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ABSTRACT

Significant research efforts for robust integration of infor-
mation from multiple sources are being pursued at a rapid
pace. However, the information in heterogeneous sources is
often incomplete and hence making the maximum use of all
the available information is a challenging problem. Most of
the recent research on data integration have been primar-
ily focused on the cases where the information is available
across all the different sources and can not effectively in-
tegrate sources in the presence of partial information. We
develop an ensemble method that boosts the decisions made
from different models on individual sources and obtain ro-
bust results for the task of class prediction. We propose a
heterogeneous boosting framework that uses all the avail-
able information even if some of the sources do not provide
any information about some objects. We demonstrate the
effectiveness of the proposed framework for the problem of
gene function prediction and compare to the state-of-the-
art methods using several real-world biological datasets. We
also show that the proposed method outperforms any kind of
imputation schemes that are widely used while integrating
data with partial information.

Categories and Subject Descriptors

H.2.8 [Database Management]|: Database Applications -
Data Mining; 1.2.6 [Artificial Intelligence|: Learning

General Terms

Algorithms, Measurement, Design

Keywords

Classification, boosting, data integration, gene function pre-
diction.

1. INTRODUCTION

Integrating information from multiple sources and mak-
ing combined decisions from these sources is becoming a
common task across several disciplines. Although there are
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several works proposed for heterogeneous data integration,
there is no systematic approach that enhances the prediction
performance for different applications. Different ensemble
strategies [3] for the integration such as decision templates,
weighted majority voting, bagging, boosting, and random
forests have been extensively used for integrating different
models. Most of these works assume that the information
about a data object is available from each of the model. In
addition, these methods typically assume that the different
models are built from the same type of feature sets (or data
sources).

In practice, multiple heterogeneous sources do not contain
all the required information about a particular data object.
Some sources deliver information about some of the data ob-
jects whose information is not available from other sources.
In other words, when all the sources are combined, there will
be some missing information about certain data objects with
respect to some sources. Most of the current research work
in data integration primarily focuses on integrating informa-
tion when all the sources contain the information about a
data object. That is, for the sake of convenience, researchers
primarily deal with common objects that are available in all
the data sources. Considering only the common information
will potentially harm the class prediction when there are sev-
eral data objects with partial information. Some work on
handling partial information is available in the kernel meth-
ods literature [11] where the kernel matrix is integrated to
combine the information from multiple sources. Most of
these methods treat it as a missing data problem to calcu-
late the missing features with the help of observed features
to subsequently compute the kernel matrix.

In this paper, we primarily focus on improving the per-
formance on functional classification task by utilizing mul-
tiple sources of information about a set of genes. In the
field of Functional Genomics, the functional classification
of unannotated genes and subsequently, the improvement of
the existing gene functional annotation catalogs is an impor-
tant and challenging problem [12]. Functional classification
plays a vital role in molecular biology due to its ability to de-
tect previously unknown role of genes and their products in
physiological and pathological processes. Different types of
biomolecular data, ranging from expression profiles to phy-
logenetic gene-specific evolution rates and many others are
available to classify gene functions. Such vast amounts of
data, in principle, can provide useful information for the au-
tomated assessment of the functional role of genes. The ex-
tent to which the classification performance can be improved
significantly depends on specific type of experimental data



and varies for specific gene and the particular bio-molecular
process under investigation. One of the key challenges in this
domain is that many sources contain only partial informa-
tion and one can rarely see all the information available in a
given source. Hence, it is critical in this domain to develop
methods that work only with such partial information.

2. RELATED BACKGROUND
2.1 Notations Used

Table 1: Notations used in this paper.

Notation | Description
N Number of datasets
m Number of total data objects
D; it" dataset
m; Number of data objects in D;
d. k'™ data object
Wi Weight of the data object di for D;
Cij Weak classifier at j** iteration for D;
Cij Weight of the weak classifier Cj;

2.2 Methods for Data Integration

Several approaches for heterogeneous data integration have
been proposed in the literature. One of the earlier ap-
proaches was to integrate multiple sources into one com-
bined dataset and perform the classification task on it. Vec-
tor Space Integration (VSI) [2] is one of the popular tech-
niques that fall into this category. Other such methods were
based on modeling networks of functional relationships be-
tween proteins where graphical models provide a probabilis-
tic framework for data integration [5]. These methods are
often referred as early integration. In general, these meth-
ods do not make use of any class information during the
integration and hence, do not yield better classification per-
formance. Due to different properties and heterogeneity of
the features, it is not always possible to build graphical mod-
els or concatenate vector spaces. Intermediate integration is
typically based on kernel fusion (KF) methods. The integra-
tion is performed during the training phase itself. Individual
kernels on different sources are learned and the final classifier
is built on the composite kernel which is obtained after com-
bining the individual ones [7]. To exploit the heterogeneity
of the data, often weighted functional linkage graph is gener-
ated by different sources of information [13]. Another family
of successful approaches often referred as late integration,
which typically model individual sources and then combine
the knowledge from these individual models and builds a
final classifier [9, 6]. Methods such as decision templates,
different types of weighted majority voting using linear or
logarithmic weight combination, and ensemble methods like
bagging, boosting and random forests fall into this category
[8]. The intuition for using the ensemble technique is that,
when the base classifiers used in the ensemble are diverse,
they are expected to make different errors. Hence, the en-
semble output produced by these classifiers is expected to
reduce the overall misclassifications.

2.3 Methods for Data Imputation

Some of the popular methods used for data imputation
in the context of integrating multiple sources using kernel

fusion techniques are as follows: (i) Unconditional Mean
Imputation (KF_-UMI): For a data object that is not in a
particular source, the feature values are imputed with the
average of the feature values of the objects that are present
in that source. After getting all the feature values, the kernel
matrix is aggregated to get a single matrix and and a SVM
classifier if built on this matrix to make the final prediction.
fék = TIS'I > acs [, where, S is the set of data that has the

value for j'" feature. (ii) Weighted Summation Imputation
(KF_WSI): The feature values for the data are not imputed
in the source. Rather, for a data object that is missing in a
source, the kernel matrix entries of that object for this ker-
nel are imputed as a weighted combination of the average of
the entries of that particular kernel matrix and the average
of the entries for that objects in other kernel matrices where
the data object is present. In our experiment, we used 50%
weight for both these values. (iii) Nearest Neighbor Impu-
tation (KF_NNI): In this method, the kernel matrix entries
are directly imputed rather than imputing the feature val-
ues. First, the kernel matrices for different sources are gen-
erated from the data objects present in those sources. At
this juncture, for a data object that is not present in a par-
ticular source will not have any kernel matrix entry. Using
the other sources where the feature values are present for
that data object, the nearest neighbor is obtained. Then, in
the source where that data object was missing, the kernel
matrix entry of the nearest neighbor is replicated.

3. OUR PROPOSED ALGORITHM

To ensure the improved accuracy when combining mod-
els from multiple sources, we propose to boost the decisions
from these individual sources using a modification to Ad-
aBoost [4] algorithm. AdaBoost is an efficient, simple and
easy to manipulate additive modeling technique that can
potentially use any available weak learner. Boosting algo-
rithms combine weak learning models that are slightly better
than random models. It is an ensemble method that gener-
ates multiple classifiers from a base learner and ensembles
them for building the best classifier. In boosting algorithm,
strong classifier is built as an combination of a number of
weak classifiers, where each classifier is chosen at every iter-
ation if its accuracy is greater than 50%. At the end of each
iteration, the samples are re-weighted in such a way that the
misclassified samples get a higher weight so that the next
weak classifier shows a better performance on those samples
that were misclassified in the previous iteration.

We propose a heterogeneous boosting based integration frame-

work that will exploit all the available (including partial) in-
formation from multiple data sources. To achieve this goal,
we propose a novel objective criterion which will emphasize
the importance of data objects with partial information com-
pared to the common ones. We will also modify the re-
weighting scheme in the following manner: if a data object is
present in only one source out of n sources, the importance of
it will be increased by n times while modeling that data ob-
ject. The increase of weight of the misclassified data object
will be inversely proportional to the number of data sources
that contain the information about the data object. The
basic intuition here is that the algorithm will give more im-
portance to a data object if it is available only in one source
compared to one being available in many sources. At the end



of each boosting iteration, the instances are re-weighted in
such a way that the misclassified objects get a higher weight
so that the next weak classifier gives more importance to
those objects that were misclassified in the previous itera-
tion. Note that, if it is misclassified in other data sources
during an iteration, then its weight is increased in that data
source as well. Thus, it is unlikely that a data object is ne-
glected in all the strong models thus making the stronger
model more general and diverse.

Let A denote an indicator matrix such that Ag; is 1 if the
data object di is in dataset D; and 0 otherwise. We define
A as the average number of datasets in which the data from
D, is present and is calculated as follows:
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We modify the re-weighting scheme in AdaBoost to follow
the two above mentioned criteria as follows:
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where €; is the error rate for that iteration. Hence, the
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increment amount is which is positive since ¢; < 0.5.

We varied this increment amount based on the number of
data sources that the object is present in:
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Algorithm 1 HETEROBOOST

1: Input: Data sets D;...Dxn, samples d;...d, and the in-
dicator matrix A

2: Output: Final stronger classifier M

3: Procedure:

4: fort=1..N:

5: Initialize weight wx; = 'rr%

6: for j =1.T:

T (a) Cij <= argming, ey 355 Aiwn; [Cij(di) # Y|
8: (b) for k=1..m:

9: (i) iy = log(1 4+ =2 5 )

10: (ii) Wgi = Wk; * €TP [Ci]'. |C~LJ (dk) 7& yk”
11: (c) Normalize weights: Vi wg; = %
12: end for

13: strong classifier M;(z) = " ¢;;.Ci;(x)

14: end for "
15: return classifier M(d) = 27:171371?5\!%

i=1

When the prediction model is used on a particular test
case, it is unlikely that the test case will have information for
all the sources. Our method will consider only those sources
where the information about the test cases is available and
then obtain a weighted ensemble model out of those sources.
In other words, there will be no imputation performed in the
sources that do not have information about that particular
gene. The final outcome is calculated as follows: M(d) =

n_ R M (d)) . . .
2?1,1”17;&)1 where F; is the evaluation metric (such as
i=1 i

accuracy or F-measure) that is being measured for the strong
boosted classifier M; and d is the test case.

4. RESULTS AND DISCUSSION

Since the problem of integrating information from multi-
ple sources naturally occurs in biological domains, we chose
different bio-molecular datasets to demonstrate the advan-
tages of the proposed framework. In order to evaluate the
effectiveness of the proposed integration framework, we used
the genes from S.cerevisiae (yeast) which is the most widely

studied model organism for which vast amounts of bio-molecular

data are available. The six biological data sources used in
our experiments are thoroughly described in [12]. We used
functional annotations collected from the Functional Cata-
logue (FunCat) database [10] to associate each of the genes
in the datasets to a functional class. The dataset comprised
of 1901 genes that are common across all the data sources
and the rest of the 2764 other genes that are present in only
fewer data sources. We performed three-fold cross validation
for reporting our results on test data. We randomly divided
both the common and uncommon genes into three folds. The
combination of two folds is used for training and the rest for
testing both for common and uncommon genes. To get the
combined result, one fold of the common genes is merged
with one fold of the uncommon genes to make one fold of the
combined genes. For evaluation, we used F-measure metric
which is a more appropriate measure for this problem be-
cause it is more important to correctly associate the genes
with a particular functional class than correctly detecting
that the gene is not associated with other function class.
Because of the class imbalance problem, the models often
produce poor result for F-measure for the target class. To
tackle the class imbalance issue, we pre-processed the train-
ing data before the training process to under samplify the
majority classes and oversamplify the minority class using
Synthetic Minority Oversampling TEchnique (SMOTE)[1].
For fairness in comparison, while working with the kernel
fusion methods, we used the same fold generated for the
heterogeneous boosting. For KF_UMI, we first imputed the
missing feature values and then generated complete kernel
matrices for different datasets. For the other two methods,
we imputed in the kernel matrix to obtain a complete kernel
matrix. In either case, we have a set of full kernel matrix
weighted summation of those kernel matrices based on the
individual accuracy in corresponding datasets.

Table 2 shows the results of different boosting methods
on common and uncommon genes. We observe that Ensem-
ble using common genes performs well on the common set of
genes. However, for the uncommon genes, the results are not
impressive for the ensemble model built on common genes.
Using the proposed heterogeneous boosting, we observe the
improvement of using all the genes during the training pro-
cess on the uncommon genes. Finally, we conclude that us-
ing the modified weighting criterion which emphasized the
importance for uncommon genes compared to the common
genes yields performance improvement for the uncommon
genes as well as the overall result. We also compared our
heterogeneous boosting algorithm with kernel fusion meth-
ods with different imputation schemes (see Table 3). The
result of kernel fusion methods with imputation is inferior
to our proposed heterogeneous boosting method. By the use
of SMOTE on the training data, which is easily applicable
and natural fits the boosting methods, the result of heteroge-
neous boosting significantly outperformed the kernel fusion
method.



Table 2: Comparison of F-measure values in the presence of all the genes using heterogeneous boosting,
and boosting with all genes and with only the common genes. Ecc - Ensemble with common genes. Eag -

Ensemble with all genes. HBOOST - the proposed HeteroBoost method.

Functional class Common Genes Uncommon Genes Overall Result

FEca Fac HBOOST | Ecqg Fac | HBOOST | Ecqg FEac | HBOOST
Metabolism 0.781 | 0.779 0.771 0.651 | 0.735 0.771 0.707 | 0.756 0.771
Energy 0.632 | 0.624 0.612 0.478 | 0.608 0.631 0.534 | 0.613 0.621
Transcription 0.712 | 0.690 0.673 0.609 | 0.683 0.721 0.653 | 0.687 0.695
Protein Synthesis 0.722 | 0.692 0.675 0.613 | 0.685 0.732 0.673 | 0.689 0.715
Protein Fate 0.691 | 0.688 0.683 0.591 | 0.638 0.706 0.654 | 0.664 0.699
Protein with Binding Function | 0.619 | 0.622 0.631 0.509 | 0.601 0.651 0.559 | 0.613 0.645
Regulation of Metabolism 0.407 | 0.445 0.443 0.391 | 0.403 0.441 0.399 | 0.425 0.443
Cellular Transport 0.702 | 0.690 0.676 0.609 | 0.653 0.732 0.657 | 0.667 0.715
Cellular Communication/Signal | 0.515 | 0.520 0.503 0.410 | 0.453 0.551 0.456 | 0.487 0.535
Average 0.642 | 0.639 0.630 0.540 | 0.607 0.660 0.588 | 0.622 0.649

Table 3: Comparison of F-measure values for the
proposed heterogeneous boosting method and dif-
ferent kernel fusion approaches

Functional Class KF_UMI | KF_WSI | KF_NNI | HBOOST
Metabolism 0.531 0.572 0.563 0.771
Energy 0.472 0.442 0.515 0.621
Transcription 0.482 0.418 0.467 0.695
Protein Synthesis 0.509 0.523 0.593 0.715
Protein Fate 0.513 0.509 0.567 0.699

5. CONCLUSION

The availability of different information about the same
data objects created new opportunities as well as challenges
for the task of class prediction. The information in hetero-
geneous sources is often incomplete and most of the recent
research on data integration have been primarily focused on
the cases where the information is available across all the
different sources. In this paper, we developed a new frame-
work that uses all the available information even if some
sources do not provide any information about some objects.
Our study also shows that boosting the decisions made from
individual sources can obtain robust results on predicting
gene functions. Furthermore, giving different weights to the
uncommon genes helped in improving the predictive ability
for the overall classification. We demonstrated the effec-
tiveness of the proposed framework for the problem of gene
function prediction and compare to the state-of-the-art en-
semble methods using several real-world biological datasets.
The proposed heterogeneous boosting method outperformed
the standard kernel fusion based approaches for integrating
multiple sources in the presence of missing information.
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