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Abstract Clustering high-dimensional data and making sense out of its result is a chal-
lenging problem. In this paper, we present a weakly supervised nonnegative matrix
factorization (NMF) and its symmetric version that take into account various prior
information via regularization in clustering applications. Unlike many other existing
methods, the proposed weakly supervised NMF methods provide interpretable and
flexible outputs by directly incorporating various forms of prior information. Fur-
thermore, the proposed methods maintain a comparable computational complexity
to the standard NMF under an alternating nonnegativity-constrained least squares
framework. By using real-world data, we conduct quantitative analyses to compare
our methods against other semi-supervised clustering methods. We also present the
use cases where the proposed methods lead to semantically meaningful and accurate
clustering results by properly utilizing user-driven prior information.
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1 Overview

Clustering high-dimensional data is a complex, challenging problem in that the data
do not often have distinct clusters and that the resulting clusters are not always
semantically meaningful to end-users (Aggarwal and Reddy 2013). Among numerous
approaches proposed to improve this problem, semi-supervised approaches, which
impose additional information to the clustering processes, have been actively studied
and applied to many clustering methods such as k-means.

This paper presents semi-supervised approaches for nonnegative matrix factoriza-
tion (NMF) (Lee and Seung 1999; Kim and Park 2007) as well as its symmetric
version (Kuang et al. 2012). NMF has shown great performances for clustering in var-
ious domains including text mining and computer vision (Xu et al. 2003; Shahnaz et
al. 2006; Li et al. 2007; Kuang et al. 2012), but its semi-supervised approaches, which
could further improve the superior performance of NMF, have not received enough
attention.

We present flexible and effective semi-supervised NMF methods for clustering:
weakly supervised NMF (WS-NMF) and symmetric NMF (WS-SymNMF). By ‘weak
supervision,’ we intend to make the solution of our methods reflect the prior infor-
mation given by users. In this process, our methods allow users to flexibly control
how strongly to impose such prior information in the final solution. Representing this
idea using the regularization terms that penalize the differences between the resulting
output and the prior information, we present novel formulations and algorithms for
WS-NMF and WS-SymNMF.

Our methods can flexibly accommodate diverse forms of prior information, as fol-
lows:
Partial versus entire coverage of data. A typical semi-supervised learning setting
assumes that the cluster label information is available for partial data. On the other
hand, cluster labels may be available for the entire data, say, obtained from a dif-
ferent source, and one may want to weakly impose such information in the final
clustering result. A representative piece of work in this category is evolutionary clus-
tering (Chakrabarti et al. 2006; Chi et al. 2009), which tries to maintain the temporal
coherence of the clustering result for time-evolving data given the clustering result (of
the entire set of data items) at a previous time step. Evolutionary clustering usually
incorporates this idea in the form of regularization terms.
Hard- versus soft-clustering information. The prior information about a cluster label
of an individual data item can be either a single label, i.e., a hard-clustering label,
or a vector of cluster membership coefficients, i.e., a soft-clustering label (Xie and
Beni 1991). The latter provides richer information than the former by specifying how
strongly a data item is relevant to a particular cluster.
Data- versus cluster-level information. The prior information about a cluster may
directly represent the cluster characteristics instead of the cluster labels of individual
data items (Alqadah et al. 2012). For instance, one might want to obtain the cluster
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strongly/weakly related to particular features (e.g., a topic cluster closely related to
particular keywords of his/her choice in the case of document data).

To evaluate the proposed methods in various settings, we conduct both quantitative
and qualitative experiments. For the former, we compare our methods with several
existing methods in traditional semi-supervised learning applications. For the latter,
we show interesting use cases for real-world data sets, where WS-NMF and WS-
SymNMF lead to semantically meaningful and accurate clustering results by utilizing
user-driven prior knowledge.

The main contributions of our work are summarized as follows:

– Novel formulations of WS-NMF and WS-SymNMF that can flexibly incorporate
prior knowledge for user-driven clustering.

– Algorithm development for the proposed methods with a comparable computa-
tional complexity to that of the standard NMF algorithm.

– Quantitative experimental comparisons to demonstrate the superiority of the pro-
posed methods in semi-supervised clustering applications.

– Usage scenarios using real-world data sets in which the clustering result is
improved by incorporating users’ prior knowledge.

The rest of this paper is organized as follows. Section 2 discusses related work, and
Sect. 3 presents the formulations and the algorithms of WS-NMF and WS-SymNMF.
Section 4 presents experimental results, and Sect. 5 concludes the paper.

2 Related work

NMF has been an active research topic in machine learning and data mining. Owing to
its innate interpretability and good performance in practice, there have been significant
research efforts towards improving the performance of NMF in various applications.

Cai et al. (2011) have proposed a regularization based on the manifold approximated
by k-nearest neighbor graphs. Another graph-based regularization approach (Guan
et al. 2011) has tried to promote part-based bases as well as maximize discrimina-
tion between pre-given classes. The sparsity for solution robustness has been taken
into account in the form of hard constraints (Hoyer 2004) as well as regularization
terms (Kim and Park 2007).

In addition, semi-supervised clustering has been actively studied recently (Bilenko
et al. 2004; Basu et al. 2004, 2008). In the case of NMF, various forms of semi-
supervised formulations and algorithms that incorporate prior knowledge have been
proposed. Li et al. (2007) have presented an NMF-based formulation for consensus
clustering as well as semi-supervised clustering based on pairwise clustering con-
straints. Multi-label learning has also been solved via a constrained NMF formulation
by modeling the correlation or similarity between clusters (Liu et al. 2006).

More recently, other advanced semi-supervised NMF methods have been proposed.
Chen et al. (2008) have taken into account pairwise clustering constraints and have
incorporated such information by increasing or decreasing the weights of the cor-
responding components in the input similarity matrix. Chen et al. (2010) have also
proposed a method based on the metric learning for minimizing the distances between

123



J. Choo et al.

must-links while maximizing those between cannot-links, followed by the NMF clus-
tering on the space obtained from such a metric learning step. Wang et al. (2009) have
proposed another NMF-based formulation that incorporates the pairwise constraints in
the resulting distances of data items while preserving the local neighborhood relation-
ships. Liu et al. (2012) have solved an NMF problem so that the supervised points in
the same cluster can have identical representations in the NMF output. Lee et al. (2010)
have built a joint factorization formulation for both the original feature space and the
label space linked via a common factor matrix. Then, they perform k-means clustering
on this common factor matrix to obtain the final clustering result.

Considering the close connection between NMF and a popular topic modeling
method, latent Dirichlet allocation (LDA) (Blei et al. 2003), there have been many
studies leveraging the prior knowledge in the LDA formulation. The topic model-
ing based on Dirichlet-multinomial regression has shown a versatile capability in
handling additional features associated with document data along with their textual
information (Mimno and McCallum 2012). Similarly, Zeng et al. have proposed multi-
relational topic modeling under the Markov random field framework, which can take
into account multiple relationships between data items, e.g., both the externally given
and the inherent relationships (Zeng et al. 2009).

Unlike these existing methods, our method has significant advantages in terms of
interpretability and flexibility. As for interpretability, our method imposes the prior
knowledge in a way that directly affects the final clustering output of NMF. On the
contrary, many of the above-described methods indirectly apply the prior knowledge
to the formulation, for instance, by manipulating the input matrix (or the distance) or
by introducing another latent space. The potential drawback of these approaches is that
the prior knowledge goes through an algorithm’s internal processes, which may make it
difficult to exactly understand how the prior knowledge affects the final output. As will
be seen in Sect. 4, such an implicit, complex procedure prevents users from easily steer-
ing the clustering process and achieving the output that properly reflects their intent.

As for flexibility, many methods have been developed for handling specific situa-
tions built on particular assumptions about data. On the contrary, our method is capable
of handling much broader situations involving various forms of prior knowledge gen-
erated by users, as discussed in Sect. 1. To be specific, WS-NMF/WS-SymNMF can
solve traditional semi-supervised clustering problems where the partial pairwise con-
straints of data items are given. Rather than imposing a pairwise constraint form, which
can possibly have a large number of different constraints with respect to the number
of data items, our methods can also directly accommodate the hard-/soft-clustering
membership coefficient as prior information. Finally, our methods can incorporate the
information about the entire data.

3 Weakly supervised nonnegative matrix factorization

3.1 Preliminaries

Given a nonnegative matrix X ∈ R
m×n+ and an integer k � min (m, n), NMF finds a

lower-rank approximation as
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X ≈ W H T ,

where R+ denotes the set of nonnegative real numbers, and W ∈ R
m×k+ and H ∈

R
n×k+ are the two nonnegative factors. This lower-rank approximation problem can be

formulated in terms of the Frobenius norm, i.e.,

min
W, H≥0

∥
∥
∥X − W H T

∥
∥
∥

2

F
. (1)

When NMF is used in clustering applications, the k columns of W are viewed as
the representative vectors of k clusters (e.g., cluster centroids), and the n rows of H
represent the (soft-) clustering membership coefficients of n individual data items.
By setting the cluster index of each data item as the column index correspond-
ing to the maximum value in each row vector of H , we obtain the hard-clustering
results.

On the other hand, given an input matrix S ∈ R
n×n+ in the form of a similarity

matrix or an adjacency matrix of a graph, a symmetric NMF is formulated as

min
H≥0

∥
∥
∥S − H H T

∥
∥
∥

2

F
, (2)

where H ∈ R
n×k+ is the factor matrix. In clustering, H is interpreted as the cluster

membership coefficients similar to those in NMF,1 and it performs similar to, or in
some cases, better than well-known methods such as spectral clustering (Kuang et al.
2012, 2014).

3.2 Formulation

We now present the formulations of WS-NMF and symmetric NMF (WS-SymNMF)
in clustering applications. In the following formulations, we assume that we are given
particular prior knowledge about W and/or H shown in Eqs. (1) and (2). The prior
knowledge is manifested in the form of reference matrices for W and H . These refer-
ence matrices play a role of making W and H become similar to them.

3.2.1 Weakly-supervised NMF (WS-NMF)

Given nonnegative reference matrices Wr ∈ R
m×k+ for W and Hr ∈ R

n×k+ for H
and their nonnegative diagonal mask/weight matrices MW ∈ R

k×k+ and MH ∈ R
n×n+

along with an input data matrix X ∈ R
m×n+ and an integer k � min (m, n), WS-NMF

minimizes the following objective function with the additional regularization terms
that penalize the differences between Hr and H (up to a row-wise scaling) and those
between Wr and W ,

1 For the sake of notation simplicity, we do not distinguish H between Eqs. (1) and (2).
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f (W, H, DH ) = min
W, H, DH

∥
∥
∥X − W H T

∥
∥
∥

2

F

+‖(W − Wr ) MW ‖2
F + ‖MH (H − DH Hr )‖2

F (3)

by finding nonnegative factors W ∈ R
m×k+ and H ∈ R

n×k+ and a nonnegative diagonal
matrix DH ∈ R

n×n+ .

3.2.2 Weakly-supervised symmetric NMF (WS-SymNMF)

Given a nonnegative reference matrix Hr ∈ R
n×k+ for H and its nonnegative diagonal

mask/weight matrix MH ∈ R
n×n+ along with a symmetric nonnegative matrix S ∈

R
n×n+ and an integer k � min (m, n), WS-SymNMF solves

min
H, DH

∥
∥
∥S − H H T

∥
∥
∥

2

F
+ ‖MH (H − DH Hr )‖2

F (4)

for a nonnegative factor H ∈ R
n×k+ and a nonnegative diagonal matrix DH ∈ R

n×n+ .
The original symmetric NMF algorithm (Kuang et al. 2012) has utilized a projected-

Newton-based algorithm to solve the fourth-order optimization problem in Eq. (2).
However, after adding the regularization term as shown in Eq. (4), the computation
becomes much more expensive. To avoid this problem, we employ a recent improve-
ment of the symmetric NMF formulation (Kuang et al. 2014), which decouples the
product of a single factor H into that of the two different factors H1 and H2. In other
words, we turn Eq. (4) into

g(H1, H2, DH ) = min
H1, H2, DH

∥
∥
∥S − H1 H T

2

∥
∥
∥

2

F

+μ ‖H1 − H2‖2
F + 1

2

2
∑

i=1

‖MH (Hi − DH Hr )‖2
F , (5)

where we enforce H1 and H2 to be similar to each other via the second term.
This formulation significantly reduces the computational cost compared to solving
Eq. (4) by a Newton-type method since the highly efficient block coordinate decent
method developed for the standard NMF can be utilized (Kim and Park 2011; Kim
et al. 2014). The detailed algorithm based on this formulation will be described
in Sect. 3.3.2.

3.2.3 Interpretation

WS-NMF and WS-SymNMF enable users to impose various types of prior knowledge
in the regularization terms in Eqs. (3) and (5).

First, the rows of Hr specify the prior information about the soft-clustering mem-
bership of individual data items using the third term in Eqs. (3) and (5). Note that
our formulation contains a diagonal matrix DH as a variable to optimize since DH
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can handle potentially different scales between Hr and H . For example, the two
vectors, say, (0.1, 0.3, 0.6) and (0.2, 0.6, 1.2), are not different from each other as
the cluster membership coefficients, and DH allows us to ignore this scaling issue.
On the other hand, users may not want to specify all the n rows (or n data items)
in Hr , but instead, they may be interested in imposing their prior knowledge on a
partial set of data items. The diagonal matrix MH , placed on the left side of Hr

and H , can deal with this situation by masking or down-weighting those rows or
data items in Hr whose cluster membership coefficients are not to be regularized or
supervised.

Second, the columns of Wr specify the cluster centroid/basis representations, as
shown in the second term in Eq. (3). For example, in the case of document clustering,
the columns of Wr correspond to the topic clusters typically represented by their most
frequent keywords, and users may want to manipulate these keywords to properly
steer the semantic meaning of the topic. When users want to specify only a subset of
clusters in Wr instead of the entire k clusters, the diagonal matrix MW , placed on the
right side of Wr , plays the role of masking or down-weighting those columns or cluster
centroids in Wr that are to be ignored or considered as less important than the others.
Unlike Hr , the regularization term for Wr does not involve any additional diagonal
matrix analogous to DH , which could adjust the scale of W to that of Wr . This is
because it is sufficient to handle the scaling of only one of the two NMF factors, W
and H , due to the relationship

W H T = W DD−1 H T = (W D)
(

H D−1
)T
,

which implies that if W and H are the solution of a particular NMF problem, then so
are W D and H D−1 for any element-wise positive diagonal matrix D.

Finally, note that our formulations do not have typical regularization parameters
that assign different weights on each term because such weighting is carried out by
MW and MH . For instance, assuming equal weights on each column of Wr and on
each row of Hr , MW and MH can be simplified as

MW = α Ik and MH = β In, (6)

respectively, where Ik ∈ R
k×k and In ∈ R

n×n are identity matrices. Applying Eq. (6)
to Eqs. (3) and (5), we obtain

min
W, H, DH

∥
∥
∥X − W H T

∥
∥
∥

2

F
+ α ‖W − Wr‖2

F + β ‖H − DH Hr‖2
F and

min
H1, H2, DH

∥
∥
∥S − H1 H T

2

∥
∥
∥

2

F
+ μ ‖H1 − H2‖2

F + 1

2
β

2
∑

i=1

‖Hi − DH Hr‖2
F , (7)

which are controlled by scalar regularization parameters α and β.
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3.3 Algorithm

Our algorithms to solve WS-NMF and WS-SymNMF are based on the block coordinate
descent framework. Basically, we divide the entire variables into several subsets, e.g.,
W , H , and DH in Eq. (3), and H1, H2, and DH in Eq. (5), respectively. Then, we
iteratively solve for each subset of variables at a time while fixing the remaining
variables. Each sub-problem can then be formulated as a nonnegativity-constrained
least squares (NLS) problem except for DH , which has a closed form solution at
each iteration. In the following, we describe our algorithm details for WS-NMF and
WS-SymNMF.

3.3.1 Weakly-supervised NMF (WS-NMF)

To solve Eq. (3), we iteratively update W , H , and DH as follows. Assuming the initial
values of these variables are given, we update W by solving an NLS problem as

min
W≥0

∥
∥
∥
∥

[

H
MW

]

W T −
[

X T

MW W T
r

]∥
∥
∥
∥

2

F
. (8)

Next, we update each row of H , i.e., H(i, :), one at a time by solving another NLS
problem as

min
H≥0

∥
∥
∥
∥

[

W
MH (i) Ik

]

H (i, :)T −
[

X (:, i)
MH (i) DH (i)Hr (i, :)T

]∥
∥
∥
∥

2

F
, (9)

Finally, we update the i th diagonal component DH (i) of DH as

DH (i) =
⎧

⎨

⎩

Hr (i, :)·H(i, :)T

‖Hr (i, :)‖2
2

if MH (i) �= 0

0 otherwise
. (10)

3.3.2 Weakly-supervised symmetric NMF (WS-SymNMF)

To solve Eq. (5), we iteratively update H1, H2, and DH as follows. Assuming the
initial values of these variables are given, we update H1 by solving an NLS problem
as

min
H1≥0

∥
∥
∥
∥
∥
∥
∥

⎡

⎢
⎣

H2√
μIk

MH (i)√
2

Ik

⎤

⎥
⎦ H1 (i, :)T −

⎡

⎢
⎣

S (:, i)√
μH2 (i, :)T

MH (i)DH (i)√
2

Hr (i, :)T

⎤

⎥
⎦

∥
∥
∥
∥
∥
∥
∥

2

F

. (11)

Next, we update H2 in a similar manner by solving

min
H2≥0

∥
∥
∥
∥
∥
∥
∥

⎡

⎢
⎣

H1√
μIk

MH (i)√
2

Ik

⎤

⎥
⎦ H2 (i, :)T −

⎡

⎢
⎣

S (:, i)√
μH1 (i, :)T

MH (i)DH (i)√
2

Hr (i, :)T

⎤

⎥
⎦

∥
∥
∥
∥
∥
∥
∥

2

F

. (12)
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Finally, we update the i th diagonal component DH (i) of DH as

DH (i) =
⎧

⎨

⎩

Hr (i, :)·(H1(i, :)+H2(i, :))T

2‖Hr (i, :)‖2
2

if MH (i) �= 0

0 otherwise
. (13)

3.3.3 Discussions

Nonnegativity-constrained least squares. NLS problems such as Eqs. (8), (9), (11), and
(12) play crucial roles in the proposed algorithms. We adopt a recently proposed block
principal pivoting (BPP) algorithm for NLS problems (Kim and Park 2011), which is
known to be one of the fastest algorithms. The BPP algorithm is basically an active-set
type of constrained optimization method, which solves these least squares problems
under nonnegativity constraints. By aggressively changing a number of variables in
the active set at each iteration instead of changing each of them one at a time, it
achieves significant improvement in computational efficiency over classical active-set
algorithms for NLS.

One potential drawback that may slow down the algorithms of WS-NMF/WS-
SymNMF when using the BPP algorithm is that we cannot exploit the structural aspect
of having a common left-hand side matrix for multiple right-hand side matrices in the
least-squares formulation, as originally presented in Kim and Park (2011). That is, in
Eqs. (9), (11), and (12), the left-hand side matrices multiplied by H (i, :)T , H1 (i, :)T ,
and H2 (i, :)T , respectively, do not remain the same with respect to the value of i
while the matrix multiplied by W T in Eq. (8) does throughout all the rows of W . The
original BPP algorithm exploits this common left-hand side matrix by re-using the
matrix multiplications commonly used for solving the multiple right-hand side cases.
Nonetheless, the only difference in the leftt-hand side matrices in our formulation is
the different coefficients corresponding to an identity matrix Ik , e.g., MH (i) in Eq. (9)
and MH (i)√

2
in Eqs. (11) and (12). Therefore, by performing the simple additional step

of k additions to the diagonal entries of the common left-hand side matrices, we can
still take full advantage of the efficient BPP algorithm.
Convergence and stopping criteria. The block coordinate descent framework that we
adopt guarantees that our algorithms converge to a stationary point as long as the unique
global solution can be obtained for each sub-problem (Bertsekas 1999). Obviously,
all the sub-problems shown in Eqs. (8), (9), (11), and (12) are strongly convex since
all of them have second-order objective functions with linear constraints, and thus the
global solution for each sub-problem can be computed, which ensures the convergence
of our algorithm.

The stopping criterion for our algorithm is to check whether the projected gradient
values (Lin 2007) of Eqs. (3) and (5) become zero, indicating that the algorithm
reached a stationary point. Specifically, considering potential numerical errors, we
use the stopping criteria for WS-NMF and WS-SymNMF as

∥
∥∇ P f (W, H, DH )

∥
∥

F
∥
∥
∥∇ P f (W (1), H (1), D(1)

H )

∥
∥
∥

F

≤ ε and

∥
∥∇ P g(H1, H2, DH )

∥
∥

F
∥
∥
∥∇ P g(H (1)

1 , H (1)
2 , D(1)

H )

∥
∥
∥

F

≤ ε,
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respectively, where the denominators represent the Frobenius norm of the gradient
evaluated at the output obtained at the first iteration.
Initialization. Since the WS-NMF/WS-SymNMF formulations are non-convex, we
obtain only a local optimum, which may change depending on the initialization. In
WS-NMF/WS-SymNMF, for those columns of W and rows of H whose corresponding
reference information are given via Wr and Hr (along with corresponding non-zero
diagonal entries in MW and MH , respectively), we set their initial values to be the
same as those in Wr and Hr . For the rest, we set them as the values uniformly sampled
between zero and the maximum element in the already initialized sub-matrices in the
previous step. When MW and/or MH are zero matrices, we set each element of W
and H as the value uniformly sampled between zero and the maximum element of the
input matrix X or S.
Computational complexity. The complexities of WS-NMF and WS-SymNMF are com-
parable to those of NMF and SymNMF since all of them follow the similar block coor-
dinate descent framework. In the WS-NMF and WS-SymNMF algorithms, except for
DH in Eqs. (10) and (13), which are computed relatively fast, all the sub-problems have
more rows in both the left- and right-hand sides in Eqs. (8), (9), (11), and (12) com-
pared to the standard NMF algorithm. However, we convert the original least squares
problems (e.g., minx ‖Ax − b‖2) into their normal equations (e.g., AT Ax = AT b)
before solving these sub-problems. In both our proposed methods and the standard
NMF, those matrices corresponding to AT A have the same size of k × k . Thus, the
complexity of NLS problems, which comprise a majority of computational time taken
in WS-NMF/WS-SymNMF, remains unchanged compared to the standard NMF.
Parameter selection. WS-NMF/WS-SymNMF methods contain several parameters
to tune. First, as for the parameter μ in Eq. (5), we found that the final output is
insensitive to its value. In fact, the only difference between the sub-problems of H1
and H2, Eqs. (11) and (12), is H2 in the place of H1 (and vice versa) in the left-hand
and the right-hand sides. In this respect, as they get closer to each other, their sub-
problems naturally become more similar, resulting in almost identical solutions for
H1 and H2. Based on this observation, we set μ as the squared value of the maximum
entry of S, i.e.,

μ = max
i, j

(

Si j
)2

,

so that the scale of the second term is comparable to that of the first term in Eq. (5).
Second, as for the weighting matrices MW and MH in Eqs. (3) and (5), we can

fine-tune their non-zero diagonal values by analyzing how strongly to impose the
prior information in the final solution. In practice, if the cluster membership based
on H deviates too much from that based on Hr , we can increase the diagonal entries
of MH . When regularizing the basis vectors using Wr , we can use the same strat-
egy. Alternatively, we can measure the difference between W and Wr in terms of
their Frobenius norms or the ranking of their feature importance values, e.g., the
most representative terms in document clustering, as will be discussed in the next
section.
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Table 1 Summary of data sets used in the semi-supervised clustering experiments

Document data Facial image data

20News RCV1 NIPS Cora ExtYaleB AR

No. dimensions 13,656 10,284 17,583 20,110 3,584 4,800

No. data 943 1,210 420 573 2,414 2,600

No. clusters 20 40 9 20 38 68

4 Experiments

To evaluate the performance of our approaches, we conduct both quantitative and qual-
itative analyses. For the quantitative analysis, we perform standard semi-supervised
clustering experiments, and for the qualitative analysis, we present several user-driven
clustering scenarios using WS-NMF/WS-SymNMF.

4.1 Semi-supervised clustering

In this experiment, we conduct standard semi-supervised clustering experiments in
which we evaluate the improvement in clustering performance given partial label infor-
mation. We used four widely-used document data sets: 20 Newsgroups (20News),2

RCV1-v2 (RCV1),3 NIPS1-17 (NIPS),4 and Cora,5 and two facial image data sets:
extended Yale face database B (ExtYaleB)6 and AR face database (AR).7 These data
sets are summarized in Table 1. All of them are encoded as high-dimensional vec-
tors using a bag-of-words encoding scheme for document data and rasterized pixel
intensity values for facial image data. Their class labels indicate their associated topic
categories for document data and person ID’s for facial image data. All the data
sets are normalized so that each data vector has a unit L2-norm, which is a com-
mon practice when NMF is applied in clustering (Kim and Park 2008; Kuang et al.
2012).

For comparisons, we selected two semi-supervised clustering methods based on
NMF: the one proposed by Chen et al. (2008) (SS-NMF1) and the other proposed
by Lee et al. (2010) (SS-NMF2). In addition, we also included three well-known
semi-supervised clustering methods: metric pairwise constrained k-means (MPCK-
Means) (Bilenko et al. 2004), pairwise constrained k-means (PCK-Means) (Bilenko
et al. 2004), and semi-supervised spectral clustering (SS-Spectral) (Kulis et al. 2009)
as well as two other baseline clustering methods without any supervision: k-means

2 http://qwone.com/~jason/20Newsgroups/.
3 http://jmlr.csail.mit.edu/papers/volume5/lewis04a/lyrl2004_rcv1v2_README.htm .
4 http://ai.stanford.edu/~gal/data.html.
5 http://people.cs.umass.edu/~mccallum/data.html.
6 http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html.
7 http://www2.ece.ohio-state.edu/~aleix/ARdatabase.html.
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and NMF. For SS-NMF1, MPCK-Means, and PCK-Means, we used their publicly
available source codes.8,9

We randomly selected a particular number of data items along with their labels for
the semi-supervised portion. For WS-NMF in Eq. (3), we set MW = 0 (no supervision
on the basis vector matrix W ) and set MH and Hr as

MH (i) =
{

β if the i th data item is supervised

0 otherwise
(14)

and

Hr (i, j) =
{

1 if the label of the i th data item is j

0 otherwise
.

In Eq. (14), β controls how strongly the supervision is imposed. In order to avoid
too strong or weak supervision, we start from a sufficiently large value and then
exponentially decrease β until the clustering accuracy for the supervised data becomes
worse than 95 %. Although this approach does not satisfy all the given constraints, it
generally led us to reasonable clustering performance on unseen data in practice.

For SS-NMF1, we need to construct a similarity matrix. To this end, we used a
Gaussian kernel K (x1, x2) = exp

(−‖x2 − x1‖2 /2σ 2
)

with a bandwidth parameter
σ = 10−5, as suggested in Chen et al. (2008). For SS-NMF2, we implemented the
method with the same parameter setting as described in Lee et al. (2010).

MPCK-Means and PCK-Means require pairwise constraints, e.g., must-links or
cannot-links. To convert the labels of supervised data to their pairwise constraints, we
generated the pairwise constraints as follows.

1. For each cluster, assuming that ni supervised data items are given for cluster
i , we generate (ni − 1) must-link constraints between the (1, 2), (2, 3), . . .,
(ni − 1, ni )th data items, respectively.

2. Given k clusters in total, we generate a single cannot-link constraint between
a randomly selected pair of data items from clusters i and (i + 1), where i =
1, 2, . . . , (k − 1).

The set of pairwise constraints generated in this manner fully contains the label infor-
mation of the given semi-supervised portion of data.

To run SS-Spectral, we first constructed the k-nearest neighbor graph among data
items, G X , where the edge weights correspond to their similarity values. Specifically,
the edge weight in G X between xi and x j is defined (Zelnik-Manor and Perona 2004) as

G X
i j = exp

(

−
∥
∥xi − x j

∥
∥2

2

σiσ j

)

I
(

xi ∈ Nl
(

x j
)

or x j ∈ Nl (xi )
)

,

8 SS-NMF1: http://www-personal.umich.edu/~chenyanh/SEMI_NMF_CODE.zip.
9 MPCK-Means and PCK-Means: http://www.cs.utexas.edu/users/ml/risc/code/.
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where σi is the distance between xi and its lth nearest neighbor data item, e.g., l = 7
in our case (Zelnik-Manor and Perona 2004), and I (·) = 1 if the condition in the
parenthesis is true and zero otherwise, and Nl (xi ) (or Nl

(

x j
)

) is the set of the l near-
est neighbors of xi (or x j ). Next, every element in G X is divided by the maximum
value among all the entries in G X so that all the elements of G X lie between zero and
one. Afterwards, we set those entries of G X corresponding to must-links to one while
setting those corresponding to cannot-links to zero. A re-normalization on the graph is
then performed, followed by a typical spectral clustering process (Zelnik-Manor and
Perona 2004).
Results and discussions. Figures 1 and 2 show the clustering accuracy depending
on various supervised proportions of data. Between the two baseline methods, NMF
shows superior performances compared to k-means. Starting from the baseline per-
formances, all the six semi-supervised methods, WS-NMF, SS-NMF1, SS-NMF2,
MPCK-Means, PCK-Means, and SS-Spectral, generally perform better as the level of
supervision increases.

Compared to WS-NMF, SS-NMF1 and SS-NMF2 show relatively poor perfor-
mances in most cases. Given a low level of supervision, e.g., 10–20 %, SS-NMF1 and
SS-NMF2 often perform worse than unsupervised cases, as shown in Figs. 1a–c, g,
j and 2d–f. Even with a high level of supervision, their performances do not signifi-
cantly improve, either. For instance, the SS-NMF1 results are shown below the y = x
line in many cases, indicating that the given constraints are not even fully satisfied. As
briefly discussed in Sect. 2, the reason is because of the complicated procedure of joint
factorization and an additional k-means step on the NMF output, rather than directly
interpreting the NMF output as the clustering labels. On the other hand, SS-NMF2
satisfies most of the given constraints, showing the performance lines well over the
y = x line, but as the level of supervision increases, the performance difference with
respect to the y = x line becomes small, as shown in Figs. 1d–f, i, l and 2a–f. It indi-
cates that the main procedure of SS-NMF2, which imposes the clustering constraints
to the input similarity matrix, can significantly distort the original data relationships,
and thus it may not be able to reveal the inherent clusters in the entire data.

The two semi-supervised k-means methods, MPCK-Means and PCK-Means, show
similar performance patterns to WS-NMF, but their performances sometimes stay
at relatively low accuracy values even with a nontrivial level of supervision, e.g.,
0–20 % of the data for supervision in the case of document data shown in Fig. 1d–
f, k, l. In the case of image data shown in Fig. 2, the performance of PCK-Means
becomes much worse than MPCK-Means, which indicates that without a metric learn-
ing step, the underlying nonlinearity in the image data cannot be properly handled by
PCK-Means.

The semi-supervised spectral clustering method, SS-Spectral, shows relatively
good performances compared to the other semi-supervised methods. Specifically, SS-
Spectral works reasonably well with a low level of supervision, as shown in Figs. 1b,
c, e, k, l and 2d–f, but its performance does not increase as much as the increased level
of supervision, sometimes close to or even much worse than the y = x line, as shown
in Figs. 1d, f, i, l and 2a, b. It indicates that SS-Spectral may not be able to prop-
erly satisfy a large amount of given constraints. This could be because the constraints
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(a) 20News, 6 clusters
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(b) 20News, 12 clusters
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(c) 20News, 20 clusters
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(d) RCV1, 6 clusters
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(e) RCV1, 9 clusters
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(f) RCV1, 12 clusters
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(g) NIPS, 6 clusters
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(h) NIPS, 9 clusters
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(i) NIPS, 15 clusters
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(j) Cora, 3 clusters
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(k) Cora, 6 clusters
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(l) Cora, 9 clusters

Fig. 1 Comparison of clustering accuracy for four document data sets summarized in Table 1. All the
results are the averaged values of five randomly selected sets of clusters. A reference line, y = x , is drawn
to show the amount of accuracy improvement for each method using partial supervision. In addition, the
results of the two unsupervised methods, NMF and k-means, are also presented using dashed horizontal
lines

of SS-Spectral are imposed into the input graph matrix by maximizing/minimizing
the edge weights of must-links/cannot-links. However, such a supervision scheme at
the level of an input matrix instead of direct constraints on the ouptut cluster labels
does not necessarily guarantee that the clustering results generated by the subsequent
process of SS-Spectral satisfy the given constraints.
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(a) ExtYaleB, 12 clusters
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(b) ExtYaleB, 15 clusters
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(c) ExtYaleB, 20 clusters
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(d) AR, 9 clusters
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(e) AR, 15 clusters
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(f) AR, 20 clusters

Fig. 2 Comparison of clustering accuracy for two facial image data sets summarized in Table 1. All the
results are averaged values of five randomly selected sets of clusters. A reference line, y = x , is drawn
to show the amount of accuracy improvement for each method using partial supervision. In addition, the
results of the two unsupervised methods, NMF and k-means, are also presented using dashed horizontal
lines

On the other hand, WS-NMF does not show the above-mentioned undesirable
behaviors of the other semi-supervised methods. At the same time, its performance is
shown to be consistently better than the other semi-supervised methods over a wide
range of the supervision level. Another point to note is that the performance gaps
between WS-NMF and other methods are the most significant especially when the
level of supervision is relatively small up to around 20–30 %. Such an observation is
particularly important because in reality, only a small level of supervision is afford-
able, say, much less than 20–30 %, which makes WS-NMF a promising technique in
practical semi-supervised clustering applications.

4.2 User-driven clustering scenarios

In this section, we show three user-driven clustering scenarios using our methods.
The first scenario shows the case of weakly imposing the reference information easily
obtained about the data in WS-NMF so that the clustering results can reflect such
information. The second scenario presents the case where WS-SymNMF improves
the initial clustering results via partial supervision on user-selected data. The last
scenario demonstrates the case where the reference information about the basis vectors
is imposed in WS-NMF to steer the clustering results in a semantically meaningful
manner.
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To show our clustering scenarios, we selected two real-world data sets: Four Area
and IMDB (Gupta et al. 2012).10 Four Area data set is the collection of papers pub-
lished in machine learning (ML), databases (DB), data mining (DM), and information
retrieval (IR) ranging from years 2001 to 2008. The data set contains various types of
information about a paper such as a title, an author list, a venue, and a publication year.
Each of the four areas contains the papers published in five major conference venues
in each field. From this data set, we represent each author as a collection of papers
he/she wrote, which is then encoded as a bag-of-words expression using the paper title
field. In this manner, we obtain an author-by-term matrix whose element indicates the
frequency of the corresponding term appearing in the papers that the corresponding
author wrote. By selecting 703 authors who wrote the most number of papers, the final
matrix has the size of 703 × 2,361, encoded using 2,361 distinct terms.

IMDB data set is the movie collection released from years 2006 to 2009. It contains
the following information about movies: a title, an actor/actress list, and multi-labeled
genres. From four genres, animation, horror, music show, and action, we construct a
co-starring graph between actors/actresses in which the edge values are specified as
the number of movies that co-starred the two actors/actresses. From this co-starring
graph, we sample 166 actors/actresses with the most movies, and finally, the resulting
graph based on 2,092 movies is normalized in the form of D−1/2SD−1/2 where S is
the co-starring graph and D is its degree matrix.
Scenario 1: weak supervision via readily available information. In this experiment, we
show the usage scenario of WS-NMF to perform clustering on Four Area data set. As
reference information, we utilize venue information, which is readily available from
the data set. The intent of imposing such prior knowledge in the clustering process is
to avoid drastically different clustering results from the groupings based on the venue
information, but at the same time, we still want to identify some outlying authors who
publish in a certain area (or a venue) those papers having unusual topics. To this end,
we form a four-dimensional vector for each author by counting the number of papers
he/she wrote in each of the four areas solely based on the venue information. We set
this vector as the corresponding row vector in Hr . For example, if an author wrote three
papers in the conferences of the ML category and two papers in the DM category, the
corresponding row vector in Hr would be (2, 0, 0, 3), where the four dimensions are
in an order of DM, DB, ML, and IR categories. Note that the reference matrix Hr does
not need to be normalized because WS-NMF automatically adjusts it via DH in Eq. (3).

We assign equal weights in MH to all data items, i.e., MH = β In . We determine β

based on how many (hard-)cluster memberships are different between Hr and H . The
(hard-)cluster membership is obtained as the row index whose entry is the largest in
the corresponding row of Hr and H . In general, as β increases, H is enforced more
strongly to be close to Hr , resulting in fewer differences in the cluster membership.
In this experiment, we set β such that the number of cluster membership differences
between Hr and H is about 12 % of the total data items. On the other hand, when
running the standard NMF, about 43 % of data items are shown to change their cluster
memberships from the reference matrix Hr .

10 http://dais.cs.uiuc.edu/manish/ECOutlier/.
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(c) Cluster 3 (Ref: DM)
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(d) Cluster 4 (Ref: IR)

Fig. 3 Concentrations of four areas in each cluster generated by (1) reference information only, (2) WS-
NMF with reference information, and (3) the standard NMF for Four Area data set

Now we have three different clustering results obtained by (1) the reference data
(solely based on Hr ), (2) WS-NMF, and (3) the standard NMF. Figure 3 shows how
these three cases differ in terms of the concentrations of the four areas in each cluster.
To obtain the results shown in this figure, we first normalize each row of Hr so
that their row sum equals to one. Next, for all the data items in each cluster from
the three different clustering results, we sum up their rows. As a sanity check, one
can see that each cluster obtained by the reference data (blue color) always shows the
maximum value in its corresponding area since each vector contributing to a particular
cluster always has the maximum entry in the corresponding cluster. In contrast, in the
clustering results of the standard NMF (brown color), which does not take into account
the reference information, the concentration of the DB area in cluster 2 is relatively
small compared to the two other approaches while cluster 1 now shows the highest
concentration in the DB area among the four areas, which results in both clusters 1
and 2 representing the DB area.

Table 2 shows the most frequently used keywords in each cluster for the three
different clustering results. While Fig. 3 is about the cluster quality in terms of how
much each of the four areas is separated/mixed in the resulting clusters, Table 2 tells
us how clear or distinct the topical meaning of each cluster is. From these keyword
summaries of clusters, clusters 1 and 2 in the standard NMF turn out to overlap with
each other, as shown in the keywords such as ‘queri’, ‘index’, ‘effici’, and ‘databas’,
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whereas these two clusters in the reference data show clearly distinct topics with
no overlapping keywords except for generic terms such as ‘data’. This observation
indicates that clusters 1 and 2 generated by the standard NMF are not clearly separated
in terms of either their topics or area concentrations.

On the contrary, WS-NMF shows similar behaviors to the reference data in both
Table 2 and Fig. 3. Our analysis on individual authors reveals that their cluster mem-
bership differences shown in the WS-NMF result mostly make sense. For instance,

Table 2 Representative
keywords of each cluster for
Four Area data set

Ref. WS-NMF NMF

Cluster 1 (Ref: ML)

learn learn xml

model cluster queri

data data data

algorithm classif index

supervis analysi effici

reinforc text system

kernel reinforc xqueri

base algorithm relat

space model document

inform multi databas

Cluster 2 (Ref: DB)

queri queri data

xml xml queri

data data stream

databas databas databas

stream stream system

effici effici effici

index index process

system system index

join join manag

web process join

Cluster 3 (Ref: DM)

mine mine mine

data data data

cluster cluster pattern

pattern pattern cluster

frequent frequent frequent

associ associ associ

base base base

rule rule effici

effici effici rule

algorithm algorithm set
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Table 2 continued
Ref. WS-NMF NMF

Cluster 4 (Ref: IR)

retriev retriev web

web web learn

queri queri retriev

document document text

search inform cluster

inform search inform

base base base

text model data

model languag model

languag text document

one can see that cluster 4 (Ref: IR) has larger concentrations of the ML, DB, and DM
categories in WS-NMF compared to the reference data. We found that some of the
authors with their cluster membership changes to cluster 4 in the WS-NMF result are
D. Sivakumar and A. G. Hauptmann. That is, D. Sivakumar, who is labeled as cluster
2 (Ref: DB) by the reference data but as cluster 4 by WS-NMF, published the papers
of the IR topic in the DB venues, e.g., ‘comparing and aggregating rankings with ties’
in PODS and ‘self-similarity in the web’ in VLDB. A. G. Hauptmann, who is labeled
as cluster 1 (Ref: ML) by the reference data but as cluster 4 by WS-NMF, published
the papers of the IR topic in the ML venues, e.g., ‘learning to select good title words:
a new approach based on reverse information retrieval’ in ICML.

In addition, between cluster 1 (Ref: ML) and cluster 3 (Ref: DM), the cluster
membership changes due to WS-NMF include reasonable examples. For instance, C.
Ding, who is labeled as cluster 3 by the reference data but as cluster 1 by WS-NMF,
wrote the papers in the DM venues mostly about dimension reduction and clustering
techniques that heavily involve theoretical formulations and algorithms. C. Elkan, who
is labeled as cluster 1 by the reference data but as cluster 3 by WS-NMF, wrote the
papers closely related to applications in the ML venues, e.g., ‘Bayesian approaches to
failure prediction for disk drives’ in ICML.
Scenario 2: semi-supervision with exemplars. For this experiment, we use IMDB data
set and show a semi-supervised clustering scenario via partial label information. Since
the data set is a co-starring graph, we use WS-SymNMF with rank k = 4 and compare
its performance with SymNMF. Figure 4a shows the clustering results of SymNMF,
where the clusters are significantly unbalanced, e.g., 42, 1, 101, and 22. We now look
into cluster 3 because it is the largest cluster, which is usually difficult to understand
due to its size and noisiness. We then find that the members in cluster 3 are mostly
involved in music shows all over the world. To further divide it into meaningful groups,
we sample five actors/actresses appearing mostly in the music shows held in the U.S.
and another five in the other countries such as those in Europe. These samples include
G. Strait in the U.S., an American country singer, and A. Montero, a famous singer in
Spain. Now, we assign their corresponding row vectors of the reference matrix Hr in
Eq. (5) as (0, 1, 0, 0) for those actors/actresses in the U.S. and (0, 0, 1, 0) for those
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(a) SymNMF (b) WS-SymNMF

Fig. 4 Effects of semi-supervision in WS-SymNMF for IMDB data set

Table 3 Cluster quality measures for IMDB data set

Total cut Normalized cut Lower-rank approx. error

WS-SymNMF 644 0.339 108.959

SymNMF 204 1.039 83.113

Spectral clustering 313 0.5778 N/A

in the other countries. We set their corresponding diagonal entries in MH as one and
the rest of the actors/actresses as zero in order to impose the label information only
on the sample data.

The clustering results obtained by running WS-SymNMF with the above-described
reference information are shown in Fig. 4b. Aside from clusters 1 and 4, which remain
unchanged, one can see that WS-SymNMF divides cluster 2 in the SymNMF result
into two well-separated clusters. As we check individual actors/actresses in these two
clusters, those in the first cluster are shown to be mostly U.S. singers while those in the
second cluster are European singers. One can also see that Fig. 4b shows some edges
with large weight values between the two clusters, i.e., the bright-colored elements in
the (2, 3)th and (3, 2)th sub-matrices. These actors/actresses turn out to be the top
famous singers actively appearing in both the U.S. and European music shows, e.g.,
C. Aguilera, M. J. Blige, and 50 Cents in ‘Grammy Awards’, ‘MTV Europe Music
Awards’, and ‘Brit(ish) Awards’. We conjecture that these highly active singers across
the world are the main cause of these two clusters being merged into one in the original
SymNMF result.

Finally, we compare the cluster quality by using several widely-used measures,
as shown in Table 3. Given a graph S, the total and the normalized cuts are defined

as
∑n

i=1
∑n

j=1 S (i, j) I
(

ci �= c j
)

and
∑n

i=1

∑n
j=n S(i, j)I(ci �=c j)

∑n
j=1

∑n
l=1 S( j, l)I(c j =ci)

, respectively,

where ci (or c j ) is the cluster index of the i th (or j th) data item. These measures
represent the total sum of the inter-edge values between clusters, and thus a lower
value indicates a better clustering quality. Finally, the lower-rank approximation error
we used refers to the original SymNMF objective function value, i.e., ‖S − H H T ‖F .
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Fig. 5 Effects of semi-supervision on basis vectors in WS-NMF for Four Area data set. The (i , j)th
component of the confusion matrix indicates the number of authors that moved from cluster i to cluster j
due to semi-supervision

In addition to the results of SymNMF and WS-SymNMF, Table 3 includes the standard
spectral clustering results (Shi and Malik 2000) as baseline measures.

As shown in this table, WS-SymNMF degrades the original objective function value
of SymNMF because of an additional regularization term included in WS-SymNMF.
WS-SymNMF is also shown to be worse than SymNMF in terms of the total cut
because the total cut generally favors unbalanced clusters. However, in terms of the
normalized cut, which does not have this artifact and thus is widely used in graph
clustering, WS-SymNMF shows a better result than SymNMF. Furthermore, WS-
SymNMF performs even better than spectral clustering, which directly optimizes the
normalized cut measure. This indicates that by incorporating a small portion of prior
information (about 6 % in our case), WS-SymNMF can lead to both quantitatively and
semantically better clustering results.
Scenario 3: semi-supervision on basis vectors. In this scenario, we showcase semi-
supervision on basis vectors, which is one of the unique capabilities of WS-NMF
compared to other semi-supervised approaches. We focus on cluster 4 generated by
NMF for Four Area data set, and as shown in Table 2 and Fig. 3, cluster 4 is closely
related to the IR area/topic that mainly handles text documents or web data. Inspired by
the most frequent keywords generated by NMF, we decide to further explore this cluster
from the three perspectives: (1) classification, (2) clustering, and (3) search/retrieval,
which can be considered as general sub-topics in IR. In order to achieve this task,
we manipulate the matrix W ∈ R

2361×4+ obtained by the standard NMF in Eq. (1), as
follows. We first replicate the fourth column corresponding to the IR cluster twice,
concatenate them on the right side of W , and set it as an initial reference matrix Wr for
WS-NMF in Eq. (3). Next, for the first three columns corresponding to non-IR clusters
in Wr , we set the values corresponding to IR-specific terms such as ‘document’, ‘text’,
and ‘web’ as zero, which will discourage the documents containing these words to
be clustered to the first three clusters. For the last three columns that have all the
same vectors, we double the value corresponding to the term ‘classification’ in the
first column, ‘clustering’ in the second, and ‘retrieval’ in the third so that we can steer
these three topics as distinct clusters with our intended meanings.

Figure 5 summarizes the results obtained by running WS-NMF with an adjusted
rank k = 6 and the above-described reference matrix Wr . As shown in Fig. 5a, very
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few cluster membership changes are made among the first three non-IR clusters. On
the other hand, those authors in cluster 4 in NMF move almost evenly to clusters
4, 5, and 6 after performing WS-NMF. Figure 5b confirms that these three clusters
are indeed formed in our intended manner showing the terms, ‘classif’, ‘cluster’,
and ‘retriev’, as the most frequently used terms in each cluster, respectively. The
authors in these clusters include B. Zhang (cluster 4), who wrote the papers ‘improving
text classification using local latent semantic indexing’ and ‘web page classification
through summarization’, I. S. Dhillon (cluster 5), who wrote the papers ‘iterative
clustering of high-dimensional text data augmented by local search’ and ‘co-clustering
documents and words using bipartite spectral graph partitioning’, and W. B. Croft
(cluster 6), who wrote the papers ‘evaluating high accuracy retrieval techniques’ and
‘answer models for question answering passage retrieval’.

Overall, the three scenarios we presented in this section clearly show the exten-
sive applicability of WS-NMF/WS-SymNMF by incorporating various types of prior
knowledge in the clustering processes. In this manner, our methods allow us to obtain
semantically meaningful clusters as well as crucial insights about data.

5 Conclusions and future work

In this paper, we presented novel methods called weakly supervised NMF (WS-NMF)
and symmetric NMF (WS-SymNMF), which flexibly support user-driven clustering
processes by incorporating various types of prior knowledge. Our contributions include
(1) the formulation and the algorithm of WS-NMF/WS-SymNMF, (2) quantitative
comparisons against well-known existing methods, and (3) user-driven clustering sce-
narios using different kinds of prior knowledge.

As seen from several real-world usage scenarios, WS-NMF/WS-SymNMF has a
great potential to support user interactions during the process of improving clustering
results. We plan to develop visual analytics systems for large-scale interactive cluster-
ing by effectively leveraging the proposed methods in the human-in-the-loop analysis
applications (Choo et al. 2013).
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