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ABSTRACT 1 INTRODUCTION

Digital advertising is performed in multiple ways, for e.g., con-
textual, display-based and search-based advertising. Across these
avenues, the primary goal of the advertiser is to maximize the re-
turn on investment. To realize this, the advertiser often aims to
target the advertisements towards a targeted set of audience as this
set has a high likelihood to respond positively towards the adver-
tisements. One such form of tailored and personalized, targeted
advertising is known as look-alike modeling, where the advertiser
provides a set of seed users and expects the machine learning model
to identify a new set of users such that the newly identified set is
similar to the seed-set with respect to the online purchasing activ-
ity. Existing look-alike modeling techniques (i.e., similarity-based
and regression-based) suffer from serious limitations due to the
implicit constraints induced during modeling. In addition, the high-
dimensional and sparse nature of the advertising data increases
the complexity. To overcome these limitations, in this paper, we
propose a novel Adversarial Factorization Autoencoder that can
efficiently learn a binary mapping from sparse, high-dimensional
data to a binary address space through the use of an adversarial
training procedure. We demonstrate the effectiveness of our pro-
posed approach on a dataset obtained from a real-world setting
and also systematically compare the performance of our proposed
approach with existing look-alike modeling baselines.
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To maximize an advertising effort, advertisers execute their cam-
paigns in multiple ways, i.e. digital advertising, search-based adver-
tising and contextual advertising. The major aim of the advertisers
across these avenues is to maximize the return on their investment.
To realize this, the advertiser often aims to target the advertisements
towards a targeted set of audiences as this set has a high likelihood
to respond positively towards the advertisements. One such form
of tailored and personalized targeted advertising is known as Look-
alike Modeling.

Specifically, look-alike modeling, also known as “audience ex-
pansion” in the literature, is the task of finding new and relevant
users given an existing, often much smaller set (known as seed-set)
of users under the assumption that the newly identified look-alike
users are similar to the seed-set’s users with regards to the activity
over the internet (e.g., click, sale or browsing). Computational look-
alike modeling is a fundamental and challenging problem in the
advertising domain for which various techniques have been pro-
posed [12-14, 17, 22]. The nature of the advertising data, coupled
with constraints induced when modeling look-alike approaches
have been a major challenge in the development of robust and so-
phisticated techniques. In particular, digital advertising data is a
collection of information across sources (e.g., user interest, product
information, engagement information), thereby making advertising
data highly complex and multi-dimensional in nature. In compu-
tational advertising, users are often represented by hundreds to
thousands, if not more, of categorical and continuous raw features.
This often leads to the issue of high-dimensionality (millions of
features) when interactions between the raw features or categoriza-
tion of the raw features are taken into account. Another challenge
that arises in modeling advertising data revolves around sparsity.
This arises as advertisers collect users’ data only when the users are
displayed with some kind of product-related advertisements, thus
the collected data results in a significant amount of examples where
the values are absent (or missing features). For example, a user is
not shown advertisements for all the products, but is typically only
shown advertisements of products for which the user might have a
propensity for a favourable outcome.

Additionally, it is critical for computational look-alike techniques
to be efficient, especially in programmatic advertising platforms
where there can be hundreds (or thousands) of campaigns that
are executed daily. Each campaign requires a different set of look-
alike users from the campaign’s different, initial seed-set, which
potentially involves the creation of many look-alike models on
high-dimensional advertising data. For such reasons, despite the
improved performance, regression-based look-alike methods [17],
which separately model the membership probability of a user to the
seed-set of a campaign using classification-based methods, are often
too computationally expensive to be employed. This is because for
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each campaign, a classification model is created on a carefully con-
structed labeled dataset whose positive examples are users from the
seed-set. When there are many campaigns, this process is prohibi-
tive, especially when the data is highly sparse and high-dimensional.
In addition, when sufficient amount of training data is not available
on a newly created campaign, regression-based methods do not
perform well; this issue is also known as the “cold-start” problem.
Similarity-based look-alike methods [12, 14, 15], which involve
modeling the pair-wise similarity functions between a pair of users,
are preferred because they can be scaled out to millions of users and
do not require creating different models for each campaign. These
methods include the current state-of-the-art research methods em-
ployed Locality Sensitive Hashing (LSH) [12, 14, 15]. However, LSH-
based techniques are known to ignore some of the vital properties
of the data (e.g., they pay little attention to the distribution of the
data during the modeling process) and have been shown to be less
accurate and slower than data-dependent hashing schemes such as
Semantic Hashing [19]. Replacing LSH-based techniques with se-
mantic hashing based techniques is not straightforward, as Semantic
Hashing does not work well on sparse, high-dimensional data and
typically produces much inferior results in the presence of complex
feature interactions. In addition, to motivate the hidden sigmoid-
neuron activations more often near 0 and 1, the learning process
relies on employing training tricks, such as adding a deterministic
Gaussian noise, with additional hyper-parameters that increase the
complexity of using semantic hashing in a real-world environment.
To address the aforementioned challenges, in this paper, we pro-
pose a novel Adversarial Factorization Binary Autoencoder that can
efficiently learn a mapping from sparse, high-dimensional data to
a binary address space through the use of an adversarial training
procedure. Our model, which is a “hashing” based approach [23],
learns compact, storage-efficient binary codes. The cost of finding
look-alike users in the original high-dimensional space is reduced
to Hamming-distance calculations (using bit-wise XOR operation
which takes only one CPU instruction) in the binary address space
(where a data point’s representation requires only 4 to 8 bytes of
storage). The main contributions of our work are as follows:

e We propose a novel autoencoder based look-alike model that em-
ploys adversarial training procedure to systematically “encourage”
the hidden-code layer to be binary. Our method introduces an
entirely new and efficient alternative to train binary neurons,
which can be employed in other problems that require condi-
tional computations [1].

e We extend the semantic hashing method to be able to efficiently
handle extremely-sparse data by modeling an additional feature
embedding layer and embedding interaction layer that can auto-
matically learn higher-order feature interactions in an end-to-end,
completely unsupervised manner.

o We demonstrate the effectiveness of our proposed look-alike
method on a large real-world advertising data and show both
quantitative and qualitative results of the performance.

o The strong offline performance of our proposed model across
different partners demonstrate the practical applicability of our
approach and thus will motivate advertisers to opt for a tar-
geted advertisement (i.e., look-alike) as compared to a generic
re-targeting based advertising.

This paper is organized is as follows. We discuss the related
works in Section 2. In Section 3, we present information about the
data generation process, feature engineering along with some basic
data statistics. In Section 4, we describe the background, problem
formulation and our proposed approach. In Section 5, we describe
our experimental procedure, baseline methods and results. Lastly,
in Section 6, we present our conclusion and future work.

2 RELATED WORKS

In this section, we will describe three research directions that are
closely related to the proposed work, namely, look-alike modeling,
autoencoders and high-dimensional sparsity.

2.1 Look-alike Modeling

Look-alike modeling is the task of reaching new and relevant users
in an advertising campaign by extending an existing, smaller set of
users (also known as the seed-set). Typically, this extension process
can be accomplished by finding “similar” users to those within the
seed-set [13-15, 17, 22]. These approaches can be classified broadly
into two categories:

(1) Regression-based look-alike models: The simplest approach is to
predict the class-membership of a user belonging to the seed-
set. Given a user with a set of features x, these models com-
pute the propensity score p(x € S|x) — the probability of the
user belonging to the seed-set S — which can be modeled using

the sigmoid function m [17]. Density estimation ap-

proaches can be used to directly estimate p(x € S|x), but this is
generally very difficult both because of the inherent challenges
of density estimation and a higher chance of over-fitting when
the size of the seed-sets is small. A more popular regression-
based look-alike modeling approach is classification where
negative samples (of the negative class in training the propen-
sity model) can be randomly sampled from all the available
users (minus the seed-set). Random negative samples have the
following effect: features that correlate with the advertising con-
versions (such as click-through rate or product purchases) play
less important role in similar-user selection. This motivates the
sampling of previously exposed (having seen the campaign’s
advertisements) but non-converted users. However, doing this
will lead to the cold-start problem; for example, on new adver-
tising campaigns where there have not been sufficient number

of previously exposed users. In site of this problem, there are a

couple of primary advantages of using regression based models.

First, using such approaches, the decision to select the extended

users is compressed within a model. Second, the performance of

regression-based techniques is often significantly better when
there is enough, well-constructed supervised training data.

Similarity-based look-alike models: Instead of learning a class-

membership model, using a similarity measures such as Cosine

or Jaccard [11], similarity-based systems find look-alike users
by directly comparing all possible pairs between seed users
and available users using a “pre-defined” pairwise similarity
function [12, 14, 15]. A seed-set can be extended by selecting top
users from a ranked list of users which is ordered based on their
maximum similarity scores to any users in the seed-set. These
systems can be scaled out to millions of users using hashing
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methods [23] such as Locality Sensitive Hashing (LSH) [11], but
the performance of such systems depend greatly on selecting the
right features and similarity functions. Often, they are chosen
independent of the data (for e.g., using random projection) and
hence, important intrinsic properties of the data are completely
ignored.

A key advantage of similarity-based approaches is the fact that
its learning process is independent of the number of seed-sets. An
implementation of regression-based models requires learning one
model for each individual seed-set, which significantly increases the
training time when there are thousands of such models to be trained
on a regular basis (for e.g., daily), which is a common scenario for
many advertisers. Furthermore, extending the seed-sets require a
full linear-scan of the users since the model needs to calculate the
propensity score for each user in order to rank them. Conversely,
similarity-based approaches focus on learning only one desired sim-
ilarity function, irrespective of the number of seed-sets. In addition,
because of the advantage of hashing, these approaches can also limit
the retrieval to a small list of candidate users [11]. However, because
of the performance superiority of regression-based models, most
production look-alike modeling systems either employ regression-
based models or a hybrid version of regression-based and hashing
models (to reduce its learning/training time while preserving the
overall performance). In this paper, we focus on a similarity-based
approach (specifically hashing) that automatically learns an effi-
cient similarity function in an end-to-end manner directly from the
raw data and demonstrates significant performance improvements
compared to both existing regression-based and similarity-based
approaches.

2.2 Autoencoders and Adversarial Training

2.2.1 Autoencoders. Most of the widely used similarity-based look-
alike models employ variants of LSH because such models do not
require pre-training and are computationally efficient to deploy in
a real production environment [12, 14, 15]. Despite their efficiency,
most LSH approaches are data-independent because their hash func-
tions employ random projection, which makes them inappropriate
for complex scenarios, especially for high-dimensional sparse data.
Deep neural networks have the ability to discover good represen-
tations from the raw input data [10]. The authors of [19] proposed
an alternative to the LSH-based approach for approximate similarity
search with a pre-defined similarity function by learning a binary
vector representation of the input data using autoencoders [10]. The
binary vector captures the semantic dependency of the input data
in a lower-dimensional space. The advantage of semantic hashing
is that, when more hidden layers are used, the network can capture
complex interactions among the input features. In addition, finding
similar items, after the model is trained, is experimentally shown to
be faster while achieving better accuracy compared to LSH-based
approach for document retrieval tasks in the text domain [19].

2.2.2 Generative Adversarial Network (GAN). GAN models have
recently gained popularity due to their generative power [7]. One
important feature of GAN is the adversarial training procedure
which is able to implicitly “match” an output of a deep network to a
pre-defined distribution. In fact, the adversarial training mechanism
has been used in several works as a regularization of the latent

representation of autoencoders [9, 16]. This improves the quality
of the projected, low-dimensional manifolds that the autoencoders
are able to learn, especially when the high-dimensional input data
has a complex structure [9].

Regularizing the autoencoders with an adversarial procedure
allows our model to learn an effective representation of the com-
plex, high-dimensional sparse input data while ensuring the latent
representation to implicitly match with a pre-defined binary-like
distribution. The latter contribution encourages the bottleneck layer
of the autoencoder to generate efficient hash codes (similar to that
of LSH) but stays closer to the manifold of the original input data.

2.3 High-dimensional Sparsity

Advertising data is high-dimensional in nature with many missing
feature values and hence, most of the standard machine learning
models are prone to the problem of over-fitting. Traditionally, man-
ual feature engineering is used to improve machine learning models’
performance but such solutions fail to scale well for higher order fea-
ture interactions where the number of features grows exponentially
(consequently making the features even sparser). Feature embed-
ding techniques, including both factorization and neural-network
models, solve this problem by learning feature interaction directly
from raw data [8, 18]. For example, Factorization Machines (FM) [18]
model interactions between each pair of features as a dot product
between two low-dimensional embedding vectors of the features.

However, to the best of our knowledge, this idea has not been
applied in the unsupervised domain, specifically in autoencoders
which learn low-dimensional representation of high-dimensional
sparse input with complex feature interaction. In the presence of
sparse data, the autoencoder’s reconstruction output loses its spar-
sity and easily collapses to the average of the input features [6].
Simply designing autoencoders to be wider and deeper does not help
because with too much capacity, autoencoders can learn to “copy”
the input without finding a good latent, low-dimensional represen-
tation of the data. We propose to tackle the high-dimensionality and
sparsity challenges by fusing factorized models with autoencoders,
regularized by an adversarial learning procedure in order to find an
efficient latent representation of the data.

3 CRITEO DATA

3.1 Data Generation Process

Criteo Look-alike Modeling (CLM) is a recent product from Criteo
that was launched at the start of 2018 on selected markets and
partners. In CLM, partners (i.e., advertisers selling products) provide
a selected set of users (i.e., seed-set) and then the goal of CLM
is to identify a set of look-alike users (i.e., users who are not in
the seed-set, but are similar to the seed-set of users with respect
to their online behaviour) from the pool of available users. After
the identification of look-alike users, Criteo uses its re-targeting
technology to display partner-related advertisements to the look-
alike users across publisher websites.

CLM combines different types of data to train machine learning
models for identifying look-alike users. CLM anonymously collects
data about users interacting with product-related advertisements
primarily from advertisers. Also, it collects additional detailed data
related to products’ baskets, products’ sale transactions and clicks of
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Figure 1: Data collection and model training Pipeline for the
Criteo Look-alike Modeling product.

the relevant product advertisements. Figure 1 represents the entire
end-to-end pipeline of the large-scale data collection process, model
training and advertisement display methodology for CLM.

3.2 Feature Engineering

Each user is represented by an aggregated set of online activities
that are performed across publishers and products. In this paper, we
only consider three major action types for the user (i.e., click on the
product advertisement, addition of product to the basket and sale
of the product). Furthermore, to overcome the high-dimensionality
associated with billions of products that are available in Criteo
catalog, we use the hierarchical taxonomy from Google ! to map
multiple products to a single relevant category. Hence, Billions of
products in Criteo catalog are mapped to approximately thousands
of product categories. In summary, every user is represented using
categorical representation across the kind of interaction (i.e., click,
basket or sale) and product category. For the sake of replicability of
our experiments and results, we have already released the data that
is used in this work.?

3.3 Data Statistics

The data setting for CLM is as follows: each partner provides a seed-
set consisting of approximately a few thousand users. CLM, then,
uses its robust ML technology to identify look-alike users (roughly
10 times) who are similar to that of the seed-set users from a pool
of billions of users. However, considering the fact that a partner is
often interested in a specific geography (i.e., Europe, North America
or Asia-Pacific), the pool of users often is limited to hundreds of
millions of potential users (instead of billions of users).

Among the hundreds of millions of potential users, only a few
millions will have a significant online activity. Now we will present

Ihttps://www.google.com/basepages/producttype/taxonomy.en-US.txt
Zhttps://s3-us-west-1.amazonaws.com/criteo-lookalike-dataset/data.zip

Table 1: Statistics of the partner’s datasets.

Partner Consumer Segment | Seeds | Non-seeds
Apparel-1 Apparel & Accessories | 18,898 | 3,038,404
Electronics-1 | Electronics 398 3,030,559
Home/Garden | Home & Garden 34,523 3,020,830
Electronics-2 | Electronics 114 3,047,652
Animal/Pet Animals & Pet-supplies | 3,544 3,047,785
Apparel-2 Apparel & Accessories | 75,646 | 3,009,994

some data statistics, provided in Table 1. The data contains infor-
mation about six partners, i.e., the size of the seed-set provided by
the partner and the size of the non-seed users available in the data
after multiple rounds of filtering. The partners are selected from
broad consumer segments, thus bringing significant diversity to the
partners’ datasets and the numbers of users in the seed-sets.

4 THE PROPOSED LOOK-ALIKE MODEL

In this section, we will first define the problem statement. We will
then describe our proposed framework.

4.1 Problem Formulation

Given a seed-set of N users X, = {x(l), x®), ...,x(N)}, the goal of
look-alike modeling is to extend X, with M new users X, such
that the extended users X, are similar to X, with respect to their
online internet shopping behaviour. Each user x s represented
by a sparse vector in R"”. We will now discuss various components
of our proposed framework for the look-alike modeling problem.
The notations used in our paper are given in Table 2.

Table 2: Notations used in our paper.

Notation ‘ Description ‘

X, X, X input vector, bi-interaction embedding vector, and
reconstructed input vector, respectively

Xi ith input feature

x(D i'" input sample

e embedding vector of feature i

Dy data distribution

I(.) bi-interaction function whose output is x

f.9 encoding and decoding functions

b low-dimensional, binary vector — output of f(.)

q(b) the posterior distribution of b

Lpa,LFa | reconstruction cost of the binary autoencoder and
factorization binary autoencoder, respectively

D the discriminator network

Lp,Lg original loss function for the generator and dis-
criminator, respectively

CJe] parameters of the generator, including parameters
of both functions i(.) and f(.)

Op parameters of the discriminator D(.)

4.2 Binary Autoencoder

Given a dataset X = {x|x ~ Dy}, a binary autoencoder (BA) defines
an encoding function f : x — b that maps each data point x € R"
into a point b € R in the coding space and a decoding function
g : b — % that recovers x, as X, from b. In semantic hashing [19],



the RBM-based autoencoder uses a sigmoid encoding layer — or
bottleneck layer — and motivates each component of b, activations
of the bottleneck layer, to take values closer to either 0 or 1. As
a result, thresholding the activations b will return a binary code
vector ¢ € {0,1}8 which can be considered as the discrete hash
code of the input x.

For high-dimensional, advertising data, it is important that we can
exploit the higher-order interaction for better model performance,
as discussed in Section 2. In spite of some drawbacks (which will be
discussed later in Section 4.3), deep multi-layer encoders can model
feature interaction and find a useful discrete, low-dimensional rep-
resentation of the input. Thus, the binary autoencoder has the
following structure:

o An encoder function f : x — b that maps x into a vector b. In our
work, we model f as a multi-layer perceptron (MLP) whose last
layer has the sigmoid activation function.

e A decoder function g : b — x that reconstructs the input x as x.
Similar to the encoder, we model the decoder with an MLP.

o Similar to Semantic Hashing [19], we employ fixed, random nor-
mal noise to force b’s values to be binary (closer to 0 or 1).

e BA learns its parameters by minimizing the following squared-
error reconstruction cost:

Lpa = [I% = xlI3 = llg(f(x)) - xII3 (1)

4.3 Factorization Binary Autoencoder

Autoencoders are popularly used in learning non-linear data em-
bedding, or data representation. Unfortunately, when the input is
high-dimensional and highly sparse, it becomes difficult for the
autoencoders to learn a useful representation [6]. Wider and deeper
encoders/decoders result in too much model capacity, thus the
autoencoders can easily learn to copy the input, without extract-
ing any useful information about the data distribution in the low-
dimensional latent space [6]. In other words, it is difficult for the
binary autoencoders to utilize non-linear, higher-order interactions
of the input features to learn a good hash function of the input.
Therefore, we propose to model the the binary autoencoder with
an explicit feature interaction layer. Inspired by the supervised
NFM [8], given an embedding vector e; € R, where e is the di-
mension of the embedded space, for each feature i, we model the
interaction of features using a bi-interaction function I(x) as follow:

n n n
I(x)=)?=wo+Zwixi+Z Z xie; O xjej (2)
i=1 i=1 j=i+1
where O is the element-wise multiplication operation of two
vectors and the last term can be efficiently calculated using only
non-zero feature positions [8]:

n n 1 n n
Z Z xiei © xjej = 5 (Z xiei)’ — Z(xiei)z )
i=1 j=i+1 i=1 i=1

Equation (2) captures higher-order feature interactions in the low-
dimensional, discrete representation space because the first term
achieves memorization, correlation of the input features, while the
second term achieves generalization, transitivity of the features’
correlation [3]. In our paper, we model second-order interaction of

the input x in the bi-interaction embedding layer, but it is possible
to model the higher-order interaction by extending the embedding
vectors e; into higher-dimensional tensors. It is important to note
that computation of the high-order, non-linear interaction is linear
in the number of non-zero raw input features, which makes it
very efficient for high-dimensional, sparse input domains such as
computational advertising.

In our proposed factorization binary autoencoder (FA) model,
the encoder function becomes f : ¥ — b. On the other hand,
instead of employing the similar decoder functiong : b — % as
in Section 4.2, our decoder, instead, learns to reconstruct the bi-
interaction embedding input ¥ by minimizing similar squared-error,
reconstruction cost as follows:

Lra = |12 = %I} = llg(f 1) - I(0)l3 4)
Reconstructing x instead of x overcomes the difficulties of au-
toencoders to reconstruct high-dimensional, sparse input. Different
from NFM, FA learns to simultaneously find a good interaction rep-
resentation and a good low-dimensional, discrete representation of
the input x because the gradient of the loss function propagates to
the embedding space both immediately at the decoder’s output and
through the autoencoder’s network. More importantly, the learning
process is performed in a completely unsupervised manner.

4.4 Adversarial Factorization Binary
Autoencoder

From an alternative perspective, an autoencoder defines an encod-
ing distribution ¢(b|x) and a decoding distribution p(x|b). Conse-
quently, the encoding step imposes a posterior distribution on the
coding space as follows:

4(b) = / ¢(blx)Dx (x)dx %)

Our proposed FA model has several network parameters, from
both the bi-interaction layer and autoencoder module, that need
to be learned. It is previously shown that when the encoder and
decoder are too powerful, the autoencoder can get stuck in bad
local-minima and perform “copying” the input without learning
any useful representation from the data [2, 9]. In order words, the
distribution p(x|b) easily collapses to D (x), and the encoder maps
data points in Dy to discrete codes scattered in the latent space,
thus the locality information in the original input space are not well
preserved in the latent, discrete space [9]. To overcome such limita-
tions, we propose to regularize the discrete, hash layer with a dis-
criminator through an adversarial learning procedure [9]. We also
take advantage of the distribution matching property of the ad-
versarial network to force the low-dimensional, discrete space q(b)
to match a binary-like distribution such as a “discrete Bernoulli”
prior. If we enforce g(b|x) to “agree” with a distribution that has
all desired characteristics of a good hashing function, such as “bit
balance” and “bit uncorrelation” [23], the adversarial training pro-
cedure will force the encoder function f(x) to generate binary
codes with the same desired characteristics. Specifically, given an
input vector z ~ Bernoulli(p), defined as a vector where each of its
components z; is independently drawn from the same underlying
Univariate Bernoulli distribution with parameter p, we regularize
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Figure 2: Network architecture of the proposed Adversarial Factorization Binary Autoencoder model.

the posterior distribution g(b) to be similar to Bernoulli,(p). The ad-
versarial binary autoencoder (ABA) is trained with dual objectives
as follows:

(1) Minimize the reconstruction error from the coding space in the
decoding step.

(2) Constrain the coding posterior distribution, g(b) to agree with
the Bernoulli prior, Bernoulli,(p), where p is set to 0.5. An intu-
itive explanation of the regularization is that every dimension
of b will learn to divide as optimal as possible the original space
into two halves (thus its activation has about 50% chance of
being closer to 1 or closer to 0 — a “bit balance” [23]), where the
points in each half are more similar to those in the same half
compared to those in the other half — “bit uncorrelation” [23].

In the adversarial setting, the autoencoder’s encoding module
takes the role of a generator which is trained to fool the discrim-
inator. The discriminator tries to accurately divide its input into
two classes, real and fake for the Bernoulli samples z and the au-
toencoder’s encoding outputs b, respectively. The solution of this
adversarial procedure (or the minimax game) is obtained by solving
the following objective function:

rain max L(E,D) = rain max Ez~Bernoulli,(p)[l0g D(2)]

+ Ex~p, [log(1 - D(f(I(x))))]
where ©g and ©p are network parameters of the generator
and discriminator, respectively. For an optimal discriminator with
parameters ©7,, it can be proven that the training criterion of the
generator is as follows:

C(G) = —log(4) + 2 = JSD(Bernoulli,(p) || q(b)) (7)

where JSD(p || q) is the Jensen-Shannon Divergence between distri-
butions p and g. The global minimum of C(G) is achieved when the
non-negative, symmetric divergence

JSD(Bernoulli,(p) || q(b)) = 0 8)

and its solution is
q(b) = Bernoulli(p) )
In other words, the encoder network perfectly replicates the
Bernoulli-data generating process. Since the Bernoulli-data generat-
ing process samples each component z; of z independently (hence,
each bit is uncorrelated) from a Univariate Bernoulli distribution

with probability 0.5 (hence, each bit has 0.5 probability of being 1),
matching q(b) against the Bernoulli,(p) is exactly equivalent to gen-
erating bit-uncorrelated and bit-balance codes. Consequently, our
proposed regularized autoencoder learns an effective and optimal
hash function because it satisfies the following key characteristics:

e Achieve low quantization loss by generating samples that are sim-
ilar to the sampled, binary vectors z. Note that, using adversarial
training, our model minimizes JSD(Bernoulli,(p) || (b)) instead
of minimizing the expected quantization error, Ep_[|b — c| 12 [5].

o Achieve bit uncorrelation and bit balance by forcing the encoder
to replicate the bit-uncorrelated and bit-independence data gen-
eration process.

o Preserves the data manifold in the low-dimensional discrete space,
i.e., the encoder learns to map the original data points to an
effective manifold-preserving low-dimensional space in order to
have low-reconstruction cost.

We train the network using alternating stochastic gradient de-
scent (SGD) procedure in three stages:

o Train the autoencoder to reconstruct accurate samples from the
encoding space b by minimizing L

e Train the generator’s encoder to confuse the discriminator by
minimizing the familiar heuristic generator cost:

Lg = Ex~p, [~ 1og(D(f (I(x))))] (10)

e Train the discriminator to distinguish the true (bernoulli) samples
from the fake (autoencoder) ones by minimizing:

Lp = E;+Bernoulli,(p)[=108(D(2)] + Ex~p, [~ log(1-D(f (1(x))))]
(11)
The detail of the training algorithm is described in Algorithm 1.

5 EXPERIMENTAL ANALYSIS
5.1 Evaluation Procedure

Our hypothesis is that the carefully constructed segments (i.e., seed-
sets), obtained from advertisers, essentially define the advertising
targets; for example, instead of executing a campaign with an ex-
plicit target such as “reaching users who are movie-goers”, the
advertiser instead provides a seed-set of users and the look-alike
modeling system finds “similar” new users to reach during the cam-
paign. However, it should be noted that advertisers rarely provide



ALGORITHM 1: AFA Model Training
Input: Training data X,

Feature embedding size e,

Binary code size B,

Bernoulli sampling parameter p,

Batch size Np,

Number of training iterations L, I.
Output: W all parameters of the network
for number of training iterations L do

for a few iterations | do

e Sample a minibatch of N}, examples {x, . x(Nb)y,
e Sample m vectors {z(l), z(N”)} where
20 ~ Bernoulli,(p).
e Update the autoencoder parameters by minimizing
Lp4 in Equation (4).
e Update ©p by minimizing Lg using Equation (10).
end

e Sample a minibatch of Nj, examples {x(!), ..., x(Ne)}.

e Update ©p by minimizing Lp in Equation (11).
end

the rationale behind the creation of the seed-set. In such a scenario,
the only way to assess the off-line performance of look-alike mod-
eling algorithm is to analyze the recall of the seed-set from the
test data. A high value of recall indicates that the method is able
to discover the rationale behind the creation of a seed-set by the
advertiser.

Now, we will describe our evaluation procedure to analyze the
performance of the look-alike modeling technique. The estimation
of the off-line “Segment Recovery® task is similar to the work of
[22]. Given a random subset of a segment A, the goal is to find
similar users in order to recover A. In particular, we perform the
following procedure:

(1) Approximately sample |A|/2 number of users from the segment
A, i.e., randomly divide set A into two equal subsets denoted
by A1 and Aj. It should be noted that, in this case, the seed-set
denoted by X, will be equal to the set A;.

(2) Given Aj, we assess how many users of A will a method recover
at various extension thresholds m, where m is the multiple of
the number of users in A;. We define the following metrics for

evaluation:
|Xe N Az|
recall =—" (12)
@m |Az|
.. [Xe N Az
= —_— 13
precisiong,,, ] (13)

In addition, we calculate the limited area under the Precision-
Recall curves (equivalent to limited mean average precision or mAP)
of different methods [21]. For regression-based look-alike models,
we rank the users using the probability score of a user being a seed
user and select the top |Xe|, or m*|Az| ranked users to compute the
precision and recall values. For similarity based look-alike methods,
such as LSH or our proposed models, we rank the users by their
minimum Hamming distances to seed-users and select the top |Xe|

e Sample m vectors {20, ..., z2(Np)} where z() ~ Bernoulli,(p).

users. When there are ties, we randomly select users in the tied
ranks.

The reported recall metric indicates how well each method will
recover the original segment X, at various, specific values of m,
while mAP indicates the expected precision under all possible m’s
values. In look-alike modeling, a method with a higher recall at
the first few values of m (“early-rise”), for example, at m = 1, is
typically more favorable. In order to efficiently compute the evalu-
ation metrics on a single machine, we randomly select 20% of the
non-seed users, instead of using the entire set of non-seed users.
The reported metrics are averaged on several samples.

5.2 Comparison Methods

We compare the performance of our proposed method with various
state-of-the-art methods developed in the literature for solving
look-alike modeling problems.

o Locality Sensitive Hashing using Random Projection (LSH) [11]:
the state-of-the-art similarity-based look-alike modeling method
based on LSH with the cosine similarity function.

Iterative Quantization (ITQ) [5]: another similarity-based look-
alike modeling method based on the state-of the-art linear, hash-
ing model.

e Binary Autoencoders (BA): a similarity-based look-alike mod-
eling method using autoencoder with a fixed random noise for
binarization similar to that of semantic hashing defined in Section
4.2.

I-class SVM (1-SVM): a regression-based look-alike modeling
method which learns a probability density function using only
the seed-set X,. We observe that “linear kernel” gives the best
results in our experiments.

Degree-2 Polynomial (Poly2): a regression-based look-alike mod-
eling method employing the second-order polynomial classifi-
cation model. The positive class includes seed users while the
negative class is created from randomly selected negative users
from the database. Different from Linear Regression, Poly2 in-
cludes second-order feature interaction but the effective input is
significantly higher dimensional and sparser.

Linear Regression (LR): the most popular regression-based look-
alike modeling method by learning a linear classification model
using seed users as positive class and randomly selected negative
users from the database.

Factorization Machine (FM) [18]: a very effective regression-based
method that uses Factorization Machine as the classifier. FM can
effectively learn second order feature interaction from the original
high-dimensional sparse input.

Gradient Boosting Tree (GBT) [4]: similar to LR, another popular
regression-based method that employs a boosting-based classifier.
GBT can learn high-order feature interactions.

Factorization Autoencoder (FA): our proposed similarity-based
look-alike modeling using factorized autoencoder with similar
fix-random noise as that in BA as defined in Section 4.3.
Adversarial Factorization Binary Autoencoder (AFA): our pro-
posed FA that is regularized by a discriminator in an adversarial
training procedure as defined in Section 4.4.



Table 3: Recall values of the Segment Recovery Task at m = 1.

LSH 1ITQ BA 1-SVM | Poly2 LR FM GBT FA AFA | p-value
Apparel-1 0.3487 | 0.4143 | 0.4656 | 0.5223 | 0.5798 | 0.6102 | 0.5769 | 0.6036 || 0.6606 | 0.8528 | 8e-03
Electronics-1 0.3485 | 0.3939 | 0.4343 | 0.2273 | 0.3535 | 0.5758 | 0.4595 | 0.6566 || 0.8116 | 0.8434 | 9e-11
Home/Garden | 0.3783 | 0.4858 | 0.4570 | 0.5412 | 0.5783 | 0.5818 | 0.5711 | 0.6311 0.6389 | 0.7581 | 8e-08
Electronics-2 0.0217 | 0.0217 | 0.0217 | 0.0001 | 0.0001 | 0.0002 | 0.0068 | 0.0435 || 0.5975 | 0.6522 | 9e-11
Animal/Pet 0.4554 | 0.4870 | 0.5476 | 0.7568 | 0.8397 | 0.9137 | 0.8733 | 0.9413 || 0.8281 | 0.8997 4e-13
Apparel-2 0.4536 | 0.6665 | 0.6383 | 0.7568 | 0.7328 | 0.7548 | 0.7239 | 0.7764 || 0.6650 | 0.7659 3e-07

Implementation Details: We use the implementation of LSH pro-

vided in NearPy package 3. For FM, we use the implementation
from FastFM 4. The implementations of LR, Poly2 and GBT are from
Scikit-Learn °. All the autoencoders, including our proposed models,
are implemented using Tensorflow ¢ (Version 1.10). We use the same
encoder’s and decoder’s network structures for all autoencoders.
The encoder consists of two layers with 1000 units in each layer. For
adversarial models, we use a similar two-layer architecture with
1000 units in each layer. We train the neural models using ADAM
optimizer with a batch size of 100 examples, an initial learning rate
of 1e — 4 and a learning decay of 0.96 at every 1000 training steps.
We observe that using the batch normalization procedure stabilizes
the training process and makes the training procedure converge
faster and that dropout does not necessarily improve the general-
ization of the models. We also observe that employing the feature
matching loss [20], which matches the statistics of the last hidden
layer of the discriminator for real and fake samples, provides more
stability in training our adversarial models.

In this experiment, we measure the performance of all the com-
parison methods for the ‘segment recovery task’. Tables 3 and 4
show the average recall values of the methods at m = 1 and mAP
across different segments from six different partners (as described
in Section 3.3), respectively. To determine if the performance of
our proposed methods is significant, we calculate the paired t-tests
between our methods and the baselines. The improvements of our
models are statistically significant with p-values < 0.01. Due to
space limitation, we only report the p-values between AFA and the
next best baseline in Table 3.

5.2.1 Early-rise Performance Results. Table 3 details how each
method performs when the advertisers desire to find a narrower set
of look-alike users, a favorable condition known as “early-rise”. We
observe that similarity-based look-alike models, including linear
hashing models such as LSH and ITQ and deep models such as BA,
have worse recall values than those of regression-based look-alike
models, especially when there are more training data (for example,
for partners Apparel-1, Home/Garden, Animal/Pet, Apparel-2). As
discussed in Section 2, this is expected because regression-based
models utilize the supervised signal from the labeled data when
compressing the original data into the propensity scores. However,
when there are less training samples (for example, for partners
Electronics-1, Electronics-2), all similarity-based models outper-
forms regression-based models. This result shows an important
advantage of similarity-based approaches.

3https://github.com/pixelogik/NearPy
“http://ibayer.github.io/fastFM/
Shttps://scikit-learn.org
Shttps://www.tensorflow.org/
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Figure 3: Recall at values of m between 1 and 5 in the Segment
Recovery Task of the partners.

While it is expected that regression-based models have signif-
icantly better performance than that of similarity-based models,
our proposed deep similarity-based approaches significantly out-
perform even the best regression-based model, GBT, in most cases.
Specifically, AFA outperforms all other models with a significant
improvement in for the first four partners while it has comparable
performance with GBT for the last two partners, both of which
have more training data. The result is important because AFA not
only reduces the complexity of building look-alike models without
considering the supervised signal (as discussed in Section 2), a char-
acteristic of similarity-based look-alike models, but also achieves
superior performance compared to that of regression-based models.

5.3 Segment Recovery Results

5.3.1 Quality of Look-alike Users. Complementary to Table 3, Fig-
ure 3 shows the recall curve for different values of m and Table 4
shows mAP values of the compared methods. Overall, the results
exhibit consistent patterns as our observations from Table 3. While
regression-based look-alike models outperform linear, similarity-
based models and BA, our proposed methods show better look-alike
quality in all values of m, as observed in Figure 3. Our proposed



Table 4: mAP values for the segment recovery task of the partners.

LSH | ITQ BA | 1-SVM | Poly2 | LR FM GBT FA AFA

Apparel-1 0.2234 | 0.3411 | 0.5158 | 0.4187 | 0.4667 | 0.4846 | 0.4211 | 0.4655 0.7319 | 0.7623

Electronics-1 0.2178 | 0.2621 | 0.7591 | 0.1307 | 0.2219 | 0.4494 | 0.3627 | 0.5322 || 0.9339 | 0.9705

Home/Garden | 0.278 | 0.4104 | 0.5253 0.458 0.4894 | 0.4844 | 0.4924 | 0.5385 0.6591 | 0.6880

Electronics-2 0.0005 | 0.0005 | 0.4979 | 0.0007 | 0.0006 | 0.0007 | 0.0008 | 0.0036 || 0.6427 | 0.7015

Animal/Pet 0.3994 | 0.3347 | 0.5171 | 0.6869 | 0.7781 | 0.8777 | 0.8215 | 0.9151 || 0.7200 | 0.8496

Apparel-2 0.455 | 0.3164 | 0.4247 | 0.6366 | 0.6565 | 0.6785 | 0.6502 | 0.7054 || 0.6678 | 0.6967
method, AFA, also achieves a significant improvement on the aver-
aged precisions in most cases, as shown in Table 4. More importantly, 0.8
when the sizes of the seed sets are smaller (for example, for the two Partner
Electronics partners), our proposed models significantly outperform ) 06 e  Home/Garden
all other look-alike models. = Apparel-2

o4 Animal/Pet

5.3.2  Ablation Study. Tables 3 and 4, and Figure 3 also show the 0.2 : E::g;g:z::?
contribution of each individual component of our proposed model e Aoparel-i

with respect to all the performance metrics. FA extends BA with the
bi-interaction layer and the bi-interaction embedding reconstruc-
tion as discussed in Section 4.3, and AFA further extends FA with
the proposed adversarial training procedure as discussed in Section
4.4. The first observation is that the factorization component of
FA contributes significantly to the improvement of the proposed
models. It demonstrates that the presence of the factorization com-
ponent is very important. Furthermore, employing the proposed
adversarial training further improves the performance.

5.3.3 Discussion. To summarize, our experimental results demon-
strate the following conclusions:

® BA has worse performance than regression-based look-alike models
and our proposed models: vanilla autoencoders could not effi-
ciently handle sparse, high-dimensional data. Such data causes
deep models, in general, and specifically autoencoders to settle
in bad local minima, thus the low-dimensional discrete repre-
sentation is sub-optimal. The empirical results are consistent
with our discussion in Section 2. More importantly, our proposed
models efficiently learn and embed feature interactions in the
low-dimensional discrete representation.

o FA has comparable performance with regression-based look-alike
models while AFA performs even significantly better in most datasets.
It exploits higher-order interactions among the features and re-
duces the dimensionality of the input. The output of the autoen-
coder effectively allow the encoder to learn better low-dimensional
discrete representation of the high-dimensional, sparse input.

o AFA outperforms FA: adversarial training effectively regularizes
the autoencoder models.

o Both FA and AFA outperforms regression-based look-alike models
when the seed sets are small: one advantage of regression-based
models is their exploitation of the supervised signals of the seed
sets but they require a more involved training process when
there are many seed-sets and a full, computationally expensive
linear-scan in order to find look-alike users. However, our models
demonstrate that we can have a computationally efficient method
which also produces high-quality look-alike users, even in the
cases where regression-based models do not perform well.

4 8 16 32 64 128
Code Size
Figure 4: AFA’s Recall values at m = 1 for the segment recov-
ery task at different code sizes B.

5.4 Parameter Sensitivity

An important hyper-parameter while using similarity-based look-
alike models is the “size” of the discrete space, or the code size B.
Figure 4 show AFA’s recall values at m = 1 for various values of B
for all the partners. We observe that AFA’s performance does not
noticeably change when B reaches a certain value. One possible
reason is that when the discrete space is large enough, the encoder
is able to map a very small number of data points to a unique
discrete code (we will discuss how many data points, on average,
are mapped to a unique code in the next Section 5.5), thus making
it more flexible to reconstruct the original manifold in the discrete
space. More specifically, the number of possible codes in a discrete
space of size B is 25; for example, when B = 4, there are 16 possible
codes and when B = 32 there are roughly 500 million possible codes,
which makes the space large enough to accommodate the mappings
of all the data points in our datasets.

5.5 Computational Efficiency

To find look-alike users, similarity-based look-alike models build a
“candidate set” which likely has similar users and limit the search
to only this subset. This is much more computationally efficient
than a full-linear scan as in the case of regression-based look-alike
models. Although each model build its candidate set differently, one
criteria to determine the computational efficiency of a similarity-
based look-alike model is the distribution of the data points to the
codes in the discrete space. A model which has better look-alike
quality and lower number of data points, on average, assigned to
each code is more favorable because it is also more suitable to
distribute clustered data points in a distributed system for faster
look-alike retrieval.

Figure 5 shows the expected number of data points assigned
to a discrete code of our proposed AFA model and other baseline
similarity-based look-alike models. We observe that AFA has a
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Figure 5: Expected number of data points assigned to each
discrete code at different code sizes for similarity-based look-
alike methods. Smaller values are better.

lower expected number of points per code compared to both LSH
and ITQ in Figure 5. This shows that our proposed model produces
better quality look-alike users with fewer computations when it is
deployed in a production environment.

6 CONCLUSION

We proposed a novel and efficient similarity-based look-alike mod-
eling approach that learns to embed sparse, high-dimensional users’
data with complex feature interaction into a search-efficient, dis-
crete representation space. To achieve this, we developed a new
and effective neural network-based interaction layer which learns
higher-order interactions between features and a mechanism to
constrain the autoencoder’s low-dimensional embedding to become
binary by employing an adversarial training procedure. We have
shown that the proposed model outperforms other existing state-
of-the-art methods for the segment recovery task while being both
computationally efficient and easier for parallelization in a dis-
tributed computing environment.
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