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ABSTRACT Spatial domian_

We introduce a new problem, namely, check-in time prediction where
the goal is to predict the time when a given user will check-in to a
location of interest. We design a novel Recurrent Spatio-Temporal
Point Process (RSTPP) model for check-in time prediction. RSTPP
addresses two key challenges: 1) Data scarcity due to uneven dis-
tribution of check-ins among users/locations. 2) User trajectories
contain valuable information that is ignored by standard temporal
point process which only considers historical event times. RSTPP
is designed to learn the latent dependencies of event times over
both historical events and spatio-temporal information about loca-
tions a user visited before check-in to the location of interest. We
evaluate RSTPP on several real-world datasets, and it significantly
outperforms state-of-the-art event time predicting techniques. Our
work derives a set of practical implications that can benefit a wide
spectrum of applications.
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1 INTRODUCTION

Using GPS-enabled devices such as smartphones, people can con-
veniently share their locations in real-time. This trend of location-
sharing has led to the prosperity of Location-Based Social Net-
works (LBSNs). Traditional social networks including Facebook
and Google+ are endeavoring to add geo-spatial features to their
services, e.g., allowing users to “geo-tag" posts and report their
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Figure 1: An illustration of check-in time prediction.

check-ins to Point-of-Interests (Pols). Consequently, a huge amount
of check-in data which records the moving trajectories of millions
of individuals is being collected on a daily basis.

We propose to leverage massive amount of check-in data for
the problem of check-in time prediction. Specifically, given a
user and a location of interest (e.g., a Pol or a region), the goal
is to predict the time when the user will check-in to the location,
regardless of whether the user has visited the location before or
not. Figure 1 illustrates the check-in time prediction problem with
an example. A user trajectory consists of five successive check-ins
C = {c1,¢z,...,c5}. Using C as observation, the task is to predict
when the user will visit a given shop based on the knowledge
learned from historical check-ins to the shop.

As large-scale location data is becoming available from various
applications and platforms, the problem of predicting movements of
individuals has been gaining a lot of popularity. Existing works (e.g.,
[3,9, 10, 16, 20, 26]) mainly aim to predict the next location(s) a user
is going to visit given his/her current location. These techniques
cannot be directly applied to check-in time prediction.

Our objectives of this work are two-fold — to complement exist-
ing research works towards the goal of thoroughly understanding
human mobility patterns, and to derive practical implications for
real-world applications. Check-in time prediction can serve as a
building block for a wide spectrum of applications. For example,
it can be used to identify the users who are most likely (or not
likely) to visit a shop or an attraction within a designated time win-
dow. This information can be directly used in targeted marketing,
tourism service, ride-sharing, etc. Moreover, the ability to precisely
model a user’s check-in time to any Pol enables new types of ap-
plications that go beyond the current scope of check-in prediction.
For instance, given a collection of Pols, our solution can order these
Pols by the time that a user will visit them, i.e., predicting the user’s
itinerary. Using this information, a recommendation system can
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recommend a series of Pols/activities in certain orders that matches
the user’s itinerary, which is a new feature not offered by existing
recommendation systems.

Since our goal is to predict event time, Temporal Point Process
(TPP) can be used to tackle this problem. Standard TPP models
assume that the time of an event occurrence conditionally depends
on the time of its previous events. Therefore, TPP predicts a user’s
next check-in time to a location [ based on his/her previous check-
ins to the same location. However, there are two critical challenges
that need to be addressed for TPP to be applied on this problem.
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Figure 2: Check-in statistics of 4500 users and 965 locations
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(i) Check-in data scarcity: User check-ins are abundant but highly

unevenly distributed among users and locations (Figure 2). For ex-
ample, the Foursquare dataset [23] contains about 300 million check-
ins but less than 10% of the Pols have more than 10 check-ins [16].
As a result of the uneven distribution of check-ins, locations that
have repeated visitors, i.e., users who visited the location more than
once, are extremely rare. This is because check-ins are self-reported
and hence are sparse and incomplete. If we model check-ins to a
location as event sequences, a large proportion of the sequences
will have only one event, making it very hard, if not impossible, to
train a valid TPP model. Moreover, for new visitors to a location, no
historical event is available to make predictions.

(ii) Drawback of standard temporal point process: Given a lo-

cation of interest [, standard TPP models (e.g., Hawkes process)
make predictions solely based on the user’s historical check-in
times to . Locations a user visited before [, which may contain valu-
able information, are simply ignored. For example, if a user just had
a meal at a restaurant, it is not likely that he/she will immediately
visit another restaurant. Historical check-ins may reflect a user’s
preference for different locations, which also govern his/her future
check-in behaviors. Such factors can hardly be captured by looking
only at check-in times to the location of interest.

Our contributions: We address the above two challenges using
a novel Recurrent Spatio-Temporal Point Process (RSTPP) model.
We design a modified Long Short Term Memory (LSTM) network to
learn the latent dependencies of next event time over diverse user
and location information from both historical check-ins to [ and
other locations users visited before I. By exploring the long short-
term memory mechanism, RSTPP is able to identify and remember
most relevant check-ins while forgetting the influence of irrelevant
check-ins. We summarize the contributions of this paper:

o Introduce the check-in time prediction problem which has practi-
cal value for a wide variety of applications. Given a user and a

location, the goal is to predict the time when the user will visit
the location.

e We propose a novel RSTPP model which combines long short-
term memory network and temporal point process. Compared
to standard TPP models, RSTPP has two unique features: 1) It
can take advantage of relatively abundant precedent-location
information on users’ trajectories to improve accuracy. 2) Even
if a user has not visited [ before, our model is still able to make
predictions using only his historical trajectory as observation.

e Our model is evaluated on real-world datasets. Our experimental
results show that RSTPP outperforms state-of-the-art event time
prediction techniques for various prediction tasks.

The rest of the paper is organized as follows: Section 2 formally
defines the problem. Section 3 presents the proposed model. Ex-
perimental results are shown in Section 4. Section 5 summarizes
related work. And Section 6 concludes the paper.

2 PRELIMINARIES
2.1 Problem Statement

We define the notions of check-in and trajectory used in this paper.

Definition 2.1 (Check-in). Let U denote a set of unique user iden-
tifiers, L denote a set of locations, and T denote the time domain. A
check-in c is a triplet (u,[,t) € U X L X T, which indicates the user
u has visited [ at time ¢.

Definition 2.2 (Trajectory). Let C be the collection of check-ins
and u € U a user, then the set C, := {u’ = u|(u’,],t) € C} is the
trajectory of u.

Here, a location can refer to a specific Pol, e.g., a hotel, or a
user-defined spatial region. In LBSNs such as Foursquare, locations
are usually associated with some descriptive information, such as
its coordinates, category, user ratings, etc. We formally define our
problem as follows:

Definition 2.3 (Check-in Time Prediction). Given a location of
interest [ € L, a user of interest u € U, and a sequence of historical
check-ins {c1,c2, ...,cx} € C of u, predict the next time ¢ when u
will check-in to [.

2.2 Background

Temporal point process is a class of stochastic process that models
the time of a sequence of events, denoted by {t1, t2, ..., t,} where
t; € R* is the time of the i*" event. In this paper, an event of interest
is a user u check-in to a given location /. Note that the trajectory
of u may contain many check-ins, but only those check-ins to [ are
considered to be events. Typical temporal point process assumes
that the time of an event conditionally depends on the time of
historical events. This dependency is described by the conditional
intensity function, which has the following form:

A(t)dt = P{an event occurs in [t, t + dt)|H} (1)

Here, A(?) is the intensity function which can be considered as the
instantaneous probability a new event will occur at time ¢. The
probability is conditional on H, which is a set of historical events
occurred before t. Let t,; denote the time of the last event in H, the



probability that no event has occurred in [ty, t) is:

S(tH) = exp(— [, A(z)dr) @)

Hence, the conditional probability density that the next event will
occur at time ¢t given H is:

f@tH) = A()S(¢|H) ®)
Using the density function, we can compute the expected time of
the next event as:

fexp = [, tf(t1H) @

Equation (4) usually does not have an analytic solution [4]. Thus we
obtain approximate numerical solutions to estimate the parameters
of the intensity function. Specifically, we can maximize the joint
log-likelihood of observing the historical events H:

I(H) = Zi_; log(f(ti|H)) ®)
There is a rich family of TPP models, each with a unique form of
intensity function. Instead of empirically constructing an intensity
function for our problem, we design a long short term memory
network to learn an intensity function using information from both
user profile and his/her check-in data.

Long Short Term Memory [12] is a special type of recurrent
neural network that is capable of learning both long-term and short-
term dependencies between current event and historical events.
The historical check-in data of a user may be accumulated from
a relatively long time period (e.g., several weeks or even a year).
Consequently, a new check-in event may reflect a user’s habits and
preferences that are only obvious when looking at long-term check-
in behaviors. On the other hand, there might also be many historical
check-ins that are irrelevent to a new check-in. As such, we want
the model to be able to identify and remember relevant check-ins
while forgeting the influence from irrelevant events. LSTM is found
to be particularly suitable to model such complex dependencies in
various applications [2, 19, 22].

Our goal is to allow the model to learn from the information
of locations a user visited before an event of interest occurs. Such
information may reflect the user’s mobility patterns and are hence
valuable to our problem. To this end, we modify a LSTM to take
a user trajectory as input. A trajectory which may contain sev-
eral events, only one event, or no event at all. We use diverse
spatio-temporal information contained in the trajectory to make
predictions for next event time.

3 RECURRENT SPATIO-TEMPORAL POINT
PROCESS

Historical events are scarce in check-in data due to the lack of
repeated check-ins to the same location by a user. This causes
difficulties in both training and predicting stage of TPP models.
We enrich the event sequences with Precedent Check-ins, which
are check-ins a user reported before check-in to [, the location of
interest. Figure 3 illustrates a normal sequence of events and the
same sequence enriched with precedent check-ins.

Our intuition is that consecutive check-ins are correlated. If a
user checks-in to a restaurant, this behaviour shall decrease the
user’s intensity to visit another restaurant at the moment. But
check-in to a shop may not affect the intensity to visit a nearby
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Figure 3: Example of an enriched event sequence.

shop of the same type. Similarly, moving towards or away from a
location shall cause the intensity to visit the location to fluctuate
accordingly. These examples are straightforward but the actual
dependency could be much more complex. Our RSTPP model is
designed to discover such dependencies.

3.1 Feature Representation

Each check-in in the sequence is represented by a feature vector
which contains the information about the check-in in a more struc-
tured manner. The feature vector for a check-in ¢; is denoted by y;,
which consists of the following elements:

(1) Localized event time t; € R. Time of the earliest check-in to the
location is set to 0 and the remaining times are set accordingly
in the unit of hours or days.

(2) Additional time-date information which indicates if the check-
in occurred on a weekday or a weekend, and the time period of
the day (e.g., morning, afternoon, or midnight). This is because
humans demonstrate different check-in patterns at different
time periods.

(3) Euclidean distance between the check-in location to the location
of interest [. The distance is computed using coordinates of the
locations and normalized to the range of [0, 1], where 1 indicates
the distance is negligible, and 0 means that the distance is larger
than a threshold denoted by 6p.

(4) Category of the check-in location, such as Restaurant or Hotel.
We use a x-bit vector to represent the category where x is the
total number of categories. The i‘" bit is set to 1 if the location
belongs to the i’ h category, otherwise 0.

(5) Number of users overlapping with the location of interest /. Let p
denote the check-in location of ¢;. We compute the proportion
of users that have visited both p and I within a given time
window. It reflects the inherent relevance of the two locations.
The overlapping ratio is computed as follows:

OR=C}, / coce, ©)

where C;’ is the number of users who visited both [ and p

>

within a time window v. C} and C;j are the number of visitors
to [ and p within the time window, respectively.

Previous check-ins by friends, which reflects the social aspect
of check-in behaviors. The friend information can be collected
from a user’s social network. We calculate the minimal time
interval from #; to a check-in to the location of interest by a
friend of the user. The value is normalized to [0, 1] such that 1
indicates a friend just check-in to the location and 0 means the
minimal time interval is larger than a threshold denoted by 0r.

(6

~



Each vector is also associated with a Boolean value indicating
whether it is an event or a precedent check-in. Not all the above
information are always available on LBSNs. e.g., some LBSNs do not
provide location categories. In such cases, the unavailable features
are ignored in generating the vector. The user feature vector py,
contains two values.

The first value is the user’s preference to the location of interest
l. We incorporate both explicit and implicit preferences. Explicit
preference is the user’s rating for [, which is usually not directly
available for every location, but can be estimated using techniques
such as matrix factorization [14]. As for implicit preference, we
calculate the user’s check-in frequency to [, i.e., the total number of
check-ins to [ on the user’s trajectory, divided by the length (time
between the first and the last check-in) of the trajectory.

The second value is the normalized distance between the location
of interest and the user’s home. The explicit home address of a user
is usually unknown. Here we use the method introduced in [25] to
estimate a user’s home using his historical check-ins.

3.2 Model Architecture

Figure 4 illustrates the architecture of the proposed RSTPP model.
The core of RSTPP is a set of hidden network layers and trans-
formation functions (inside the dash-line box). The model takes
an enriched event sequence through the input layer. Then, the
hidden network layers update the internal status of the model by
considering both current input and its previous status. As such, the
model learns a compressed representation of all relevant historical
check-ins which is stored in its internal status. Finally, the output
layer uses the internal status to construct a conditional intensity
function, which is used to make prediction of the next event time.

Model Input: The input to the model is a sequence of events en-
riched with precedent check-ins, denoted by {c1, ¢z, ..., cn } where
¢i (1 <i < n—1)can be either an event or a precedent check-in.
Using these check-ins, the goal of the model is to predict the next
event time after ¢,,. When fed into the model, a check-in ¢; is repre-
sented by a feature vector y;. The model then iterates through the
input sequence in n steps, and updates its internal status at each
step. Comparing with standard LSTM, the input to our RSTPP at
each step can be a single check-in, or a series of check-ins within
a time window w. In the latter case, the accumulated information
from these check-ins will be used as input by the model.

Internal Status Update: The internal status of the model at the
ith

step can be represented as a vector h;. In each step, the vector
is updated according to the previous network status and current
inputs. The information of check-ins is incorporated into the status
vector during this updating process. Specifically, the status updating
of our LSTM network is determined by the type of current input
(i.e., if is a precedent check-in or an event).

The first step of status updating is to forget information of irrel-
evant historical check-ins. This is implemented by the forget gate
layer F;, which is computed as follows in our model:

. J9Mrplhi1.yil + br).
1 (i.e., do not forget)

if ¢; is an event
(7)

otherwise
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Figure 4: The proposed RSTPP model architecture.

Here, M is the weight matrix of the forget gate layer, b is a con-
stant, and g(-) is an activation function, for which we choose the
sigmoid function g(x) = exp(1/1 + e¥). [+, -] denotes the concate-
nation of two vectors. Note that the forget step will be triggered
only for events. As for precedent check-ins, all information should
be kept because it will still be unclear which check-in(s) might
influence the next event.

Then, the model decides which new information shall be remem-
bered. This is implemented with two different hidden layers, the
input gate layer I; and the candidate cell status layer S;. Depending
on the type of input, they are updated as follows:

7= g(Mylhi-1,Yi] + br), ifc;isan event ®)
e g(M; [hi—1,yi] + b;), otherwise
g = tanh(Mg[hi-1,Yi] + bs), if c;is an event ©)
a tanh(Mé [hi—1,yi] + bg), otherwise

In the above equations, My, M}, Mg, M g are weight matrices and
by, b;, bs, bé are constant parameters. We use tanh as activation
function since here we want the output value to be in the range of
[-1, 1]. Finally, Y; represents the accumulated check-in information
from a series of successive check-ins occurred in a certain time
window w from check-in time of y;, which is defined as follows:

Yi = Wiyi + Zo<(ti—t;)<w) fti = t)Wr = y; (10)



where the condition (¢; — tj) < w defines a time window that
includes all the precedent check-ins and events within w from the
time of ¢;. Wi and WI’ are the input transformation vectors, and
f(At) is the time-sensitive impact-tuning function. Specifically, it
is a monotonically non-increasing function with an output range
of [0,1] and f(0) = 1. f(At) is meant to explicitly decrease the
impact of “old" check-ins while having little influence on most
recent check-ins. This is because temporally close check-ins are
more likely to be relevant to each other.

The next step is to update the cell status, denoted by S;. It is
updated by “forget” the information marked by the forget gate layer
while “remember" new information provided by the input gate and
candidate status layer:

Si = FiSi—1 + IiSNi (11)

After status updating, the cell status now records the information
that should be passed to the next step. And finally, we can update
the vector representation of the internal network status:

{g(MH [hi-1, Y;] + by )tanh(S;), if ¢; is an event (12)
i =

g(M;_I [hi-1,yi] + by )tanh(S;), otherwise

Note that both S; and h; are passed to the next step of the model
through the recurrent edges.

Model Output: Intuitively, the status vector h; can be seen as a
latent representation of knowledge learned from all previous check-
ins by the model. We can now compute the conditional density
function of next event time using h; as follows:

At) = exp(WThi + Belt — t1) + BaD + BT py + b) (13)

The computation involves several factors: WT h; computes the in-
fluence of previous check-ins, f;(t — t;) and ;D represent current
temporal and spatial impact, respectively, where D is the Euclidean
distance between current location and the location of interest. p;,
is the aforementioned user vector. Finally, b is a constant base
intensity for the location. Note that the exponential function guar-
antees the intensity is positive. The intensity function is then used
to predict the time interval between current check-in ¢; and the
next event c;, defined as: IAi,j = fj — t;. Here fj is estimated using
Equation (4).

Note that the RSTPP model may generate multiple predictions for
the time of the same event. This is because if an event has precedent
check-ins, each of the check-ins will generate an output but they
have the same next event. In this case, we will use the output of the
most recent precedent check-in as the final prediction for the event
time. There are two reasons behind this: 1) temporally close check-
ins are usually more relevant to each other. 2) The output of the most
recent precedent check-in is supposed to incorporate information of
all the precedent check-ins and historical events, thus shall contain
more complete information. If an event has no direct precedent
check-ins, i.e., it follows another event with no other check-in in
between, then the event will have a single predicted time. This
design guarantees that a valid prediction can be made even for
users who have never visited the location of interest. In that case,
all his/her check-ins will be treated as precedent check-ins, since
no event appears in the sequence.

Model Training: For a given location of interest, the training
dataset is a collection of historical user trajectories. Each trajectory
contains at least one check-in to the location as the ground truth.
We use the Back-Propagation Through Time algorithm [18] to train
the proposed RSTPP model. The loss function we used is the neg-
ative log-likelihood of observing the training instances (given in
Equation (5)). During each iteration of the training process, output
of the model is fed into the loss function and its parameters are
updated accordingly in the back propagation stage using stochas-
tic gradient descent until it achieves convergence. Due to space
constraints, we will not elaborate on these classical algorithms.

4 EXPERIMENTS

In this section, we perform a rigorous set of experiments using
different datasets and compare the performance of the proposed
RSTPP model with several state-of-the-art methods.

4.1 Dataset Description

We use several check-in datasets collected by various location-based
social networks and web services.

Foursquare! : This dataset was collected from Foursquare [23].
We use the 227,428 check-ins in NYC and 573,703 in Tokyo. Each
check-in contains user ID, location ID, coordinates, and time. Using
the user ID or location ID, we retrieve the user’s friend list and
location category on Foursquare.

Gowalla? : This most widely used data set was collected by the au-
thors of [3] from the LBSN Gowalla. This dataset contains 6,442,890
check-ins reported by 196,591 users globally. Location category
is not available in this dataset. And since Gowalla is closed now,
we cannot collect such information online. Thus we will ignore
location category for our experiments on the dataset.

Brightkite? : The dataset is collected from another (now closed)
LBSN but smaller in scale compared to the above two data sources.
The dataset is also collected by the authors of [3]. It contains
4,491,143 check-ins from 58,228 users. Similar to the Gowalla dataset,
location category is missing in this dataset.

Yelp* : Besides check-ins, this dataset provides information such as
user-location ratings, user information, and location information.
However, similar to Foursquare, the social network of users is not
included in the dataset and it is not available on Yelp.com. We do
not use social information for our experiments on this dataset.

4.2 Comparison Methods

Baseline models: We compare the proposed model to a set of
generic time-to-event modeling techniques, including the state-of-
the-art temporal point process-based techniques.

e Most popular time (Popular). This method returns the most
popular check-in time in a day for a given location as the pre-
dicted check-in time. To find the most popular check-in time,
we fit a mixture of two normal distributions over 24 hours of a
day for the location using all its check-in times. This is because

! https://sites.google.com/site/yangdingqi/home/foursquare-dataset
2 https://snap.stanford.edu/data/loc- gowalla.html

3 https://snap.stanford.edu/data/loc-brightkite html

4 https://www.yelp.com/dataset_challenge
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Table 1: Performance of predicting check-in time to a Pol, showing RMSE and (standard deviation), unit: day.

Model Repeated visitors only New visitors only All check-ins a model can use
Foursquare ~ Gowalla  Brightkite Yelp Foursquare ~ Gowalla  Brightkite Yelp Foursquare ~ Gowalla  Brightkite Yelp

Popular 6.3751 6.5258 8.7713 7.3505 7.5762 6.9939 9.0177 8.3011 6.6520 6.7785 8.7888 7.5633
(1.9014)  (1.8835)  (2.2176)  (2.0114)  (1.6359)  (1.8510)  (2.0228)  (1.8144)  (1.7135)  (1.6202)  (1.9947)  (1.9761)

Linear 2.1018 1.6662 3.3810 2.5159 2.2218 2.0100 2.9923 2.6006 1.9970 1.8541 2.4510 2.5013
(0.5931)  (0.4858)  (0.5219)  (0.6220)  (0.5217)  (0.4344)  (0.5561)  (0.5482)  (0.5120)  (0.4036)  (0.5333)  (0.5585)

Average 4.1157 3.0893 5.2489 4.9782 4.4336 3.7117 5.2210 4.6527
(1.3816)  (1.3034)  (1.5948)  (1.4229) (1.4481)  (1.3920)  (1.5537)  (1.5871)

Hawkes 1.8703 1.4839 1.5051 1.6592 Cannot Support 2.2139 2.1788 2.2938 2.1929
(0.4712)  (0.4359)  (0.4007)  (0.4251) (0.4849)  (0.4937)  (0.4150)  (0.4672)

sC 1.5834 1.4779 1.4025 1.6350 2.0345 2.0978 2.1960 2.2935
(0.3226)  (0.3666)  (0.3583)  (0.3711) (0.4014)  (0.3715)  (0.3903)  (0.3677)

ACD 1.7793 1.4745 1.3345 1.7001 2.2400 2.3333 2.3519 2.2744
(0.3920)  (0.3812)  (0.3710)  (0.3449) (0.4019)  (0.3610)  (0.3229)  (0.3905)

RMTPP 1.4947 1.4309 1.4032 1.6312 2.1353 2.0994 2.0375 2.2017
(0.3621)  (0.3400)  (0.3511)  (0.3379) 0.3977)  (0.3430)  (0.3317)  (0.3708)

RSTPP 1.1202 1.1008 1.1328 1.3010 1.1403 1.2011 1.3329 1.2915 1.1019 1.1575 1.2452 1.2793

(0.3151)  (0.3411)  (0.3559) (0.3317)  (0.3560)

(0.3305)  (0.3295)  (0.3403)  (0.3527)  (0.3419)  (0.3231)  (0.3445)

the most popular visit time of Pols, such as restaurants, usually
demonstrate a clear two-peak pattern.

e Linear regression (Linear). We use standard linear regression
to fit a model where the input is the feature vector generated for
the current check-in (the same as the one used in RSTPP), and
the predicted variable is the time till the next event.

e Average inter-event time (Average). This method returns the
sum of previous event time and the average inter-event times
(time between two successive check-ins to the location of interest)
of all visitors to the location as prediction.

e Hawkes process (Hawkes) [11]. It has the following intensity
function: A(¢|H) = yp + ath<t y(t, tj), where yq is the base
intensity and y(t, tj) a kernel function selected by the user. In
our experiments, we use the exponential kernel.

e Self-Correcting process (SC) [13]. The intensity function is:
A(t|H) = exp(pt — X4, <; a) with two parameters y and a to be
learned.

e Second-order Autoregressive Conditional Duration (ACD) [6].

It has the following intensity function: A(t|H) = yo + Z;’LO ajd;-j,
where d;—; is the duration between the ith and jt" events.

e Recurrent Marked Temporal Point Process (RMTPP) [4]:
The state-of-the-art TPP model. Note that the event marker is
not a necessary component in our problem. Thus we will feed
a dummy marker to RMTPP in the training process and only
use the predicted next event time. The size of hidden layers of
RMTPP is set to be the same value as the ones used in our model.

We use the implementations provided by the authors of [4] for
the TPP-based models. The other simple baselines are implemented
using standard R library. Since the goal is to predict the next check-
in time to a specific location, the TPP-based models can only be
trained on sequences that contain repeated check-ins to the same
location. Otherwise, they cannot learn the dependency between
event times since there may only be one event per visitor.

RSTPP Model settings: > We select the hyper-parameters as fol-
lows. The check-in time window w is set to 12 hours, because

SUpon acceptance of this paper, the implementation of the proposed model will be
hosted on Github repository for public use.

check-ins that are more than 12 hours apart are usually less rele-
vant to each other. As for the time-sensitive impact-tuning function,
we use f(At) = b/log(e + At) where b is a parameter to be learned.
Each check-in has a label that indicates its time period of the day:
Morning (5:00am - 10:00am), Noon (10:00am - 2:00pm), Afternoon
(2:00pm - 6:00pm), Night (6:00pm - 11:00pm), LateNight (11:00pm
- 5:00am next day). We use these time periods because they usu-
ally reflect different check-in patterns. The time window v used to
compute visitor overlapping ratio of two locations is set to v = {co,
24hr, 8hr, 4hr, 1hr}, as such, five overlapping ratios will be gener-
ated and added to each feature vector using different time windows.
The distance threshold 8p used to generate feature vectors is set to
10km and the time threshold 67 is 12hr. The size of hidden layer is
512. The learning rate is set to 0.01 with a momentum of 0.9.

4.3 Results and Analysis

For a comprehensive performance evaluation, we design four predic-
tion tasks. Each task targets certain types of real-world application
scenarios.

Task I: Predict check-in time to a Pol:

First, we select a subset of locations having at least one repeated
visitor, so that the baseline models can be trained. The four datasets
contain 8519, 21273, 4495, and 3970 check-in sequences after the
selection, respectively. On average, each check-in sequence contains
2.37 events and has a duration of 14 days. The proposed RSTPP
model is trained and tested on the same sequences but enriched
with precedent check-ins. For all the models, 80% of randomly
selected user trajectories are used for training while the rest are
used for testing. If a user has visited a location for k times, the
first k — 1 check-ins are used as observations to predict his kth
check-in time. We report both mean and the standard deviation of
the Root-Mean-Square-Error (RMSE) between the predicted and
actual check-in times (in days).

Second, we train RSTPP model using only locations without
repeated visitors. The baseline models, except for the popular and
linear model, cannot support such scenarios and hence cannot be
compared against. During testing time, we make predictions only



Table 2: Performance of predicting check-in time to an area, showing RMSE and (standard deviation), unit: day.

Model Repeated visitors only New visitors only All check-ins a model can use ]
Foursquare ~ Gowalla  Brightkite Yelp Foursquare ~ Gowalla  Brightkite Yelp Foursquare ~ Gowalla  Brightkite Yelp

Popular 6.2890 5.9712 8.2970 6.9935 6.8512 6.2001 8.5109 7.2324 6.4883 6.0974 8.2996 7.1953
(1.8109)  (1.7993)  (2.1114)  (2.0531)  (1.5739)  (1.6655)  (1.9351)  (1.8080)  (1.6811)  (1.5405)  (2.0150)  (1.9935)
Linear 2.0410 1.6075 2.9750 2.1417 2.1958 1.7795 2.8895 2.4535 2.2518 1.8694 2.4510 2.3944
0.6227)  (0.4153)  (0.5771)  (0.6015)  (0.4610)  (0.4088)  (0.5183)  (0.5479)  (0.5051)  (0.4100)  (0.5212)  (0.5510)
Average 3.7520 2.8950 4.9777 4.5212 4.0033 3.3105 4.8528 4.6048
(1.3143)  (1.1175)  (1.6156)  (1.3319) (1.2508)  (1.2995)  (1.5460)  (1.4561)
Hawkes 1.5328 1.5002 1.4339 1.5209 Cannot Support 1.5729 1.5493 1.4665 1.5139
(0.4320)  (0.4400)  (0.3620)  (0.4188) (0.4179)  (0.4228)  (0.3750)  (0.4093)
sC 1.3550 1.2298 1.3570 1.5120 1.4866 1.2585 1.4480 1.4765
(0.3375)  (0.3145)  (0.3277)  (0.3169) (0.3351)  (0.2982)  (0.3328)  (0.3210)
ACD 1.4079 1.5358 1.4295 1.5333 1.5625 1.5917 1.5680 1.6232
(0.3885)  (0.3531)  (0.3203)  (0.3071) (0.3623)  (0.3255)  (0.3017)  (0.3456)
RMTPP 1.3015 1.2078 1.4700 1.4955 1.4812 1.3995 1.5030 1.5184
(0.3431)  (0.3057)  (0.3219)  (0.3273) (0.3339)  (0.3333)  (0.3204)  (0.3177)
RSTPP 1.0943 0.9766 1.1010 1.1507 1.1430 1.1933 1.2052 1.1533 1.0924 1.0529 1.2101 1.1336

(0.3100)  (0.3107)  (0.3157)  (0.3115)  (0.3298)

0.3207)  (0.3109)  (0.3150)  (0.3077)  (0.3300)  (0.3123)  (0.3005)

for new visitors, and hence only precedent check-ins can be used as
observations. Similarly, 80% of the trajectories are used for training
and the remaining are used for testing.

Finally, we let each model use as much data as it possibly can.
RSTPP, popular, and linear model are trained using all check-ins.
The other models are trained using locations with repeated visitors.
We make predictions for both repeated and new visitors. For the
TPP-based baseline models, a prediction is made using only the
base intensity value for new visitors.

Table 3: Prediction error w.r.t. number of Pols per area.
#Pol per area
5 10 15 20

Popular 6.233 6.180 6.025 5.418
Linear 2425 2204 2.053 1.970
Average 5.121 5.060 4579 4.334
Hawkes 1.562 1469 1.463 1.447
SC 1.534 1438 1.427 1425
ACD 1.507 1.554 1.537 1.492
RMTPP 1473 1455 1.448 1432
RSTPP 1.093 1.067 0.949 0.934

Model

The results for this task are shown in Table 1. The proposed
RSTPP outperforms all the baseline models in terms of RMSE, which
shows that incorporating location information of precedent check-
ins can significantly improve the prediction performance. RSTPP
shows better performance on the Foursquare dataset compared to
other datasets. It can be explained by the fact that the Foursquare
dataset provides most complete information about locations and
users (i.e., location categories and user social connections), which
is not available in other LBSNs. We hypothesize that the proposed
model can be further improved if more complete user trajectories
were available to the model.

RSTPP significantly outperforms the baselines in predicting
check-in time for all types of visitors. This is due to the domi-
nating majority (>90%) of check-ins in the datasets were made by
new visitors. When making predictions for such new visitors, the

TPP-based models can only use the constant base intensity, result-
ing in an obvious drop on the average performance. In contrast,
RSTPP can use precedent check-ins of new visitors as observations.

Task II: Predict check-in time to an area:

A location can also be a pre-defined spatial area. In this task, we
generate an area as follows: First, we randomly select a Pol and
find its k-nearest neighbors. The k value is randomly selected in
[5,20]. Then, these Pols are treated as an area, and check-ins to any
of these Pols are counted as check-ins to the area. We then generate
1,000 such areas in this manner for each dataset. The TPP models
benefit from the generated check-ins since they boost the number
of repeated visitors to a location by 5.5 times on average.

Table 4: Prediction error w.r.t. number of locations to order.
#Locations to order
2 3 4 5
Popular 0.508 0511 0.511 0.513
Linear 0.376 0.391 0.403 0.403
Average 0.510 0.541 0.512 0.509
Hawkes 0.257 0.262 0.300 0.309
SC 0.254 0.271 0.295 0.310
ACD 0.268 0.274 0.304 0.310
RMTPP 0.255 0.268 0.292 0.309
RSTPP 0.182 0.190 0.232 0.239

Model

Similarly, we train three sets of models using repeated visitors
only, using new visitors only, and using all check-ins a model can
use. The comparison results are shown in Table 2. Note that even
with the event sequences of a much larger number of repeated visi-
tors as training instances, the baseline methods are outperformed
by the proposed RSTPP model for all the test cases.

We also analyze the performance in areas with different size (the
number of Pols in the area)(Table 3). In general, all models have
better performance in larger area compared to smaller ones. The
reason is that larger areas are likely to have more repeated visitors
and more events per visitor, which benefits the training process of
all the models. The proposed model steadily outperforms all the
baseline models in different areas.



Task III: Predict the check-in order to multiple locations:

Finally, we evaluate the ability of our model to predict a user’s
check-in order to several given locations. That is, given k different
locations, sort them by the predicted check-in time of the user. For
this task, we use the Kendall’s Tau as performance metric, which is
commonly used to evaluate ranking results.

Kendall’s Tau (r) is the number of inversions in the predicted
ordering of locations compared to the actual order of check-ins. A
pair of locations is called an “inversion" if their actual order of a
check-in pair is inverted in the prediction result. As such, 7 = 0
means the ordering is completely correct. Note that the Kendall’s
Tau for ordering k locations can be in [0, 2k]. Therefore, we use the
normalized Kendall’s Tau (in range [0, 1], the lower the better) to
make it suitable for fair comparisons.

The models are trained with all the check-ins they can use as
described in Task II. For test instances, we select only users who
reported at least 10 check-ins. If a user has n check-ins, we use the
first n—k check-ins as observation, to predict the check-in times for
the last k locations and sort them accordingly. The results (averaged
over all the test sequences for each model) are shown in Table 4
with respect to k = {2, 3, 4, 5}. Predicting the check-in order of a
large number of locations appears to be more challenging due to
the much larger prediction space. But our RSTPP model shows the
best overall performance with various values of k.
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Figure 5: Prediction error w.r.t. the number of precedent
check-ins used.

Task IV: Using different number of precedent check-ins:

This task aims to directly evaluate the advantage of using prece-
dent check-ins in our model. Specifically, we select a set of trajec-
tories from the four datasets, such that each trajectory contains
repeated visits to some randomly selected locations of interest.
Then, we adjust the number of precedent check-ins that can be
used on each trajectory from 0 to 15, where 0 means the trajec-
tory contains only events (i.e., all precedent check-ins are removed)
while 15 corresponds to at most 15 precedent check-ins can be
used by a model. At each test point, we train a proposed model
and compare its performance with RMTPP, which is the best per-
former among the baselines. The two models are used to predict
the check-in time to a Pol and the check-in order to 3 locations.
The results are shown in Figure 5 (a) and Figure 5 (b). Note that
the performance of RMTPP is shown as a straight line since it does
not use precedent check-ins. In contrast, RSTPP shows significant
improvements on prediction error as the number of used precedent
check-ins increases.

4.4 Practical Implications

e Data scarcity is a prevalent problem in check-in data mining [10,
16, 26]. We show that this problem is tractable by exploring
possible ways to “enrich” the data. For check-in time prediction
specifically, it is crucial to consider the entire trajectory of a user.
A large number of users’ check-ins demonstrate patterns in both
spatial and temporal dimension. Hence, consecutive check-ins
within a short time period are usually correlated.

o The aforementioned new applications are made feasible with the
proposed model. Pol owners can use our model to find future
visitors, as well as their check-in time, to their Pols within the
next 1 to 2 days. Our model also achieves good accuracy in the
itinerary prediction, which can be used to recommend locations
in an order that best matches a user’s itinerary.

e Dense and complete check-in data is the key to check-in time
modeling. Such data are generated by highly active users. Mod-
els trained on such data constantly outperform the ones trained
using sparse trajectories, even when the total number of trajecto-
ries/users used are the same. It is worth studying how to better
motivate LBSN users to report their complete trajectories.

In check-in time modeling, information derived from a user’s

profile (e.g., social connections) are of less importance compared

to their locations. It appears that a user’s historical check-ins
can tell much more about the user’s preference and behaviour
patterns than what he/she is willing to share in their profile.

5 RELATED WORK

5.1 Human Movement Prediction

The first large-scale study of human mobility patterns using spatio-
temporal data collected by LBSNs on the Internet was done by Cho
et al. [3]. By analyzing the data, the authors identified a set of factors
that affect a user’s moving patterns. Based on these factors, they
designed a set of predictive models which can reproduce a user’s
movement. Several techniques have since been proposed to predict
the next location a user is most likely going to, given his current
trajectory. Noulas et al. [16] proposed to extract spatio-temporal
features from users check-in data and then train a model on these
features for the next location prediction. Unlike plain coordinates,
check-in data contains the exact place (e.g., a store, a coffee shop)
a user visited, which allows a model to learn from features such
as location type. A few works also explore the “temporal” aspect
of next location prediction. The NextPlace framework proposed
in [20] can predict the next check-in location, the arrival time, and
duration of the stay. The work in [17] proposed a novel model to
predict a user’s preference of a sequence of locations for the purpose
of tour recommendation. In a very recent work [9], the authors
proposed a generic predictive model termed ‘TribeFlow’ which
not only mines and predicts user trajectories but can also be used
for next product recommendation. Recently, a Spatial Temporal
Recurrent Neural Network (ST-RNN) was introduced in [15] for
next location prediction. In this previous work [24], we introduced a
Survival Analysis-based check-in time prediction framework which
employs recurrent neural network to learn the intensity function of
the occurrence of check-in events. In contrast, the proposed RSTPP
in this work explores temporal point process for this application
which has the ability to handle new visitors.



5.2 Temporal Point Process

Temporal Point Process (TPP) models a sequence of events. Typi-
cally, TPP models assume the time of an event conditionally depends
on the time of previous events. Based on the specific form of depen-
dency, TPP has several variants. For instance, Hawkes process [11]
assumes each occurrence of a historical event will increase the prob-
ability of the occurrence of a new event. In contrast, Self-correcting
process [13] assumes that the probability of a new event grows over
time, but every time a new event occurs, it will drop by a certain
amount. Autoregressive Conditional Duration process [6] models
the dependency between inter-event durations.

TPP is adopted in applications such as disastrous event anal-
ysis [11], criminal networks modeling [21], and financial predic-
tion [1]. TPP also demonstrated remarkable performance in pre-
dicting recurrent user activities [7, 8]. In [5], Du et al. introduced
Low Rank Hawkes process to predict the next returning time of a
user to a service. This model can be generalized by explicitly incor-
porating spatial information into its intensity function. However,
none of these works discussed any mechanisms for incorporating
spatio-temporal features, not to mention handling check-in data
scarcity.

A closely related technique is Recurrent Marked Temporal Point
Process (RMTPP) [4]. RMTPP applies recurrent neural network to
Marked TPP to predict the time of next event occurrence and its
marker. RMTPP can be applied to predict check-in time by treat-
ing it as a standard TPP problem, hence it also suffers from the
aforementioned drawbacks. This is because RMTPP cannot take ad-
vantage of successive check-ins on user trajectories before check-in
to a location of interest, which is a unique feature offered by our
RSTPP model. As such, our model is able to make predictions for
users who have not even visited the given location before. In con-
trast, RMTPP and existing TPP models can only use base intensity
to make prediction for all the users who have no historical events.

6 CONCLUSION

Human movement prediction is a long standing research topic with
enormous application potential. Check-in time prediction is a rela-
tively new problem in this field which was not fully investigated.
In this paper, we proposed Recurrent Spatio-Temporal Point Pro-
cess (RSTPP), a flexible and adaptive model designed for check-in
time prediction. RSTPP is a novel combination of Long Short-Term
Memory (LSTM) network and temporal point process. The LSTM
component is used to learn a latent representation of a sequence of
check-ins. This representation is then used to construct the inten-
sity function of a temporal point process. Finally, the model uses
this intensity function to predict the user’s next check-in time to a
location of interest. The unique structure of RSTPP allows it to take
advantage of precedent check-ins on a user’s trajectory, which alle-
viates the critical data scarcity problem. As a result, RSTPP is able
to outperform state-of-the-art event-time prediction techniques
that use standard point process models.
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