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a b s t r a c t

The task of obtaining an optimal set of parameters to fit a mixture model has many
applications in science and engineering domains and is a computationally challenging
problem. A novel algorithm using a convolution based smoothing approach to construct
a hierarchy (or family) of smoothed log-likelihood surfaces is proposed. This approach
smooths the likelihood function and applies the EM algorithm to obtain a promising
solution on the smoothed surface. Using the most promising solutions as initial guesses,
the EM algorithm is applied again on the original likelihood. Though the results are
demonstrated using only two levels, the method can potentially be applied to any number
of levels in the hierarchy. A theoretical insight demonstrates that the smoothing approach
indeed reduces the overall gradient of a modified version of the likelihood surface.
This optimization procedure effectively eliminates extensive searching in non-promising
regions of the parameter space. Results on some benchmark datasets demonstrate
significant improvements of the proposed algorithm compared to other approaches.
Empirical results on the reduction in the number of local maxima and improvements in
the initialization procedures are provided.

Published by Elsevier B.V.

1. Introduction

Finite mixture modeling is a well-studied model-based clustering algorithm in the field of statistical pattern recognition
(McLachlan and Basford, 1988; Bhninga et al., 2007). One of the main problems in fitting mixture models to observed
data is parameter estimation, for which the Expectation-Maximization (EM) algorithm provides a reasonable set of
estimates (Demspter et al., 1977; Redner andWalker, 1984). Traditional optimization approaches such as steepest descent,
conjugate gradient, or Newton–Raphsonmethods are too complicated for use in solving this problem (Xu and Jordan, 1996).
The EM algorithm has become a popular method since it takes advantage of problem specific properties.
Given the number of components and an initial set of parameters, the EM algorithm computes the optimal estimates of

the parameters that locally maximize the likelihood of the data. However, the main problem with the EM algorithm is that
it is a ‘greedy’ method which is very sensitive to the given initial set of parameter values (Biernacki et al., 2003). The main
reasons that motivated the new algorithm presented in this paper are as follows (see also Reddy et al. (2008)):

• The EM algorithm converges to a local maximum of the likelihood function very quickly.
• There are often several other promising local optimal solutions in the vicinity of the solutions obtained from methods
that provide good initial guesses of the solution.
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Fig. 1. Data generated by three Gaussian components. The problem of learning Gaussian mixture models is to obtain the parameters of these Gaussian
components and the membership probabilities of each datapoint.

• Model selection criteria usually assumes that the global optimal solution of the log-likelihood function can be obtained.
However, achieving this is computationally intractable.
• Some regions in the search space do not contain any promising solutions. The promising and non-promising regions
co-exist, and it often becomes challenging to avoid wasting computational resources to search in non-promising regions.

Of all the concerns highlighted above, the fact that local maxima are not uniformly distributed makes it important for us
to develop algorithms that help in avoiding search in non-promising regions (Reddy and Rajaratnam, 2008). Indeed, more
focus needs to be given to searching promising subspaces and obtaining promising initial estimates. One way to achieve
this is by smoothing the surface, obtaining promising regions and then gradually tracing back these solutions onto the
original surface. In this work, we develop a hierarchical smoothing algorithm for the mixture modeling problem using a
convolution-based approach. We consider the problem of learning parameters of Gaussian Mixture Models (GMM). Fig. 1
shows data generated by three Gaussian components with different means and variances. Note that every data point has
a probabilistic (or soft) membership that gives the probability with which it belongs to each of the components. The data
points that belong to component 1will have high probability ofmembership for component 1. On the other hand, data points
belonging to components 2 and 3 are not well separated. The problem of learning Gaussian mixture models involves not
only estimating the parameters of these components but also finding the probabilities with which each data point belongs
to these components.
In this paper, we demonstrate the use of ‘‘hierarchical smoothing ’’ in the context of parameter estimation. Ideally,

smoothing procedures should satisfy the following properties:

• Reduce the overall magnitude of the gradient of the surface.
• Reduce the number of local maxima (or minima).
• Smooth different regions of the search space adaptively.
• Avoid over smoothing which might make the surface too flat.

The rest of this paper is organized as follows: Section 2 gives some relevant background about variousmethods proposed
in the literature for solving the parameter estimation problem. Section 3 discusses the basic concepts ofmaximum likelihood
estimation (or MLE) and the Expectation Maximization (EM) algorithm. Section 4 describes different smoothing strategies
and gives the corresponding smooth-EM updates. Section 5 discusses the proposed smoothing framework and describes
some of the implementation details. Section 6 shows experimental results of our algorithm on both synthetic and real
datasets. Finally, Section 7 concludes our discussion with future research directions.

2. Relevant background

EM based methods have been successfully applied to solve a wide range of problems that arise in a wide range of
fields such as pattern recognition (Baum et al., 1970; Bilmes, 1998), clustering (Banfield and Raftery, 1993), information
retrieval (Nigam et al., 2000), computer vision (Carson et al., 2002), data mining (Shumway and Stoffer, 1982) etc. Many EM
variants have been extensively used for learning mixture models and several researchers have proposed new techniques
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that provide good initialization values. Generic techniques like deterministic annealing (Rose, 1998; Ueda and Nakano,
1998), and genetic algorithms (Pernkopf and Bouchaffra, 2005; Martnez and Vitri, 2000) have been applied to obtain a
good set of parameters. Though, these techniques have asymptotic guarantees, they are time consuming and hence cannot
be used in most practical applications. Some problem specific algorithms like split and merge EM (Ueda et al., 2000),
component-wise EM (Figueiredo and Jain, 2002), greedy learning (Verbeek et al., 2003), incremental version for sparse
representations (Neal and Hinton, 1998), and parameter space grid (Li, 1999) have also been proposed in the literature.
In spite of the high computational cost associated with some of these methods, very little effort has been taken to explore
promising subspaces within the larger parameter space. Most of these algorithms eventually apply the EM algorithm to
move to a locally maximal set of parameters on the likelihood surface. Simpler practical approaches like running EM from
several random initializations, and then choosing the final estimate as the local maximum that yields the highest value of
the likelihood have also been successful to a certain extent (Hastie and Tibshirani, 1996; Roberts et al., 1998). Though some
of these methods apply other additional mechanisms (like perturbations (Elidan et al., 2002)) to escape out of local optimal
solutions, more systematic methods are yet to be investigated for searching the subspace. Recently, a dynamical system
based formulation has shown much promise (Reddy et al., 2008).
Different smoothing strategies have been successfully used in various applications for solving a diverse set of problems.

Smoothing techniques are used to reduce irregularities or random fluctuations in time series data (Shumway and Stoffer,
1982; Beran and Mazzola, 1999). In the field of natural language processing, smoothing techniques are also used for
adjusting maximum likelihood estimates to produce more accurate probabilities for language models (Chen and Goodman,
1996). Convolution based smoothing approaches are predominantly used in the field of digital image processing for image
enhancement by noise removal (Blake and Zisserman, 1987; Chu et al., 1998). Other variants of smoothing techniques
include continuation methods (Richter and DeCarlo, 1983; Dunlavy et al., 2005) which are used successfully in various
applications. Different multi-level procedures other than smoothing and its variants are clearly illustrated in Teng (1999).
From the optimization perspective, smoothing procedures help in reducing the ruggedness of the surface and helps

local methods in preventing the ‘‘local maxima problem’’. They have been used for the structure prediction of molecular
clusters (Shao et al., 2000). The smoothing procedure proposed in this paper obtains a hierarchy of smooth surfaces with
fewer and fewer local maxima. Promising initial points can be obtained by ‘‘tracing back’’ promising solutions at each level.
This yields an initialization procedure that has the capability of avoiding searching in non-promising regions of the solution
space. Our approach assumes that the number of components in our mixture model is known beforehand. In summary, the
main contributions of this paper are:

• Develop a hierarchical parameter smoothing algorithm using convolution based techniques.
• Theoretically show that the expected value of the gradient is reduced for a modified (smoothed) version of the log-
likelihood surface.
• Show that the ‘‘density based smoothing’’ is equivalent to ‘‘component-wise parameter smoothing’’ in the case of
Gaussian Mixture Models.
• Demonstrate the reduction in the number of unique local maxima empirically.
• Show that smoothing helps in obtaining a promising set of initial parameter values.

Fig. 2 compares the conventional approach with the smoothing approach. In the traditional approach, a global
optimization method in combination with the EM algorithm is used to find the optimal set of parameters on the log-
likelihood surface. In the smoothing approach, a simplified version of the global method is applied in combination with the
EM algorithm to obtain an optimal set of parameters on the smooth surface which are again used in combination with the
EM algorithm to obtain the optimal parameter set on the original log-likelihood surface. Since the smoothed log-likelihood
surface is easy to traverse (has fewer local maxima), one can gain significant computational benefits by applying a simplified
global method, compared to that of the conventional global method on the original log-likelihood surface, the latter being
often computationally expensive.

3. Preliminaries

Wewill now introduce some necessary preliminaries onmixture models, EM algorithm and convolution kernels. Table 1
gives the notations used in this paper.

3.1. Mixture models

Let us assume that there are k Gaussian components in the mixture model. The form of the probability density function
is as follows:

p(x|Θ) =
k∑
i=1

αip(x|θi), (1)
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(a) Conventional method.

(b) Smoothing approach.

Fig. 2. Block diagram of the traditional approach and the smoothing approach.

Table 1
Description of the notations used.

Notation Description

d Number of features
n Number of data points
k Number of components
s Total number of parameters
Θ Parameter set
θi Parameters of ith component
αi Mixing weights for ith component
X Observed data
Z Missing data
Y Complete data
t Timestep for the estimates

where x = [x1, x2, . . . , xd]T is the feature vector of d dimensions. The αi’s represent the mixing weights. The symbol Θ
represents the parameter set (α1, α2, . . . αk, θ1, θ2, . . . , θk) and p is a d-variate Gaussian density parameterized by θi (i.e.µi
andΣi):

p(x|θi) =
|Σi|

−
1
2

(2π)d/2
e−

1
2 (x−µi)

TΣ−1(x−µi). (2)

Also, it should be noticed that being probabilities αi must satisfy

0 ≤ αi ≤ 1, ∀i = 1, . . . , k, and
k∑
i=1

αi = 1. (3)

Given a set of n i.i.d samplesX = {x(1), x(2), . . . , x(n)}, the log-likelihood corresponding to a mixture is

log p(X|Θ) = log
n∏
j=1

p(x(j)|Θ) =
n∑
j=1

log
k∑
i=1

αi p(x(j)|θi). (4)

The goal of learning mixture models is to obtain estimates of the parameters denoted by Θ̂ from a set of n data points
that are samples from a distribution with density given by (1). TheMaximum Likelihood Estimate (MLE) is given by:

Θ̂MLE = argmax
Θ
{log p(X|Θ)}. (5)
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where Θ̃ indicates the entire parameter space. Since, this MLE cannot be found analytically for mixture models, one has
to rely on iterative procedures that can find the global maximum of log p(X|Θ). The EM algorithm described in the next
section has been used successfully to find the local maximum of such a function (McLachlan and Krishnan, 1997).

3.2. Expectation maximization

The EM algorithm assumes X to be the observed data. The missing part, termed as hidden data, is a set of n labels
Z = {z(1), z(2), . . . , z(n)} associated with the n samples, indicating which component produced each sample (McLachlan
and Krishnan, 1997). Each label z(j) = [z(j)1 , z

(j)
2 , . . . , z

(j)
k ] is a binary vector where z

(j)
i = 1 and z

(j)
m = 0∀m 6= i, means the

sample x(j)was produced by the ith component. Now, the complete log-likelihood i.e. the one fromwhichwewould estimate
Θ if the complete data Y = {X,Z} is known is given as,

log p(X,Z|Θ) =
n∑
j=1

log
k∏
i=1

[αi p(x(j)|θi)]z
(j)
i ,

log p(Y|Θ) =
n∑
j=1

k∑
i=1

z(j)i log [αi p(x
(j)
|θi)]. (6)

The EM algorithm produces a sequence of estimates {Θ̂(t), t = 0, 1, 2, . . .} by alternately applying the following two
steps until convergence:

• E-Step: Compute the conditional expectation of the hidden data, given X and the current estimate Θ̂(t). Since
log p(X,Z|Θ) is linear with respect to the missing data Z, we simply have to compute the conditional expectation
W ≡ E[Z|X, Θ̂(t)], and plug it into log p(X,Z|Θ). This gives the Q -function as follows:

Q (Θ|Θ̂(t)) ≡ EZ [log p(X,Z)|X, Θ̂(t)]. (7)

Since Z is a binary vector, its conditional expectation is given by:

w
(j)
i ≡ E [z

(j)
i |X, Θ̂(t)] = Pr [z

(j)
i = 1|x

(j), Θ̂(t)] =
α̂i(t)p(x(j) |̂θi(t))
k∑
i=1
α̂i(t)p(x(j) |̂θi(t))

where the last equation follows from Bayes law (αi is the a priori probability that z
(j)
i = 1, while w

(j)
i is the posteriori

probability that z(j)i = 1 given the observation x
(j)).

• M-Step: The estimates of the new parameters are updated using the following equation:

Θ̂(t + 1) = argmax
Θ
{Q (Θ, Θ̂(t))}. (8)

3.3. EM for GMMs

Several variants of the EM algorithm have been extensively used to solve the above problem. The convergence properties
of the EM algorithm for Gaussian mixtures are thoroughly discussed in Xu and Jordan (1996). The Q -function for GMM is
given by:

Q (Θ|Θ̂(t)) =
n∑
j=1

k∑
i=1

w
(j)
i

[
log

(
|Σ |−

1
2

(2π)
d
2

)
−
1
2
(x(j) − µi)TΣ−1(x(j) − µi)+ log αi

]
, (9)

where

w
(j)
i =

α̂i(t)|Σ̂i(t)|−
1
2 e−

1
2 (x

(j)
−µ̂i(t))T|Σ̂i(t)|−1(x(j)−µ̂i(t))

k∑
i=1
α̂i(t)|Σ̂i(t)|−

1
2 e−

1
2 (x

(j)−µ̂i(t))T|Σ̂i(t)|−1(x(j)−µ̂i(t))

. (10)

The maximization step is given by the following equation:

∂

∂Θk
Q (Θ|Θ̂(t)) = 0 (11)

where Θk is the parameter set for the kth component. Since the posterior probabilities in the E-step now appear in the
Q-function as given constants, and therefore resembling the Gaussian likelihood when the components are pre-specified,
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maximizing this function in the M-step becomes trivial. The updates for the maximization step in the case of GMMs are
given as follows:

µi(t + 1) =

n∑
j=1
w
(j)
i x

(j)

n∑
j=1
w
(j)
i

,

Σi(t + 1) =

n∑
j=1
w
(j)
i (x

(j)
− µi(t + 1))(x(j) − µi(t + 1))T

n∑
j=1
w
(j)
i

,

αi(t + 1) =
1
n

n∑
j=1

w
(j)
i .

(12)

The convergence properties of the EM algorithm for Gaussianmixtures are thoroughly discussed in Xu and Jordan (1996).
One of the main challenges of using the EM algorithm is the initialization step. The final result obtained using the EM
algorithmwill significantly depend on the initial estimate of the parameters. In this paper, we explore the idea of smoothing
the log-likelihood surface in order to reduce the number of local maxima, thus diminishing the sensitivity caused by initial
parameters. The approach taken is termed ‘‘convolution based smoothing ’’ and is described in the next section.

3.4. Convolution kernels

Wewill now introduce some preliminaries on convolution kernels. A convolution kernel that yields closed form solutions
in both the E andM steps are useful for smoothing amixturemodel. Threewidely used kernels are shown in Fig. 3.We choose
to use a Gaussian kernel for smoothing the original log-likelihood function for the following inter-related reasons:

• When the underlying distribution is assumed to be generated from Gaussian components, Gaussian kernels are more
effective and easy to handle.
• The analytic form of the likelihood surface obtained after smoothing is very similar to the original likelihood surface.
• Since the parameters of the original components and the kernels will be of the same scale, changing the parameters
according to scale will be much easier.
• The Gaussian kernel is smooth compared to the triangular or step kernels.

We will now proceed to formally define convolution kernels, and Gaussian convolution kernels in particular. Consider a
density p(x|θ1) and a kernel g(x), the density function p(x|θ1) convolved with the kernel g(x) is defined as follows:

p∗(x|θ) ≡ p(x|θ1)⊗ g(x) ≡
∫
p(x− τ |θ1)g(τ )dτ . (13)

When p(x|θ1) and g(x) are both Gaussian with parameters (µ1, σ 21 ) and (µ0, σ
2
0 ) respectively, i.e.,

p(x|θ1) =
1

σ1
√
2π
e
−
(x−µ1)

2

2σ21 (14)

g(x) =
1

σ0
√
2π
e
−
(x−µ0)

2

2σ20 (15)

then p∗(x|θ) is Gaussian with mean parameter µ1 + µ0 and variance parameter σ 21 + σ
2
0 . We state this formally in the

following lemma.

Lemma 1 (Convolution of Gaussians). For p(x|θ1) and g(x|µ0, σ0) given as in Eqs. (14) and (15), then

p∗(x|θ) =
1√

2π(σ 21 + σ
2
0 )

e
−
(x−(µ1+µ0))

2

2(σ21+σ
2
0 ) . (16)

The proof for this lemma is given in Appendix.
From the above result, one can see that when the original Gaussian density function is convolved with a Gaussian kernel

of zero mean, only the variance parameter changes. In the context of smoothing based nonlinear optimization, reducing
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Fig. 3. Different convolution kernels. (a) Triangular function. (b) Step function and (c) Gaussian function.
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Fig. 4. The effects of smoothing a Gaussian density function with a Gaussian kernel.

the peaks is a very useful property which can be achieved by changing the variance parameter. Also, shifting the mean is
not desired and hence we will always prefer to use a kernel with µ0 = 0 to perform our convolutions. The quantity σ0 is
called a ‘‘kernel parameter’’ and the the choice of σ0 in practical situations will be discussed later. We will denote p∗(x|θ1)
as c(x̆, θ1) to emphasize the fact that the convolution affects the argument of the density function as defined in Eq. (13).
We will sometimes refer to this as ‘‘data smoothing’’ or ‘‘density smoothing’’ as the convolution smoothes the density of the
data (given by x). Convolving two Gaussians to obtain another Gaussian is shown graphically in Fig. 4.

4. Smoothing the log-likelihood surface

In principle, the overall log-likelihood surface can be convolved using a Gaussian kernel directly. Doing so directly
however is not a feasible approach because of the following reasons:

• It results in an analytic expression that is not easy to work with, and computing the EM updates become rather
cumbersome.
• It is computationally very expensive.
• Different regions of search space must be smoothed differently. Choosing parameters to do this task is difficult using this
approach.

To avoid the first issue, we exploit the structure of the problem. Since the log-likelihood surface is obtained from
individual densities, smoothing each component’s individual density functionwill smooth the overall log-likelihood surface.
This will also give flexibility in choosing the kernel parameters (to be discussed in following subsection). Fig. 5 shows the
block diagram of the smoothing procedure. The kernel parameters are chosen from the initial set of parameters and the
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Fig. 5. Block diagram of the smoothing approach. A smooth likelihood surface is obtained by convolving the original likelihood surface with a convolution
kernel which is chosen to be a Gaussian kernel in our case.

original log-likelihood surface. The kernel is then convolved with the original log-likelihood surface to obtain the smooth
log-likelihood surface.
The new component-wise smoothed density (p∗), is defined as follows:

p∗(x|Θ) =
k∑
i=1

αi p∗(x|θi). (17)

The corresponding smooth log-likelihood function is given by:

f ∗(X,Θ) =
n∑
j=1

log
k∑
i=1

αi p∗(x(j)|θi). (18)

4.1. Kernel parameters

Obtaining the parameters for the smoothing kernel g(x) is a non-trivial task. The parameters of the smoothing kernel
can be chosen to be static, i.e., independent of the parameters of the individual components. Such fixed kernels will be
effective when the underlying distribution is from similar components. One of the main problems of using a fixed kernel is
that, some of the components may not be smoothed while others may be excessively smoothed. Since, the Gaussian kernel
has the property that the convolution leads to addition in the parameters, the convolution described in Eq. (16) can also
be treated as additive smoothing. To avoid the problems of fixed kernel smoothing, we introduce the concept of ‘‘variable
kernel smoothing’’. Each component will be treated differently and smoothed according to the existing parameter values of
each component. This smoothing strategy is much more flexible and works well in practice. Since, kernel parameters are
effectively multiplied, this smoothing can be considered as ‘‘multiplicative smoothing ’’. In other words, σ0 must be chosen
individually for different components and is a function of σi. Both these approaches do not allow for smoothing the mixing
weight parameters (αi’s). From a practical point of view, we chose to have a single parameter for the variable kernel case.
For each of the components, the current σi value is multiplied with this single parameter. This will make it easy to run
the corresponding algorithm because there is only one smoothing parameter that needs to be optimized. Having different
parameters for different components might yield better results experimentally, but will be a cumbersome task to the user.
Hence, we decided to use a single parameter. Simple experiments are conducted to decide upon this single smoothing
parameter for any given data set and hence our algorithm is computationally efficient even for large data sets.
The introduction of the smoothing does not lead to any additional identifiability problems in the Gaussianmixturemodel

as the resulting effect is an addition to the variance parameter by a known constant hence there is a one-to-one mapping
from the parameter space of the smoothed model to that of the unsmoothed or original model.

4.2. EM updates

For both of the above mentioned (additive and multiplicative) smoothing kernels, we state the corresponding version of
the EM updates below. The complete derivations of these EM equations for the case of ‘‘fixed kernel smoothing’’ is given
in Appendix. The Q -function of the EM algorithm applied to the smoothed log-likelihood surface in the univariate case is
given by:

Q (Θ|Θ̂(t)) =
n∑
j=1

k∑
i=1

w
(j)
i

log 1√
2π(σ̃ 2i )

−
(x(j) − µ̃i)2

2σ̃ 2i
+ log αi

 , (19)
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where

w
(j)
i =

αi(t)
σ̃i
e
−

1
2σ̃2i

(x(j)−µ̃i(t))2

k∑
i=1

αi(t)
σ̃i
e
−

1
2σ̃2i

(x(j)−µ̃i(t))2
(20)

and Θ̃ represents the smoothed parameters. The updates for the maximization step in the case of GMMs are once more
given as follows:

µ̃i(t + 1) =

n∑
j=1
w
(j)
i x

(j)

n∑
j=1
w
(j)
i

, (21)

σ̃ 2i (t + 1) =

n∑
j=1
w
(j)
i (x

(j)
− (µ̃i(t + 1)))2

n∑
j=1
w
(j)
i

, (22)

α̃i(t + 1) =
1
n

n∑
j=1

w
(j)
i . (23)

It is easily observed that we retain the same form of the updates as in the non-smoothed version (see Eq. (12)).

4.3. Properties of smoothing approach

Our main contribution regarding convolution based smoothing techniques are discussed in this section. First, we will
show that in the case of Gaussian mixture models, component-wise smoothing with respect to the argument of the density
(i.e. data smoothing) is equivalent to smoothing with respect to the parameters. Second, we will show that the component-
wise smoothing indeed reduces two measures of the overall gradient of the likelihood surface and hence smooths it.

Lemma 2 (Density Smoothing). Convolution of a Gaussian density function with parameters µ1 and σ1 with respect to the ar-
gument of the density function, with a Gaussian kernel with parameters µ0 = 0 and σ0 is equivalent to convolving the function
with respect to µ1. i.e.

c(x, µ̆1) = c(x̆, µ1) when g(τ ) =
1

√
2πσ0

e
−

τ2

2σ20 .

Proof. See Appendix. �

We now proceed to demonstrate that a modified version of the component-wise smoothed log-likelihood surface has
an overall gradient that is lower than that of the original likelihood for the same mixture. Our claim is that the convolution
induces a less rugged log-likelihood surface. One possible way to measure the ruggedness of the log-likelihood surface is to
consider the gradient or rather the magnitude of the gradient of the log-likelihood function. Two measures of this are∣∣∣∣∂ log p(x|θ)∂θ

∣∣∣∣ or
(
∂ log p(x|θ)

∂θ

)2
.

These are of course random quantities and will differ from sample to sample. Hence, two measures of the ruggedness of
the surface can be described by either

E
[∣∣∣∣∂ log p(x|θ)∂θ

∣∣∣∣] or E

[(
∂ log p(x|θ)

∂θ

)2]
.

We will work with the latter as this quantity is firstly analytically more tractable and secondly has a special meaning in
statistics, namely the Fisher Information matrix. In general, The Fisher Information matrix cannot be obtained analytically
for GMMs (Figueiredo and Jain, 2002).



C.K. Reddy, B. Rajaratnam / Computational Statistics and Data Analysis 54 (2010) 732–749 741

Fig. 6. Flowchart of the smoothing algorithm.

Theorem 3. The expected value of the squared gradient of the smoothed complete log-likelihood surface is lower than the original
complete log-likelihood surface. More precisely,

E

[(
∂ log p(x, z|θ)

∂µi

)2]
≥ E

[(
∂ log p∗(x, z|θ)

∂µi

)2]
,

E

[(
∂ log p(x, z|θ)

∂σ 2i

)2]
≥ E

[(
∂ log p∗(x, z|θ)

∂σ 2i

)2]
.

∀i = 1, 2, . . . , k.

Proof. See Appendix. �

Wealso show that the Theorem3 above holds true under a differentmeasure of ruggedness of the log-likelihood surface. The
above theorem demonstrates the power of component-wise smoothing. It does not however say much about the number
of local maxima. Later, we empirically demonstrate that our component-wise smoothing approach reduces the number of
local maxima. We also observe that the gradient with respect to αi (i = 1, 2, . . . , k) is the same for both the models.

5. Algorithm and implementation

This section describes the smoothing algorithm proposed above in detail and elaborates on some of the implementation
details. The basic advantage of the smoothing approach is that a simplified version of the global method can be used to
explore fewer promising local maxima on the smoothed surface. These solutions are used as initial guesses for the EM
algorithm which is again applied to the next level of smoothing. Smoothing is targeted to help avoid searching in non-
promising areas of the parameter space. Fig. 6 gives the flow chart of our smoothing algorithm which is discussed below.
First we introduce certain variables that are used in our algorithm. The likelihood surface (defined by L) depends on the

parameters and the available data. The smoothing factor (sfac) determines the extent to which the likelihood surface needs
to be smoothed (which is usually chosen by trial-and-error). The symbol ns denotes the number of solutions that will be
traced. The symbol n specifies number of levels in the smoothing hierarchy. It is clear that there is a trade-off between the
number of levels and the accuracy of this method. Having many levels might increase the accuracy of the solutions, but it
is computationally expensive. On the other hand, having fewer levels is computationally very cheap, but one might have to
forgo the quality of the final solution. Deciding these parameters is not only user-specific but also significantly dependent
on the data that is being modeled. Algorithm 1 describes the smoothing approach.
The algorithm takes the smoothing factor, number of levels, number of solutions, parameters set and the data as input

and computes the global maximum on the log-likelihood surface. The procedure Smooth returns the likelihood surface
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Algorithm 1 Smooth
Input: ParametersΘ , DataX, Tolerance τ , Smooth factor Sfac , number of levels nl, number of solutions ns
Output: Θ̂MLE
Algorithm:
step = 1/nl Sfac = Sfac/nl
L = Smooth(X,Θ ,nl*Sfac)
Sol = Global(X,Θ , L,ns)
while n≥ 0 do
L = Smooth(X,Θ ,nl*Sfac)
for i= 1:ns do
Sol(i)= EM(Sol(i),X,L,τ )

end for
nl = nl-step

end while
Θ̂MLE =max{Sol}

corresponding to smoothing factor at each level. Initially, a simple global method is used to identify promising solutions
(ns) on the smooth likelihood surface which are stored in Sol. With these solutions as initial estimates, we then apply the
EM algorithm on the likelihood surface corresponding to the next level smoothed surface. The EM algorithm also returns
ns number of solutions corresponding to the ns number of initial estimates. At every iteration, a new likelihood surface is
constructed with a reduced smoothing factor. This process is repeated until the smoothing factor becomes zero which in
turn corresponds to the original likelihood surface. Though, it appears to be a daunting task, it can be easily implemented
in practice. The main idea is to construct a family or hierarchy of surfaces and carefully trace the promising solutions from
the top most surface to the bottom most one. In terms of tracing back the solutions to uncoarsened models, our method
resembles the multi-level methods proposed in Karypis and Kumar (1999); Dasgupta and Schulman (2000). The main
difference is that the dimensionality of the parameter space is not changed during the smoothing (or coarsening) process.

6. Results and discussion

Our algorithm has been tested on three different datasets. The initial values for the centers and the covariances were
chosen to be uniformly random. Uniform priors were chosen for initializing the components.
A simple synthetic data with 40 samples and 5 spherical Gaussian components was generated and tested with our

algorithm. Priors were uniform and the standard deviation was 0.01. The centers for the five components are given as
follows: µ1 = [0.3 0.3]T, µ2 = [0.5 0.5]T, µ3 = [0.7 0.7]T, µ4 = [0.3 0.7]T and µ5 = [0.7 0.3]T.
The second dataset was that of a diagonal covariance case. The data is generated from a two-dimensional, three-

component Gaussian mixture distribution (Ueda and Nakano, 1998) with mean vectors at [0 − 2]T, [0 0]T, [0 2]T and
same diagonal covariance matrix with values 2 and 0.2 along the diagonal. All the three mixtures have uniform priors.
The true mixtures with data generated from these three components are shown in Fig. 8. In the third synthetic dataset,
more complicated overlapping Gaussian mixtures are considered (Figueiredo and Jain, 2002). It has four components with
1000 data samples (see Fig. 9). The parameters are as follows: µ1 = µ2 = [−4 − 4]T, µ3 = [2 2]T and µ4 = [−1 − 6]T.
α1 = α2 = α3 = 0.3 and α4 = 0.1.

C1 =
[
1 0.5
0.5 1

]
C2 =

[
6 −2
−2 6

]
C3 =

[
2 −1
−1 2

]
C4 =

[
0.125 0
0 0.125

]
.

6.1. Reduction in the number of local maxima

One of the main advantages of the proposed smoothing algorithm is to ensure that the number of local maxima on the
likelihood surface has been reduced. To the best of our knowledge, there is no general theoretical way of estimating the
amount of reduction in the number of unique local maximum on the likelihood surface and is the subject of ongoing work.
Hence, we use empirical simulations to justify the fact that the procedure indeed reduces the number of local maxima. Fig. 7
demonstrates the capability of our algorithm to reduce the number of local maxima. In this simple case, there were six local
maxima originally, which were reduced to two local maxima after smoothing. Other stages during the transformation are
also shown.
Fig. 10 shows the variation of the number of local maxima with respect to the smoothing factor for different datasets.

One can see that if the smoothing factor is increased beyond a certain threshold value (σopt ), the number of local maxima
increases rapidly. This might be due to the fact that over-smoothing the surface will make the surface flat, thus making it
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Fig. 7. Various stages during the smoothing process. (a) The original log-likelihood surface which is very rugged. (b)–(c) Intermediate smoothed surfaces.
(d) Final smoothed surface with only two local maxima.
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Fig. 8. True mixture of the three Gaussian components with 900 samples.

difficult for the EM algorithm to converge. Experimentswere conducted using 1000 random starts and the number of unique
local maxima were stored.

6.2. Smoothing for initialization

From an optimization perspective, smoothing the log-likelihood surface also helps in identifying promising solutions.
Experimentswere conducted using 100 random starts. The average across all the starts is reported (RS+ EM). For comparing
with the smoothing results, we use the same 100 random starts on the smoothed surface first and use the EM solution
obtained as the initial value for the EM algorithm applied on the original surface (Smooth + EM). Table 2 summarizes
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Fig. 10. Reduction in the number of local maxima for various datasets.

these results. We used only two levels and track the solution for each level. Hence, from the computational standpoint, the
smoothing procedure basically needs twice the amount of time to run the experiments, because we use the EM algorithm
twice for each random start. However, based on the mean and standard deviation values obtained with RS + EM using
100 random starts, one can confirm that even if we use twice the number of random starts (let us say 200), we will not be
able to achieve promising solutions compared to the solutions obtained using the smoothing procedures. Hence, for every
run, the smoothing algorithm tends to converge to more promising set of solutions because of the fact that the smoothed
log-likelihood surface helps in reducing the chance of getting stuck in poor local optimal solutions. The two main claims
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Table 2
Comparison of smoothing algorithm with the random starts. Mean and standard deviations across 100 random starts are reported.

Dataset RS+ EM Smooth+ EM

Spherical 36.3± 2.33 41.22± 0.79
Elliptical −3219± 0.7 −3106± 12
Full covariance −2391.3± 35.3 −2164.3± 18.56
Iris −196.34± 15.43 −183.51± 2.12

(reduction in the number of local maximum and better initial estimates) about the contributions have thus been justified.
More sophisticated global methods like genetic algorithms, simulated annealing, adaptive partitioning (Tang, 1994) etc.
and their simplified versions can also be used in combination with our approach. Since the main focus of our work is to
demonstrate the smoothing capability, we used multiple random restarts as our global method.

7. Conclusion and future work

This paper introduces a smoothing approach for learning finite mixture models frommultivariate data. Our algorithm is
based on the conventional ExpectationMaximization (EM) approach applied to a smoothed likelihood surface. A hierarchy of
smooth surfaces is constructed and an optimal set of parameters are obtained by applying a discrete version of continuation
method to the promising solutions of the smooth surface. This smoothing process not only reduces the overall gradient of the
surface but also reduces the number of local maxima. This is an effective optimization procedure that eliminates extensive
searching in non-promising areas of the parameter space. Benchmark results demonstrate a significant improvement of the
proposed algorithm compared to other existing methods.
Themethod presented in this paper is one of the basic smoothing approaches on the well studied Gaussianmixture case.

There is a plethora of future research directions that can be pursued using this basic concept. The effects of convolving
Gaussian components with other kernels and efficient algorithms for choosing the smoothing parameter automatically
given the multivariate data are yet to be studied. The idea of combining the hierarchical smoothing procedure with model
selection criteria also needs further investigation. An optimal number of levels and the degree of smoothing at each level
can be chosen adaptively so that significant distortions of the likelihood surface does not occur. Generic convolution based
smoothing strategies can be treated as powerful optimization tools that can enhance search capability significantly and can
be applied in the context of other finite mixture models (i.e., beyond the Gaussian mixtures). The use of the above approach
in the presence of missing information (Hunt and Jorgensen, 2003) is to be studied in the near future.
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Appendix

Proof of Lemma 1 (Convolution of Two Gaussians).

p∗(x|θ) ≡ p(x|θ1)⊗ g(x)

≡

∫
p(x− τ |θ1)g(τ )dτ

=

∫
∞

−∞

1
√
2πσ1

e
−
(x−τ−µ1)

2

2σ21
1

√
2πσ0

e
−
(τ−µ0)

2

2σ20 dτ

=

∫
∞

−∞

1
√
2πσ1

e
−
((x−τ)−µ1)

2

2σ21
1

√
2πσ0

e
−
(τ−µ0)

2

2σ20 dτ

=
1

√
2πσ1

1
√
2πσ0

∫
∞

−∞

e
−
σ20 (τ−x+µ1)

2
+σ21 (τ−µ0)

2

2σ21 σ
2
0 dτ . (A.1)

After completing the square in terms of τ and further simplification, we obtain

p∗(x|θ) =
e
−
(x−(µ1+µ0))

2

2(σ21+σ
2
0 )

√
2πσ1

√
2πσ0

∫
∞

−∞

e
−
(τ−µτ )

2

2σ2τ dτ (A.2)
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where

µτ =
µ0σ

2
1 + (x− µ1)σ

2
0

(σ 21 + σ
2
0 )

and σ 2τ =
σ 21 σ

2
0

(σ 21 + σ
2
0 )
. (A.3)

Hence, we have

p∗(x|θ) =
e
−
(x−(µ1+µ0))

2

2(σ21+σ
2
0 )√

2π(σ 21 + σ
2
0 )

∫
∞

−∞

1
√
2π στ

e
−
(τ−µτ )

2

2σ2τ dτ

=
1√

2π(σ 21 + σ
2
0 )

e
−
(x−(µ1+µ0))

2

2(σ21+σ
2
0 ) (A.4)

(because the quantity inside the integral is 1 as it is a probability density function).

Derivations for EM updates. For simplicity, we show the derivations for EM updates in the fixed kernel case. The approach
is similar to the case when there is no smoothing. Let us consider the case where a fixed Gaussian kernel with parameters
µ0 and σ0 which will be used to convolve each component of the GMM.
Convolving each component of the mixture model using results from Lemma 1, we obtain

log p∗(X,Z|Θ) =
n∑
j=1

k∑
i=1

log

 1√
2π(σ 2i + σ

2
0 )

e
−
(x−(µi+µ0))

2

2(σ2i +σ
2
0 ) p(z(j)i = 1)

z
(j)
i

=

n∑
j=1

k∑
i=1

z(j)i

[
− log

(√
2π(σ 2i + σ

2
0 )

)
−
(x− (µi + µ0))2

2(σ 2i + σ
2
0 )

+ log αi

]
. (A.5)

Expectation Step: For this step, we need to compute the Q -function which is the expected value of Eq. (A.5) with respect to
the hidden variables.

Q (Θ|Θ(t)) = Ez
[
log p(X,Z|Θ)|X,Θ(t)]

=

n∑
j=1

k∑
i=1

Ez[z
(j)
i ]

[
− log

(√
2π(σ 2i + σ

2
0 )

)
−
(x− (µi + µ0))2

2(σ 2i + σ
2
0 )

+ log αi

]
. (A.6)

Computing the expected value of the hidden variables (z(j)i ), we obtain,

w
(j)
i = Ez[z

(j)
i ] =

1∑
c=0

c ∗ p(z(j)i = c|Θ
(t), x(j))

=
p(x(j)|Θ(t), z(j)i = 1) p(z

(j)
i = 1|Θ

(t))

p(x(j)|Θ(t))

=

1√
(σ 2i +σ

2
0 )
e
−
(x−(µi+µ0))

2

2(σ2i +σ
2
0 ) α

(t)
i

k∑
m=1

1√
(σ 2m+σ

2
0 )
e
−
(x−(µm+µ0))2

2(σ2m+σ
2
0 ) α

(t)
m

. (A.7)

Maximization Step: The maximization step is given by the following equation:

∂

∂Θi
Q (Θ|Θ̂(t)) = 0 (A.8)

where Θi are the parameters of the ith component. Due to the assumption made that each data point comes from a single
component, solving the above equation once more becomes trivial. The updates for the maximization step in the case of
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GMMs are given as follows:

(µi + µ0) =

n∑
j=1
w
(j)
i x

(j)

n∑
j=1
w
(j)
i

, (A.9)

(σ 2i + σ
2
0 ) =

n∑
j=1
w
(j)
i (x

(j)
− (µi + µ0))

2

n∑
j=1
w
(j)
i

and (A.10)

αi =
1
n

n∑
j=1

w
(j)
i . � (A.11)

Proof of Lemma 2. Lets c(x̆, µ1) denote smoothingwith respect to the density and c(x, µ̆1) denote smoothingwith respect
to the parameter. Now, the convolution of Gaussian density with respect to the mean is shown below:

c(x, µ̆1) =
∫
∞

−∞

1
√
2πσ1

e
−
(x−(µ1−τ))

2

2σ21
1

√
2πσ0

e
−
(τ−µ0)

2

2σ20 dτ

since µ0 = 0, we have

c(x, µ̆1) =
∫
∞

−∞

1
√
2πσ1

e
−
(x+τ−µ1)

2

2σ21
1

√
2πσ0

e
−

τ2

2σ20 dτ . (A.12)

Making the change of variable, y = −τ , we have

c(x, µ̆1) =
∫
∞

−∞

1
√
2πσ1

e
−
((x−y)−µ1)

2

2σ21
1

√
2πσ0

e
−
y2

2σ20 dy

= c(x̆, µ1). (A.13)

Hence, convolution of a Gaussian density function with a Gaussian density with zero mean is equivalent to convolving the
function with respect to its mean. �

Proof for Theorem 3. The expected gradient value of the smoothed complete log-likelihood surface is lower than the
original complete log-likelihood surface, i.e.,

E

[(
∂ log p(x|θ)

∂θi

)2]
≥ E

[(
∂ log p∗(x|θ)

∂θi

)2]
∀i = 1, 2, . . . , k.

Let us consider the expectation of the squared-gradient for the one component model. (i.e. its associated Fisher information
(FI)):

l(θ) = −n log σ −
1
2σ 2

n∑
i=1

(xi − µ)2.

Now,

FI = E
[
−
∂2 log f (x|θ)

∂θ2

]
= E

[(
∂ log f (x|θ)

∂θ

)2]
.

∂ log L(θ)
∂µ

=
1
σ 2

n∑
i=1

(xi − µ),

∂ log L(θ)
∂σ 2

=
n
2σ 4

(
n∑
i=1

(xi − µ)2

n
− σ 2

)
,
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∂2 log L(θ)
∂µ2

=
1
σ 2

n∑
i=1

−1 = −
n
σ 2
,

∂2 log L
∂µ∂σ 2

= −
1
σ 4

n∑
i=1

(xi − µ) =
∂2 log L
∂σ 2∂µ

,

∂2 log L
∂σ 2∂σ 2

= n
[
1
2σ 4

]
−
1
σ 6

n∑
i=1

(xi − µ)2.

Hence,

FI =
[
−
∂2 log f (x|θ)

∂θ2

]
=

 nσ 2 0

0
n
2σ 4

 .
Now, convolving with a Gaussian kernel with standard deviation σ0 gives the FI for the smooth one-component model as
follows:

FIsmooth =


n

σ 2 + σ 20
0

0
n

2(σ 2 + σ 20 )2

 .
It is now straightforward to see that

E

[(
∂ log p∗(x, z|θ)

∂µi

)2]
≤ E

[(
∂ log p(x, z|θ)

∂µi

)2]
∀i = 1, 2, . . . , k

where

log p(x, z|θ) =
k∑
i=1

zi log[αi · p(x|θi)].

Therefore,

E

[(
∂ log p∗(x, z|θ)

∂µi

)2]
= E



∂
k∑
i=1
zi log[αi · p∗(x|θi)]

∂µi


2

= E

[(
zi · ∂ log[p∗(x|θi)]

∂µi

)2]
= αi · I∗(µi)
≤ αi · I(µi)

= E

[(
∂ log p(x, z|θ)

∂µi

)2]

where I∗(µi) and I(µi) are the FI for the ith component of the complete versions of the smoothed and original models
respectively.
When we instead consider the expected square of the second derivatives (as an alternative measure of roughness), we

obtain the following:

[
−
∂2 log f (x|θ)
∂µi · ∂σ

2
i

]
=

 1
σ 2

1
σ 4
(x− µ)

1
σ 4
(x− µ)

1
2σ 4
−
(x− µ)2

σ 6

 . (A.14)
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Squaring each term and taking expectation, we obtain

R = E

[(
∂2 log f (x|θ)

∂θ2

)2]
=

 1σ 4 1
σ 6

1
σ 6

11
4σ 8

 . (A.15)

It is clear that 1
σ 2
, 1
σ 4
and 1

σ 8
are decreasing functions of σ 2 hence the roughness measure is lowered by the introduction

of the smoothing parameter. �
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