
proposed in the literature [6–8]. A detailed study on L2 norm based classification
and regression is given in [9].

In this paper, we propose a novel scale-space based scheme for choosing op-
timal weak regressors during the iterations in boosting regression problems. The
scale-space concept allows for effective modeling of the dataset at a given resolu-
tion. The theory of scale-space for discrete signals was first discussed in [10]. Data
clustering is one of the most successful applications of the scale-space based tech-
niques [11]. Gaussian kernels have been extensively studied in this scale-space
framework [3]. The scale-space based weak regressors will allow systematic hier-
archical modeling of the regression function. They also provide more flexibility
and can avoid over-fitting problem by allowing the user to stop modeling after
a certain resolution.
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2.1 Problem Specification

Let us consider N i.i.d. training samples with d features D = (X ,Y) consisting
of samples (X ,Y) = (x1, y1), (x2, y2), .., (xN , yN ) where X ∈ RN×d and Y ∈
RN×1. Let us denote xi ∈ RN×d as ith data point in the d-dimensional feature
space. For the case of binary classification problems, we have yi ∈ {−1,+1}
and for regression problems, yi takes any arbitrary real value. In other words,
the univariate response Y is continuous for regression problems and discrete for
classification problems. The goal of a regression problem is to obtain the function
F (X ) that can approximate Y.

The basic idea of boosting is to repeatedly apply the weak learner to modified
versions of the data, thereby producing a sequence of weak regressors f (t)(x) for
t = 1, 2, .., T where T denotes predefined number of iterations. Each boosting
iteration performs the following three steps: (1) Computes response and weights
for every data point. (2) Fits a weak learner to the weighted training samples and
(3) Computes the error and updates the final model. In this way, the final model
obtained by boosting algorithm is a linear combination of several weak learning
models. It was also proved that boosting algorithms are stage-wise estimation
procedures for fitting an additive logistic regression model [5]. We derive the
scale-space boosting algorithm based on this spirit.

2.2 Boosting for Regression

In the case of regression problems, the penalty function is given by:

L(yi, F
(t)(xi)) = ‖yi − F (t)(xi)‖p (1)

where ‖ · ‖p indicates the Lp norm. We will consider p = 2 namely the Euclidean
norm in this paper.

Proposition 1 [5] The Adaboost algorithm fits an additive logistic regression
model by using quasi-Newton method using the analytical Hessian matrix updates
for minimizing the expected value of the loss function.

Let us consider the following exponential loss function

J(f) = exp(‖ y − F − f ‖2) (2)

Let us now define the residual r as the absolute difference between Y and F .
We chose to use first derivative updates (for faster convergence) by choosing the
weak regressor using the residual (f = r).

2.3 Scale-space Kernels

Let us consider the general regression problem which is a continuous mapping
p(x) : Rd → R. In scale-space theory, p(x) is embedded into a continuous family
P (x, σ). Our method starts with an approximation of the entire dataset with
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Gaussian kernel of σ = 0. As the resolution (or scale) increases, the sigma value
is reduced and eventually converges to zero. In our case, the highest frequency
(or resolution) corresponds to fitting every data point with a Gaussian kernel.
In simple terms, one can write the new kernel p(x, σ) as a convolution of p(x)
with a Gaussian kernel g(x, σ). As described earlier, choosing optimal σ value
during every iteration of boosting becomes a challenging task. In other words,
one cannot predetermine the reduction in the σ value. We choose to reduce it by
halves using the concepts of wavelet decomposition methods. In signal processing
applications, wavelet transformation constructs a family of hierarchically orga-
nized decompositions [12]. The frequencies in the wavelet domain correspond to
resolutions in our scale-space based algorithm. The original target function (Y)
is decomposed using weak regressors(f) and residuals(r). The final regression
model at any given resolution is obtained by a weighted linear combination of
the weak regressors obtained so far.

3 Scale-space based Framework

Algorithm 1 describes our scale-space based approach for boosting regression
problems. The initial regressor is set to the mean value of the target values.
The main program runs for a predefined number (T) of iterations. To make the
problem simpler, 1) we control the resolution of the kernel using the number of
data samples; 2) we fit the target values, Y, only using one feature, Xi, i ∈ [1, d],
at a time. Initially, the number of data points to be modeled is set to the total
number of samples in the dataset. Xi’s are sorted independently by column-wise
and the indices corresponding to each column are stored. This will facilitate the
Gaussian based regression modeling that will be performed later on. For every
iteration, the best kernel is fit to the data based on a single feature, Xi, i ∈ [1, d],
at a particular resolution. The procedure bestkernelfit performs this task for
a resolution corresponding to n data points. We used Gaussian weak regressors
as our kernels since the Gaussian kernels are one of the most popular choice
for scale-space kernel. The basic idea is to slide a Gaussian window across all
the sorted data points corresponding to each feature, Xi, i ∈ [1, d], at a given
resolution.

As the iterations progress, the number of data points considered for fitting
the weak regressor is retained or halved depending on the error of the model.
In other words, depending on the error at a given iteration, the resolution of
the data is maintained or increased for the next iteration. For every iteration,
the residual r is set to the absolute difference between the target value (Y) and
the final regressor (F ). By equating the first derivative of the loss function to
zero, we will set the residual as the data to be modeled during the next iteration
using another weak regressor. The main reason for retaining the resolution in
the next iteration is that sometimes there might be more than one significant
component at that particular resolution. One iteration can model only one of
these components. In order to model the other components, one has to perform
another iteration of obtaining the best Gaussian regressor at the same resolution.
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Increasing the resolution for the next iteration in this case might fail to model
the component accurately. Only after ensuring that there are no more significant
components at a given resolution, our algorithm will increase the resolution for
the next iteration. Hence, the best Gaussian regressor corresponding to n or
n/2 data points is obtained at every iteration and the model with the least
error added to the final regressor. The main aspect of our algorithm, which is
the scale-space, can be seen from the fact that the resolution of the data to be
modeled is either maintained or increased as the number of iterations increase.
Hence, the algorithm proposed here can be more generally termed as “scale-
space based Boosting” that can model any arbitrary function using the boosting
scheme with scale-space based weak regressors. Our algorithm obtains the weak
regressors and models the data in a more systematic (hierarchical) manner. Most
importantly, the change in resolution is monotonically non-decreasing, i.e. the
resolution either remains the same or increased.

Algorithm 1 Scale-space Boosting
Input: Data (D), No. of samples (N), No. of iterations (T ).
Output: Final Regressor (F )
Algorithm:
set n = N , F = ∅
for i = 1 : d do

[X̂ , idx(:, i)] =sort(X (:, i))
end for
for t = 1 : T do

r = |Y − F |
[f̂0, err0] = bestkernelfit(X̂ , r, N, d, n, idx)
[f̂1, err1] = bestkernelfit(X̂ , r, N, d, n/2, idx)
if err0 < err1 then

F = F + f̂0

else
F = F + f̂1

n = n/2
end if

end for
return F

4 Experimental Results

We performed experiments using two non-linear regression datasets from NIST
StRD (Statistics Reference Datasets [13]). We selected two datasets : (1) Gauss3
from the category of average level of difficulty containing 250 samples with 1
predictor variable (x) and 1 response variable (y). (2) Thurber from the category
of high level of difficulty containing 37 samples with 1 predictor variable (x) and 1
response variable (y). Figure 1 shows experimental results on these two datasets
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using the proposed scale-space boosting algorithm after 1, 5, 10 and 50 iterations
are shown. We also ran our experiments on the following more complicated real
world datasets:

– Diabetes [14] dataset contains 43 samples with 2 predictor variables.
– Ozone [1] dataset contains 330 samples with 8 predictor variables.
– Abalone [15] dataset contains 4177 samples with 8 predictor variables.

0 50 100 150 200 250
0

20

40

60

80

100

120

140

0 50 100 150 200 250
0

20

40

60

80

100

120

140

0 50 100 150 200 250
0

20

40

60

80

100

120

140

0 50 100 150 200 250
0

20

40

60

80

100

120

140

−4 −3 −2 −1 0 1 2 3
0

200

400

600

800

1000

1200

1400

1600

1800

2000

−4 −3 −2 −1 0 1 2 3
0

200

400

600

800

1000

1200

1400

1600

−4 −3 −2 −1 0 1 2 3
0

500

1000

1500

−4 −3 −2 −1 0 1 2 3
0

500

1000

1500

(a) Iteration 1 (b) Iteration 5 (c) Iteration 10 (d) Iteration 50

Fig. 1. Experimental results for Gauss3 (first row) and Thurber (second row) datasets
after 1,5,10 and 50 iterations.

4.1 Discussion

(a) Diabetes (b) Ozone

Fig. 2. Convergence of the regression error during the boosting procedure (training
phase) using scale-space kernel and other static and dynamic kernels of various widths.
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The scale-space boosting algorithm is very effective in reducing the error
quickly in the first few iterations. Significant reduction in the training error oc-
curs within first 10 boosting iterations. By using scale-space kernels, one can
achieve the optimal point (point where the over-fitting starts) within this first
few iterations. Usually this point is obtained after at least 40 boosting iterations
in the case of static kernels as shown in Fig. 2, which gives the convergence of
the regression error during the boosting iterations. Clearly the behavior of the
convergence is similar to static kernels of very less width but the error is much
lesser in the case of scale-space kernel. The main reason for using the scale-space
framework is for faster convergence of the results by dynamically choosing the
weak regressors during the boosting procedure. One can also see the comparison
between the convergence behaviour of a randomly chosen dynamic kernel ver-
sus the scale-space kernel. Choosing an optimal weak regressor by exploring all
possibilities might yield a better result, but it will be computationally inefficient
and infeasible for most of the practical problems. For such problems, scale-space
kernels will give the users with a great flexibility of adaptive kernel scheme at a
very low computational effort (also considering the fact of speedy convergence).
To the best of our knowledge, this is the first attempt to use the concepts of scale-
space theory and wavelet decomposition in the context of boosting algorithms
for any regression modeling.

We also demonstrate that the scale-space framework does not suffer from the
over-fitting problem. Fig. 3 shows the train and test errors during the boosting
iterations along with the standard deviation using 5-fold cross validation scheme
for the different datasets. For improving the computational efficiency, the sliding
window kernel in the bestkernelfit procedure is moved in steps of multiple data
points rather than individual data points. One other advantage of using the scale-
space based boosting approach is that it obtains smooth regression functions
(approximators) at different level of accuracies as shown in our results. This
cannot be achieved by using a decision tree or a boosting stump though they
might yield lower RMSE values for prediction. Hence, our comparisons were
specifically made with other smooth kernels that were used in the literature.

5 Conclusions and Future Research

Recently, boosting have received great attention from several researchers. Choos-
ing optimal weak regressors and setting their parameters during the boosting
iterations have been a challenging task. In this paper, we proposed a novel boost-
ing algorithm that uses scale-space theory to obtain the optimal weak regressor
at every iteration. We demonstrated our results for logitboost based regres-
sion problems on several real-world datasets. Similarities and differences of our
method compared to other popular models proposed in the literature are also
described. Extensions to Adaboost framework and use of scale-space kernels in
classification problems are yet to be investigated. Effects of different loss func-
tions in this scale-space boosting framework will also be studied in the future.
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(a) Diabetes (b) Ozone (c) Abalone

Fig. 3. Results of training and test error on different datasets using 5-fold cross vali-
dation. The solid lines indicate the mean of the error and the dashed lines indicate the
standard deviation in the errors.
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