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A B S T R A C T

Traumatic Brain Injury (TBI) presents a broad spectrum of clinical presentations and outcomes due to its inherent
heterogeneity, leading to diverse recovery trajectories and varied therapeutic responses. While many studies
have delved into TBI phenotyping for distinct patient populations, identifying TBI phenotypes that consistently
generalize across various settings and populations remains a critical research gap. Our research addresses this by
employing multivariate time-series clustering to unveil TBI’s dynamic intricates. Utilizing a self-supervised
learning-based approach to clustering multivariate time-Series data with missing values (SLAC-Time), we
analyzed both the research-centric TRACK-TBI and the real-world MIMIC-IV datasets. Remarkably, the optimal
hyperparameters of SLAC-Time and the ideal number of clusters remained consistent across these datasets,
underscoring SLAC-Time’s stability across heterogeneous datasets. Our analysis revealed three generalizable TBI
phenotypes (α, β, and γ), each exhibiting distinct non-temporal features during emergency department visits, and
temporal feature profiles throughout ICU stays. Specifically, phenotype α represents mild TBI with a remarkably
consistent clinical presentation. In contrast, phenotype β signifies severe TBI with diverse clinical manifestations,
and phenotype γ represents a moderate TBI profile in terms of severity and clinical diversity. Age is a significant
determinant of TBI outcomes, with older cohorts recording higher mortality rates. Importantly, while certain
features varied by age, the core characteristics of TBI manifestations tied to each phenotype remain consistent
across diverse populations.

1. Introduction

Traumatic Brain Injury (TBI) is a prevalent global health concern
affecting a range of populations, from young athletes with sports-related
injuries to military personnel exposed to combat-related trauma, and
older adults prone to falls [1–4]. Every year, millions experience the
consequences of TBI, with outcomes spanning mild concussions to se-
vere cognitive dysfunctions [1,5]. The diverse range of clinical pre-
sentations underscores the inherent heterogeneity of TBI [6–8]. This
heterogeneity complicates prognosis, treatment, and research. TBI pa-
tients with apparently similar injuries can have varied recovery patterns
and therapeutic responses. This variability suggests different TBI phe-
notypes, each with its own trajectory and treatment needs. By catego-
rizing TBI into specific subgroups, clinicians provide more precise
interventions, while also aiding researchers in designing more targeted

studies [9–11]. Such an individualized approach can potentially
improve recovery outcomes, minimize long-term complications, and
enhance quality of life for those affected by TBI. Moreover, personalized
treatment for TBI can mitigate treatment costs by targeting specific
patient needs, thereby minimizing unnecessary procedures and expe-
diting recovery [12].

In recent years, clustering analysis has been increasingly used for
subgrouping TBI patients and identifying TBI phenotypes [13]. How-
ever, these studies often rely on non-temporal data, which only reflects a
snapshot of the injury and fails to capture the evolving characteristics of
TBI, crucial elements for comprehensively understanding the condition
and developing effective treatments [14]. This highlights the need for
methodologies that incorporate time-series data, thereby more accu-
rately addressing the temporal progression of TBI in phenotyping. The
existing methodologies for clustering time-series data are only effective
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when there are no missing values, which is rarely the case for TBI data
[14,15]. Common techniques such as data imputation or interpolation
are routinely used for addressing missing values in time-series data in
various applications [16]. However, in the context of TBI, where each
clinical variable can have profound implications, applying these tech-
niques without thorough knowledge can lead to significant biases. For
instance, imputing average values for missing intracranial pressure
readings could hide important details needed for the diagnosis and
prevention of secondary brain injury. Similarly, interpolating cognitive
function scores without considering the unique recovery trajectory of
each TBI patient could lead to misinterpretation of their recovery
progress, potentially resulting in inappropriate clinical interventions.
These scenarios highlight the need for handling of missing values in TBI
data without resorting to common data imputation or interpolation
methods to ensure that clustering analyses yield valid and actionable
insights for patient care.

Another major gap in the existing studies is lack of external valida-
tion of the identified TBI phenotypes. External validation of TBI phe-
notypes is a critical step in ensuring their broader applicability and
reliability. By testing phenotypes in diverse patient populations, often
across different geographical and healthcare settings, external valida-
tion confirms that the findings are not just relevant to the specific cohort
in which they were initially identified. This process helps to establish the
generalizability of the phenotypes, ensuring that they hold true across
various demographic, clinical, and environmental contexts. Such vali-
dation is essential in TBI phenotyping due to the highly variable nature
of the condition, which can be influenced by factors like injury severity,
patient age, and co-existing health issues. Despite this need, the existing
works have mainly studied only one dataset for phenotype identifica-
tion, overlooking the necessity to corroborate these findings across other
datasets. This oversight in validation could lead to the implementation
of phenotype-specific clinical interventions that are not universally
applicable, risking suboptimal or even harmful patient care. This
research gap highlights the need for a methodological approach that not
only identifies but also validates TBI phenotypes with high reliability
and applicability across various patient cohorts.

To address the gaps, in this study, we use a self-supervised learning-
based approach for clustering multivariate time-series data with missing
values (SLAC-Time) for identifying TBI phenotypes. Unlike traditional
clustering approaches that treat each multivariate time-series data as a
matrix with specific dimensions, SLAC-Time’s transformer-based ar-
chitecture treats each input of multivariate time-series data as a set of
observation triplets, enabling us to cluster the data without resorting to
any data imputation or interpolation methods [14]. SLAC-Time lever-
ages self-supervision to benefit from strong representation learning ca-
pabilities of transformer models in clustering. Specifically, it utilizes
representations learned from input data for clustering, thereby miti-
gating the impact of noise and outliers in the raw input. To discover
generalizable TBI phenotypes, we perform clustering analysis on two
different TBI datasets: the Transforming Research and Clinical Knowl-
edge in Traumatic Brain Injury (TRACK-TBI) dataset [17] and the
Medical Information Mart for Intensive Care (MIMIC)-IV dataset [18,
19]. Notably, we use a feature set for clustering that is common to both
TRACK-TBI and MIMIC-IV datasets. Our selection of these two datasets
is deliberate, given their inherent differences. TRACK-TBI is primarily a
multicenter research dataset, with the intent of advancing TBI research.
It includes detailed clinical data along with long-term outcomes, such as
the Extended Glasgow Outcome Scale (GOSE) score, providing a
comprehensive view of TBI progression and recovery [20]. On the other
hand, MIMIC-IV is a real-world clinical dataset from a single institution.
It includes routinely collected clinical data in electronic health records,
but without long-term outcome data that are inherent to research
datasets such as TRACK-TBI. By comparing the clustering findings from
the TRACK-TBI research data to those of MIMIC-IV, we aim to identify
phenotypes that are consistent across diverse patient populations and
settings. We anticipate that the resulting phenotypes will be both

insightful and broadly applicable for developing tailored clinical treat-
ments. Fig. 1 demonstrates a high-level overview of the work.

The following are contribution of this work.

• This study transcends the traditional static TBI phenotyping methods
by incorporating the complexity of TBI progression through multi-
variate time-series data analysis. This allows for the identification of
TBI phenotypes that reflect the evolving pathophysiology of the
injury over time.

• By leveraging the complementary strengths of the TRACK-TBI and
MIMIC-IV datasets, this study provides a robust validation of these
phenotypes across varied clinical and research settings, enhancing
the generalizability and applicability of our findings.

• This study employs the SLAC-Time algorithm, which does not rely on
data imputation for handling missing values. This allows us to pre-
serve the integrity of the original datasets, ensuring that our findings
are robust and devoid of biases typically introduced by conventional
imputation techniques. Furthermore, by conducting clustering on
the representations learned from the transformer model, the method
effectively reduces noise and mitigates the impact of outliers in the
raw input data.

The rest of this paper is organized as follows. Section 2 provides the
related work on phenotyping TBI patients using clustering analysis.
Section 3 presents the materials and methods, describing the datasets
used, data preprocessing steps, details of the SLAC-Time clustering al-
gorithm, and TBI phenotype evaluation and validation methodologies.
The results from the clustering analysis on the TRACK-TBI andMIMIC-IV
datasets are reported in Section 4, including a characterization of the
identified TBI phenotypes, comparative analysis, and evaluation of
reproducibility. We discuss key implications and limitations of our
findings in Section 5. The paper concludes with Section 6, which en-
capsulates our study’s results and suggests avenues for future research
(Fig. 2).

2. Related work

The field of TBI phenotyping has seen a variety of approaches, with
several studies leveraging clustering algorithms to stratify patients. This
section synthesizes the key trends, methodologies, and gaps in current
research, providing a holistic view of the field.

Maddux et al. [21] applied K-medoids clustering to insurance claims
data spanning the first year post-discharge in pediatric TBI survivors.
Their study stands out for its comprehensive inclusion of diverse vari-
ables such as hospital readmissions, emergency and outpatient visits,
and therapy sessions. They identified four functional outcome TBI
phenotypes, varying from minimal to those with extensive
post-discharge healthcare needs and morbidities. Adding a new
dimension to TBI phenotyping, Fujiwara et al. [22] focused on coagu-
lation phenotypes. By applying K-means clustering to acute-phase
coagulation markers, they identified five TBI phenotypes, highlighting
the link between coagulation, skull fractures, and trauma severity, thus
offering a unique perspective in TBI research.

Yeboah et al. [23] used ensemble clustering model based on baseline
measurements to identify TBI phenotypes. They identified six pheno-
types of TBI patients, differentiated by their injury mechanisms,
including motor vehicle accidents, diverse incidents like pedestrian ac-
cidents or sports, falls from moving or stationary objects, accidents
involving motorcycles or all-terrain vehicles, and assaults, each char-
acterized by distinct initial severities and recovery trajectories. Focusing
on mild TBI, Si et al. [24] employed sparse hierarchical clustering on a
set of 12 clinical variables. This study is particularly significant for its
contribution to understanding mild TBI, as it identified five distinct
phenotypes, each associated with different clinical outcomes and prev-
alence rates.

Folweiler et al. [9] utilized a wrapper framework with generalized
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low-rank models to select the relevant clinical features in a TBI dataset,
which were then used to cluster patients into phenotypes using a par-
titioning around medoids (PAM) clustering algorithm. This approach
identified three TBI phenotypes with unique clinical feature profiles and
long-term functional outcomes, including one characterized by mild
anemia, another with normal hematological values but lower platelet
count and elevated prothrombin time, and a third presenting a severe
clinical profile with signs of thrombocytopenia, anemia, and coagulop-
athy. The study further validated these phenotypes in an external
dataset using a K-nearest neighbors algorithm, suggesting that these
phenotypes could be generalizable across a broad range of TBI severity.

Addressing the challenge of missing data in TBI phenotyping,

Akerlund et al. [25] developed a novel approach using unsupervised
learning techniques rooted in probabilistic graph models. Their meth-
odology, which did not rely on imputing missing feature values,
revealed six TBI phenotypes, including a spectrum from mild TBI in
older patients often on anticoagulants to severe TBI in younger patients
with significant metabolic and respiratory acidosis. Complementing
this, Ghaderi et al. [14] developed SLAC-Time, an innovative method for
clustering multivariate time-series data with missing values without
resorting to data imputation or aggregation methods, and applied it to a
cohort of TBI patients characterized by a combination of static and dy-
namic clinical variables. This approach successfully identified three
distinct TBI phenotypes, each differentiated by unique clinical variables

Fig. 1. A high-level overview of methodology in identifying generalizable TBI phenotypes.
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and associated outcome endpoints.
Despite these advancements, a common limitation in the field is the

focus on non-temporal data and a lack of external validation of identi-
fied phenotypes. Our research aims to bridge these gaps by integrating
both temporal and non-temporal variables in identifying TBI phenotypes
and validating these phenotypes with an independent dataset. This
approach not only enhances the generalizability of our findings but also
contributes to a more comprehensive understanding of TBI phenotypes,
potentially leading to more tailored and effective treatment strategies.

3. Materials and methods

3.1. Datasets

TRACK-TBI Dataset: The TRACK-TBI dataset includes 2996 TBI pa-
tients, collected across 18 medical centers in the United States [17]. It
comprises around 250 variables, including patient demographics, clin-
ical assessments, radiological findings, and outcomes. For the purposes
of our study, we only included those TBI patients for whom both tem-
poral and non-temporal data were available. As a result, a total of 2160
TBI patients from the TRACK-TBI dataset were included in our analysis.

MIMIC-IV Dataset: The MIMIC-IV dataset is a publicly accessible
resource, covering over 60,000 ICU admissions at the Beth Israel
Deaconess Medical Center between 2008 and 2019 [18,19]. This dataset
is structured as a relational database and includes a wide array of both
temporal and non-temporal data. The data categories include patient
demographics, vital signs, laboratory test results, medications adminis-
tered, and clinical outcomes. Our study included 3140 TBI patients from
this extensive dataset for analysis.

3.2. Data preprocessing

Variable Selection: We selected non-temporal and time-series vari-
ables common to both the TRACK-TBI and MIMIC-IV datasets, discard-
ing all others. Our analysis incorporated 20 non-temporal and 38 time-
series variables. In addition, two outcome variables—ICU length of stay
and mortality rate—were included to evaluate the TBI phenotypes
identified in both datasets. Table 1 provides the summary statistics of
the key features of the TBI patients in TRACK-TBI and MIMIC-IV
datasets.

Handling Missing Data: For handling missing data in non-temporal
variables, an iterative imputation technique was employed. Mean-
while, missing values in time-series variables were managed through
SLAC-Time, avoiding the need for imputation.

Removing Outliers: To enhance data quality and maintain clinical
relevance, we imposed specific clinical criteria to set numerical ranges

for each variable, effectively eliminating outliers. In defining the ranges
for the clinical variables, we established the highest and lowest possible
values that could be realistically experienced by both healthy in-
dividuals and TBI patients. This was achieved through a rigorous process
that involved a comprehensive review of existing medical literature and
clinical guidelines to identify physiological limits for each variable. This
method provided a broader andmore clinically relevant range compared
to the ranges defined by traditional outlier removal approaches, which
often rely on statistical distributions that may not accurately reflect TBI
realities.

Data Normalization and Encoding: We normalized both time-series
and numerical non-temporal variables using the Z-score normalization
method to have zeromean and unit variance. Additionally, we employed
one-hot encoding to create a binary vector for each category within the
categorical variables.

Time-Series Standardization: Due to varying lengths of time-series
data among patients, we standardized these to a five-day duration cor-
responding to the initial ICU admission period. Within each time-series
variable, average values were calculated at hourly intervals, resulting in
120 time steps per variable.

3.3. Clustering algorithm

We utilize SLAC-Time, built on a self-supervised Transformer model
known as STraTS [26], for representation learning of N unlabeled

samples represented by D =
{(

dk,Tk
)}N

k=1
where the kth sample in-

cludes a non-temporal vector dk ∈ RD and multivariate time-series data

Fig. 2. Boxplot of ICU stay duration for TBI phenotypes in TRACK-TBI (a) and MIMIC-IV (b).

Table 1
Summary statistics of key features for TBI patients in the TRACK-TBI andMIMIC-
IV datasets.

Features TRACK-TBI MIMIC-IV

Demographics
Total subjects, n 2160 3140
Age, mean ± SD 40 ± 18 61 ± 22
Age≤30, n (%) 874 (41 %) 443 (14 %)
30<Age≤45, n (%) 481 (22 %) 346 (11 %)
45<Age≤60, n (%) 455 (21 %) 594 (19 %)
Age>60, n (%) 350 (16 %) 1757 (56 %)
Sex (Female, n (%)) 648 (30 %) 1170 (37 %)
ED Examination
ED Glucose, mean ± SD 139 ± 56 135 ± 47
ED Hemoglobin, mean ± SD 13.9 ± 1.8 12.4 ± 1.8
ED INR, mean ± SD 1.10 ± 0.36 1.27 ± 0.17
ED White Blood Cell, mean ± SD 12.4 ± 5.45 12 ± 6.13
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Tk. STraTS maps the data into a fixed-dimensional vector space Rd. Each
multivariate time-series data Tk of length n is represented as a set of n
observation triplets Tk =

{(
ti, fi, vi

)}n
i=1 where ti ∈ R≥0 is the time, fi is

the feature name, and vi ∈ R is the value. The initial embedding ei for a
triplet is obtained by summing the feature, value, and time embeddings,
denoted as efi , evi , and eti respectively:

ei = efi + evi + eti ∈ Rd (1)

where the feature embedding efi is obtained from a basic lookup table,
while the value embedding evi and time embedding eti are computed
through one-to-many Feed-Forward Networks (FFNs). The embedding
for non-temporal variables is also acquired by processing d through an
FNN.

SLAC-Time is organized into three modules: self-supervision,
pseudo-label extraction, and classification [14].

(1) Self-Supervision Module: STraTS is pretrained via a forecasting
task. The forecasting task output is generated by feeding the
concatenated embeddings of both no-temporal and time series
variables through the following layer.

z̃=Ws
[
ed eT

]
+bs ∈ R|F | (2)

In this task, to handle missing values in the forecasting outputs, we
employ a masked Mean Squared Error (MSE) loss, defined as:

L ss=
1
|Nʹ|

∑Nʹ

k=1

∑|F |

j=1
mk
j

(
z̃kj − zkj

)2
(3)

Here, Nʹ ≥ N is the number of samples, F is the feature set, mk
j is the

forecast mask, and z̃kj and zkj are the predicted and actual values,
respectively.

(2) Pseudo-label Extraction Module: After pre-training, we use the
embeddings fθ((dn,Tn)) for K-means clustering to obtain pseudo-
labels yn , by solving:

min
C∈Rd×k

1
N

∑N

n=1
min

yn∈{0,1}k
‖ fθ((dn,Tn)) − Cyn ‖

2
2 such that y

⊤
n 1k=1 (4)

Here, C is the centroid matrix, N is the number of subjects, and k is
the number of clusters.

(3) Classification Module: A classifier gW is trained using the pseudo-
labels yn and the representations fθ((dn,Tn)) to minimize the loss
function l :

min
θ,W

1
N

∑N

n=1
l
(
gW(fθ((dn,Tn))), yn

)
(5)

Here, θ and W are the parameters of STraTS and the classifier,
respectively.

SLAC-Time operates in an iterative manner, alternating between
pseudo-label extraction and classifier parameter updates to enhance
clustering and classification performance.

3.4. Implementation and training details

For the initial representation learning of the multivariate time-series
data, we employed time-series forecasting as a proxy task to pre-train
our model. We delineated our observation windows as {24, 48, 72, 96,
118} hours and established a subsequent 2-h period as the prediction
window. Importantly, our analysis only considered records that con-
tained at least one time-series data entry within both the observation
and prediction windows. The dataset utilized for time-series forecasting

was partitioned into training and validation sets at an 80:20 ratio.
Concurrently, the target task of SLAC-Time is to subgroup TBI patients
based on the variables in the dataset. Similar to the forecasting task, for
the target task, these TBI patients were allocated into training and
validation subsets following an 80:20 distribution.

We developed our SLAC-Time model using Keras, backed by Ten-
sorFlow. We trained both the proxy and target task models with a batch
size of 8, using the Adam optimizer. For the proxy task, training was
stopped if the validation loss did not decrease for ten consecutive
epochs. The target task training proceeded for 500 iterations, and each
iteration consisted of 200 epochs. As with the proxy task, training for
each iteration was stopped if the validation loss did not decrease for ten
consecutive epochs. We performed all computational experiments on an
NVIDIA Tesla P100 GPU.

3.5. Clustering evaluation

We utilized three clustering evaluation metrics to guide our hyper-
parameter selection: the Silhouette Score [27], the Calinski-Harabasz
Score [28], and the Davies-Bouldin Score [29]. The Silhouette Score,
measuring intra-cluster similarity against neighboring clusters and
aiming for values close to 1, is useful for assessing the clarity of cluster
separation. The Calinski-Harabasz Score, quantifying the ratio of
between-cluster variance to within-cluster variance and favoring higher
values, helps evaluate cluster compactness and separation. Lastly, the
Davies-Bouldin Score, which calculates the average similarity ratio be-
tween each cluster and its nearest counterpart, is preferred to be lower,
indicating well-separated clusters with minimal within-cluster
dispersion.

3.6. Fine-tuning hyperparameters

The performance of the SLAC-Time clustering approach largely de-
pends on its hyperparameters, including the number of transformer
blocks (M), the number of layers (d), the number of attention heads (h),
and the number of clusters (K). We systematically varied these hyper-
parameters for evaluation on the TRACK-TBI andMIMIC-IV datasets. For
the TRACK-TBI dataset, the configuration with M = 1, d = 8, h = 2, and
K = 3 was superior across all metrics, resulting in a Silhouette Score of
0.33, a Calinski-Harabasz Score of 729.12, and a Davies-Bouldin Score of
1.36 (Table 2). This configuration also resulted in the best metrics for the
MIMIC-IV dataset, showing scores of 0.25, 884.95, and 1.47, respec-
tively (Table 3). The same optimal architecture for both datasets un-
derscores the robustness of SLAC-Time clustering approach. Moreover,
the choice of K = 3 as the optimal number of clusters in both datasets
shows the existence of three potential generalizable TBI phenotypes.

3.7. Characterization and comparative analysis of TBI phenotypes

To understand the unique characteristics of identified TBI pheno-
types, we analyzed variables previously shown to significantly influence
GOSE score of TBI patients [30,31]. In this regard, we focused on clinical
variables, including age, sex, Glasgow Coma Scale (GCS) motor score,
GCS eye score, glucose, hemoglobin, white blood cell count (WBC),
hematocrit, International Normalized Ratio (INR), and Activated Partial
Thromboplastin Time (aPTT). For comparative analyses, non-temporal
variables were represented numerically using means and standard de-
viations, or as counts and proportions (Table 4). On the other hand,
time-series variables were described using phenotype-specific averages,
accompanied by 95 % confidence intervals (Figs. 3–9). We performed
univariate analyses on both non-temporal and time-series variables to
identify potential differences between the phenotypes. The
Kruskal-Wallis test was used to determine the statistical significance of
observed differences. Differences between phenotypes were considered
significant if the associated p-values were below 0.05. To validate the
consistency of TBI phenotypes across datasets, we conducted a
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comparative study of the phenotypes identified in each dataset.

3.8. External validation methodology

To assess the reproducibility of TBI phenotypes identified in the
TRACK-TBI dataset via the SLAC-Time clustering, we utilized a

transformer-based classifier, informed by three phenotype labels and the
same feature set used in the clustering analysis. Specifically, TRACK-TBI
subjects were split into two: 85 % for training/validation and 15 % for
testing. This training/validation set was further subjected to 10-fold
stratified cross-validation, ensuring each fold maintained a balanced
phenotype representation, critical due to the phenotype heterogeneity.

Table 2
Clustering evaluation scores for different hyperparameter configurations on the TRACK-TBI dataset. (SS: Silhouette Score; CHS: Calinski-Harabasz Score; DBS: Davies-
Bouldin Score). The configuration M= 1, d= 8, h= 2, and K= 3 achieved the best performance across all metrics, suggesting it as the optimal setup for the TRACK-TBI
dataset.

Hyperparameters K = 3 K = 4 K = 5

SS CHS DBS SS CHS DBS SS CHS DBS

M = 1, d = 8, h = 2 0.33 729.12 1.36 0.25 487.60 1.52 0.23 704.98 1.48
M = 1, d = 8, h = 4 0.21 713.20 1.75 0.24 416.43 1.57 0.12 380.90 1.94
M = 1, d = 16, h = 2 0.15 232.99 2.34 0.07 251.96 2.51 0.17 320.07 2.14
M = 1, d = 16, h = 4 0.10 318.56 2.78 0.10 231.88 2.33 0.12 248.76 2.20
M = 1, d = 32, h = 4 0.06 147.41 3.20 0.05 114.07 3.67 0.04 105.24 3.19
M = 1, d = 32, h = 8 0.07 159.41 3.26 0.05 125.36 3.13 0.05 98.13 3.27
M = 2, d = 8, h = 2 0.17 397.07 1.98 0.18 394.96 1.95 0.16 507.74 1.75
M = 2, d = 8, h = 4 0.21 691.70 1.65 0.15 315.71 1.82 0.12 281.04 1.88
M = 2, d = 16, h = 2 0.13 268.70 2.63 0.08 234.97 2.55 0.11 206.08 2.56
M = 2, d = 16, h = 4 0.10 218.56 2.53 0.12 235.63 2.55 0.09 205.47 2.33
M = 2, d = 32, h = 2 0.08 174.17 2.96 0.06 134.34 2.96 0.04 92.03 3.32
M = 2, d = 32, h = 4 0.08 183.93 2.93 0.05 112.80 3.17 0.04 92.66 3.59
M = 2, d = 64, h = 4 0.06 139.11 3.25 0.06 120.44 3.14 0.06 124.47 2.91
M = 2, d = 128, h = 4 0.06 136.58 3.35 0.05 109.47 3.44 0.05 92.52 3.20

Table 3
Clustering evaluation scores for different hyperparameter configurations on the MIMIC-IV dataset. (SS: Silhouette Score; CHS: Calinski-Harabasz Score; DBS: Davies-
Bouldin Score). The configuration M = 1, d = 8, h = 2, and K = 3 achieved the best performance across all metrics, suggesting it as the optimal setup for the MIMIC-IV
dataset.

Hyperparameters K = 3 K = 4 K = 5

SS CHS DBS SS CHS DBS SS CHS DBS

M = 1, d = 8, h = 2 0.25 884.95 1.47 0.24 680.51 1.67 0.13 458.59 1.89
M = 1, d = 8, h = 4 0.23 631.74 1.78 0.13 707.22 1.87 0.16 671.80 1.72
M = 1, d = 16, h = 2 0.17 457.76 2.02 0.13 547.68 2.43 0.14 463.17 2.26
M = 1, d = 16, h = 4 0.13 455.67 2.41 0.10 460.91 2.41 0.10 478.54 2.20
M = 1, d = 32, h = 4 0.08 280.06 2.81 0.11 269.57 2.99 0.09 257.99 2.85
M = 1, d = 32, h = 8 0.05 228.10 3.36 0.06 197.85 3.12 0.05 180.37 3.15
M = 2, d = 8, h = 2 0.14 810.25 2.06 0.16 609.06 1.89 0.16 669.63 1.77
M = 2, d = 8, h = 4 0.20 680.40 1.87 0.12 691.99 1.85 0.22 799.93 1.55
M = 2, d = 16, h = 2 0.09 342.08 2.65 0.09 332.93 2.40 0.13 449.23 2.20
M = 2, d = 16, h = 4 0.13 463.70 2.19 0.09 296.01 2.44 0.09 274.68 2.41
M = 2, d = 32, h = 2 0.11 358.12 2.69 0.07 246.35 2.92 0.06 162.41 3.38
M = 2, d = 32, h = 4 0.10 311.41 2.82 0.07 237.12 2.94 0.06 196.55 3.34
M = 2, d = 64, h = 4 0.13 438.68 2.47 0.12 338.72 2.91 0.12 329.10 2.51
M = 2, d = 128, h = 4 0.14 416.29 2.85 0.14 368.75 2.32 0.14 346.96 2.34

Table 4
Key demographics and non-temporal clinical features of TBI patients in each phenotype.

Feature TRACK-TBI MIMIC-IV

Phenotype α Phenotype β Phenotype γ Phenotype α Phenotype β Phenotype γ

Total subjects, n 1557 320 283 1710 801 629
Age
Age, mean ± SD 38 ± 18 40 ± 19 43 ± 18 59 ± 22 61 ± 22 69 ± 20
Age≤30, n (%) 671 (43 %) 109 (34 %) 94 (33 %) 274 (16 %) 125 (16 %) 44 (7 %)
30<Age≤45, n (%) 348 (23 %) 66 (21 %) 67 (24 %) 222 (13 %) 75 (9 %) 49 (8 %)
45<Age≤60, n (%) 300 (19 %) 80 (25 %) 75 (26 %) 347 (20 %) 144 (18 %) 103 (16 %)
Age>60, n (%) 238 (15 %) 65 (20 %) 47 (17 %) 867 (51 %) 457 (57 %) 433 (69 %)
Sex
Male, n (%) 1059 (68 %) 237 (74 %) 216 (76 %) 1072 (63 %) 507 (63 %) 391 (62 %)
Female, n (%) 498 (32 %) 83 (26 %) 87 (24 %) 638 (37 %) 294 (37 %) 238 (38 %)
Clinical variables
ED Glucose, mean ± SD 130 ± 50 171 ± 65 150 ± 60 133 ± 53 139 ± 39 135 ± 37
ED Hemoglobin, mean ± SD 14.3 ± 1.6 13.3 ± 1.8 14 ± 1.7 12.5 ± 1.7 11.4 ± 1.9 12.2 ± 1.6
ED INR, mean ± SD 1.07 ± 0.2 1.24 ± 0.8 1.10 ± 0.2 1.25 ± 0.1 1.30 ± 0.1 1.26 ± 0.1
ED White Blood Cell, mean ± SD 11.6 ± 4.7 15.5 ± 6.4 13.7 ± 6.6 11.7 ± 5.7 12.9 ± 7.7 11.9 ± 4.7
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Fig. 3. Percentage of the TBI patients with the lowest and highest GCS eye scores in TRACK-TBI (a) and MIMIC-IV (b) over the initial 120 h in ICU.

Fig. 4. Percentage of the TBI patients with the lowest and highest GCS motor scores in TRACK-TBI (a) and MIMIC-IV (b) over the initial 120 h in ICU.
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Fig. 5. Average glucose levels of TBI phenotypes in TRACK-TBI (a) and MIMIC-IV (b) during the initial 120 h in ICU.

Fig. 6. Average hematocrit levels of TBI phenotypes in TRACK-TBI (a) and MIMIC-IV (b) during the initial 120 h in ICU.

Fig. 7. Average hemoglobin levels of TBI phenotypes in TRACK-TBI (a) and MIMIC-IV (b) during the initial 120 h in ICU.
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The process of each fold included.

• Model Initialization: A transformer-based classifier was configured
in line with the optimal setup of the SLAC-Time model.

• Transfer Learning: We trained the classifier with the weights ob-
tained from the clustering task, expediting convergence and possibly
enhancing performance.

Fig. 8. Average hemoglobin levels of TBI phenotypes in TRACK-TBI (a) and MIMIC-IV (b) during the initial 120 h in ICU.

Fig. 9. Average INR and aPTT levels of TBI phenotypes in TRACK-TBI (a) and MIMIC-IV (b) during the initial 120 h in ICU.
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• Training: With Adam optimizer and sparse categorical cross-entropy
loss monitoring, the model was trained using the current fold,
leveraging the validation fold for early stopping.

• Model Evaluation: Post-training performance was assessed on the 15
% test set.

Following training, the classifier was applied to the MIMIC-IV
dataset. Then, a cross-match permutation test based on Euclidean dis-
tance was used to compare the predicted labels with the TRACK-TBI
phenotypes. We also employed the same methodology to assess the
reproducibility of MIMIC-IV phenotypes in the TRACK-TBI dataset.

4. Results

Our study identified three distinct TBI phenotypes in the TRACK-TBI
and MIMIC-IV datasets, each with unique characteristics and clinical
outcomes.

• Phenotype α shows the lowest mortality rates and shortest ICU stays.
It includes the youngest group of patients with better neurological
outcomes, moderate metabolic stress, optimal hydration and
oxygenation, the mildest inflammatory response, and a more effi-
cient coagulation profile.

• Phenotype β exhibits the highest mortality rates and longest ICU
stays, and is characterized by the most severe neurological impair-
ments, elevated metabolic stress, the lowest levels of hydration and
oxygenation, the strongest inflammatory response, and a compro-
mised coagulation profile.

• Phenotype γ, consisting of the oldest patient group, has clinical
features that are intermediate in severity. This phenotype shares
more similarities with phenotype α, exhibiting moderately elevated
metabolic stress, balanced hydration and oxygenation, moderate
inflammatory response, and a relatively balanced coagulation
profile.

Subsequent sections (4.1.1 to 4.1.4) provide a detailed comparative
analysis of demographics, non-temporal and time-series clinical
markers, and outcomes for these phenotypes across the two datasets.

4.1. Comparison of demographics and non-temporal clinical features of
TBI phenotypes

Age Distribution: The age distribution across TBI phenotypes shows
phenotype α as consistently the youngest group and phenotype γ the
oldest in both TRACK-TBI and MIMIC-IV datasets, as detailed in Table 4.
Phenotype α′s average age is 38 ± 18 years in TRACK-TBI, increasing to
59± 22 years in MIMIC-IV, while phenotype γ averages at 43± 18 years
and 69 ± 20 years in the respective datasets. This age pattern highlights
the reliability of TBI phenotypes across varied patient demographics.

Sex Distribution: In the TRACK-TBI dataset, male representation is
notable across all phenotypes, with 68 %, 74 %, and 76 % for Pheno-
types α, β, and γ respectively. Similarly, in the MIMIC-IV dataset, males
constitute 63 % of Phenotype α and approximately 63 % for both Phe-
notypes β and γ. Although there is a slight reduction in the male-to-
female ratio in the MIMIC-IV dataset relative to TRACK-TBI, both
datasets consistently demonstrate that male patients are predominantly
represented in each TBI phenotype, underscoring that male individuals
may be more susceptible to certain TBI manifestations.

Non-Temporal Clinical Variables in Emergency Departments: Clinical
variables recorded upon TBI patients’ arrival at the emergency depart-
ment provide insights into the immediate physiological reactions post-
injury. The TRACK-TBI dataset reveals distinct TBI phenotypes (p <

0.05), with a range of metabolic and coagulation responses. Phenotype α
in this dataset displays a nearly balanced metabolic response, indicated
by a glucose level of 130 ± 50 mg/dL, and a robust oxygen-carrying
capacity (hemoglobin level of 14.3 ± 1.6 g/dL). In contrast,

phenotype β exhibits elevated metabolic stress (glucose level of 171 ±

65 mg/dL) and a slight reduction in oxygen transport (hemoglobin level
of 13.3 ± 1.8 g/dL). Phenotype γ presents intermediate values between
phenotypes α and β. Furthermore, in terms of coagulation and inflam-
matory responses, phenotype α shows the lowest mean INR value (1.07
± 0.2) and a moderate WBC count (11.6 ± 4.7), indicating a relatively
normal coagulation status and a mild inflammatory response. Phenotype
β, with the highest mean INR (1.24 ± 0.8) and WBC count (15.5 ± 6.4),
suggests a greater propensity for bleeding complications and a pro-
nounced inflammatory or immune response, indicative of more severe
trauma. Phenotype γ, with its slightly elevated INR (1.10 ± 0.2) and
higher WBC count (13.7 ± 6.6) compared to phenotype α, occupies an
intermediate position, reflecting moderate severity.

In comparison, the MIMIC-IV dataset, influenced by an older patient
demographic, presents a parallel yet distinct TBI phenotypes (p < 0.05).
Phenotype α in MIMIC-IV, while exhibiting similar glucose levels (133
± 53 mg/dL) to its TRACK-TBI counterpart, shows a decreased oxygen-
carrying capacity (hemoglobin level of 12.5 ± 1.7 g/dL). This reduction
might be attributed to age-related hematopoietic changes or comor-
bidities. Phenotype β in MIMIC-IV continues this trend of decreased
hemoglobin levels (11.4 ± 1.9 g/dL) alongside a slight rise in glucose
(139 ± 39 mg/dL). Phenotype γ falls between phenotypes α and β,
reflecting moderate severity of TBI. Regarding coagulation and inflam-
mation, phenotype α in MIMIC-IV, with an INR value of 1.25± 0.1 and a
WBC count of 11.7± 5.7, suggests a mild coagulation abnormality and a
similar level of inflammation or immune response as seen in TRACK-TBI.
Phenotype β, marked by the highest INR value in the dataset (1.30 ±

0.1), indicates a significant risk of coagulopathy, potentially reflective of
more severe brain injury. Furthermore, it has the highest WBC count
(12.9 ± 7.7), suggesting an elevated inflammatory response. Phenotype
γ, with an INR of 1.26 ± 0.1 and a WBC count of 11.9 ± 4.7, presents a
moderate severity of TBI, with a balance between coagulation risks and
inflammatory response.

The comparative analysis of non-temporal variables demonstrates
consistent results across both datasets. Phenotype α typically presents
milder clinical indicators, phenotype β manifests increased physiolog-
ical alterations, and phenotype γ sits intermediate. However, this static
snapshot does not capture the evolving nature of TBI phenotypes. This
underscores the importance of incorporating time-series clinical data
during ICU stays for a nuanced understanding of TBI phenotype
progression.

4.2. Comparison of outcomes of TBI phenotypes

In the evaluation of identified TBI phenotypes within the TRACK-TBI
and MIMIC-IV datasets, the study focuses on mortality rates and lengths
of ICU stays as outcome endpoints. These outcomes were selected for
their consistent availability across both datasets.

Mortality Rate: The overall mortality rates show distinct differences
between the datasets, with MIMIC-IV exhibiting a mortality rate of 12%,
in comparison to 6 % in TRACK-TBI. Despite this variation, the strati-
fication by phenotype shows a consistency. Specifically, phenotype β
exhibits significantly higher mortality rates within both datasets: 33.4%
in TRACK-TBI and 41.2 % in MIMIC-IV. This increased rate in MIMIC-IV
may be explained by the higher average age of phenotype β within this
dataset, potentially reflecting an age-related increase in susceptibility to
TBI complications. On the other hand, phenotypes α and γ maintain
closely comparable mortality rates across both datasets. Phenotype α
records a mortality rate of 1.3 % in TRACK-TBI and 1.5 % in MIMIC-IV,
while phenotype γ shows rates of 3.9 % and 4.9 %, respectively.

Length of ICU Stay: The average ICU stay duration across datasets
supports the consistency of TBIphenotype in two datasets. For pheno-
type α, the difference is minor, with a 5-day ICU stay in TRACK-TBI
compared to 6 days in MIMIC-IV. Phenotype γ shows similar dura-
tions, averaging a 10-day stay in both datasets. However, phenotype β
reveals a greater discrepancy—a 25-day average stay in TRACK-TBI
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versus a 15-day stay in MIMIC-IV. Several factors might explain this
difference: the higher mortality rate for phenotype β in MIMIC-IV could
lead to shorter ICU stays due to earlier patient deaths. Additionally,
differences in clinical protocols, interventions, and resources specific to
each dataset’s source might influence recovery paths or treatment
results.

Examining these outcomes, it is evident that TBI phenotypes in both
datasets share strong similarities, emphasizing their potential for
generalization.

4.3. Analysis of time-series clinical markers for TBI phenotypes

Level of Consciousness: The GCS score, comprising eye, verbal, and
motor components, is a measure for assessing the level of consciousness
in TBI patients. Of these components, studies emphasize the eye and
motor responses as particularly predictive of the TBI GOSE score [30,
31]. Although there are significant differences in the GCS eye and motor
scores of TBI phenotypes within each dataset (p < 0.05), both datasets
present comparable consciousness patterns (Figs. 3 and 4). Phenotype β
is characterized by its severe neurological deficits, with the majority of
these patients scoring the lowest possible GCS of 1 for both eye and
motor responses, indicating no observable response. This profound
impairment persists across the initial days of intensive care, marking the
phenotype with a particularly severe clinical trajectory. In contrast,
phenotype α is associated with relatively mild neurological deficits.
Most patients in this phenotype achieve a GCS eye score of 4, denoting
spontaneous eye-opening, and a motor score of 6, demonstrating the
ability to follow commands—signs of substantially preserved con-
sciousness and neurological function. The consciousness level of
phenotype γ is intermediate between those of phenotypes α and β across
both datasets. However, it is worth mentioning that phenotype γ is not
equidistant between phenotypes α and β. Instead, its level of con-
sciousness leans closer to that of phenotype α. This indicates that pa-
tients categorized within phenotype γ, despite exhibiting neurological
challenges, generally experience less severe deficits compared to the
profound impairments seen in phenotype β.

Glucose Levels: Fig. 5 highlights distinct temporal trends of glucose
levels among TBI phenotypes during early ICU admission across both
datasets (p < 0.05). The patterns observed in TRACK-TBI and MIMIC-IV
for TBI phenotypes are similar, underscoring the consistency of TBI
phenotypes across these datasets. A notable trend is the initial steep
decrease in glucose levels for all phenotypes, potentially indicating a
stress-induced hyperglycemic response, which stabilizes subsequently.
Phenotype β consistently displays elevated glucose levels, suggesting
heightened physiological stress or pronounced metabolic dysfunction,
often associated with severe TBI cases. In contrast, phenotypes α and γ
exhibit moderate glucose levels, with γ slightly higher than α.

Hematocrit Levels: Hematocrit levels, indicative of the proportion of
red blood cells in blood, provide insights into potential hemorrhagic
conditions or anemia [32,33]. There are significant differences between
the hematocrit levels of TBI phenotypes in each dataset (p< 0.05). Fig. 6
reveals pronounced hematocrit levels in phenotype α, suggesting con-
ditions such as dehydration or reduced plasma volume. Conversely,
phenotype β displays the lowest hematocrit levels, hinting at potential
hemorrhagic complications or dilutional anemia. A consistent pattern
observed across all phenotypes is an initial decline in hematocrit levels,
followed by stabilization. This trend may reflect a common post-injury
physiological response, influenced by factors like hemorrhage, fluid
resuscitation, or systemic inflammation, underscoring the importance of
hematocrit as a dynamic marker in TBI management and prognosis.

Hemoglobin Concentrations: Hemoglobin, a key marker for evaluating
oxygenation [34], displays significantly different trends across TBI
phenotypes in each dataset (p < 0.05). Moreover, the TBI phenotypes in
the TRACK-TBI and MIMIC-IV datasets exhibit similar patterns,
emphasizing the consistency in hemoglobin trends of TBI phenotypes
across these datasets. Phenotype α consistently exhibits the highest

hemoglobin concentrations, suggesting optimal oxygen-carrying ca-
pacity (Fig. 7). In contrast, phenotype β has the lowest hemoglobin
levels, indicating potential challenges such as anemia or hemorrhagic
events. All phenotypes initially show a decline in hemoglobin concen-
trations, which then level out. This pattern might stem from an imme-
diate hemorrhagic response after TBI, compounded by hemodilution
(dilution of blood) from medical fluid resuscitation. Additionally,
trauma-induced systemic inflammation, which involves a body-wide
response that can shift fluids, further influences hemoglobin concen-
trations. The subsequent stabilization of hemoglobin levels indicates
effective early medical interventions and the body’s adaptive responses.

White Blood Cells (WBC): The WBC count serves as an indicator of
the body’s inflammatory response and offers valuable insights into the
identified TBI phenotypes [35]. There is a significant difference between
the TBI phenotypes within each dataset regarding the temporal values of
WBC (p < 0.05). However, the corresponding TBI phenotypes between
TRACK-TBI and MIMIC-IV display similar patterns throughout the ICU
stay (Fig. 8). Phenotype β consistently shows the highest WBC counts in
both datasets, suggesting an intensified inflammatory response due to
severe injuries or significant blood loss. In contrast, phenotype α exhibits
the lowest WBC counts, indicating a milder inflammatory response. In
both datasets, the WBC counts of TBI phenotypes decrease over the ICU
stay duration. This trend underscores the body’s ability to manage and
gradually resolve the initial inflammatory response, possibly due to
medical interventions, natural healing processes, or a combination of
both.

Coagulation Efficiency: The ability to form clots and halt excessive
bleeding is vital in managing traumatic injuries, including TBI. Key as-
sessments for this include the INR and aPTT tests. Elevated INR values
indicate a compromised clotting ability, increasing the risk of bleeding,
while a prolonged aPTT suggests potential bleeding complications [36].
Our study identified distinct clotting patterns among TBI phenotypes
within each dataset (p < 0.05). However, both TRACK-TBI and
MIMIC-IV datasets demonstrated similar trends in terms of INR and
aPTT values. Phenotype β consistently presented with elevated INR and
aPTT levels (Fig. 9). These patterns may indicate that patients with this
phenotype are more prone to bleeding disorders, warranting close
monitoring and potential interventions to manage bleeding risks.
Conversely, phenotypes α and γ appear to maintain a more balanced
coagulation profile, closer to standard reference ranges. Among these,
phenotype α is characterized by the lowest INR and aPTT levels, sug-
gesting a faster clotting ability and potentially a lower bleeding risk
compared to other phenotypes. Notably, all three phenotypes in both
datasets exhibited a rising trend in aPTT levels, possibly indicating
evolving clotting dynamics due to TBI progression or treatment
responses.

4.4. Comparison of heterogeneity and dispersion across TBI phenotypes

In this section, we used Principal Component Analysis (PCA) to
identify the unique dispersion patterns of each TBI phenotype. Fig. 10
presents the PCA plots, illustrating the clustering of TBI patients in the
TRACK-TBI and MIMIC-IV datasets. Unlike our previous study on
identifying TBI phenotypes [5], the current study leveraged learned
representations rather than the raw input data for generating the PCA
plots. This revealed distinct dispersion patterns for each phenotype and
similar patterns across both datasets. In both datasets, phenotype α is
characterized by a dense clustering of TBI patients. This compactness
indicates a high degree of homogeneity within this group, suggesting a
consistent set of clinical presentations and potentially a more predict-
able trajectory of progression and response to therapeutic interventions.
On the other hand, phenotype β exhibits a more dispersed pattern in
both datasets, representing its inherent variability. This spread signifies
the diversity of clinical presentations and the complexities stemming
from its severe TBI nature. This wide dispersion underscores the chal-
lenges in classifying and treating patients within this phenotype due to
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its diverse manifestations. Phenotype γ demonstrates a dispersion level
that lies between the other two phenotypes in both datasets.

4.5. Evaluation of reproducibility of TBI phenotypes

The classifier trained on the TRACK-TBI data demonstrated an
average accuracy of 97 %. Upon applying to the MIMIC-IV dataset,
findings showed no significant difference in the distribution of patient
phenotypes between the TRACK-TBI and the reproduced phenotypes in
MIMIC-IV (p > 0.05). Similarly, a classifier trained on the MIMIC-IV
dataset achieved an average accuracy of 95 %. Upon application to
the TRACK-TBI dataset, the analysis revealed no significant differences
between the phenotypes identified in the MIMIC-IV dataset and the
corresponding classifications in the TRACK-TBI dataset (p > 0.05).
These findings underscore the reproducibility of the identified TBI
phenotypes across external datasets, highlighting their potential for
broad applicability and generalization.

5. Discussion

This study represents an application of the SLAC-Time clustering
approach to discover generalizable TBI phenotypes from two distinct
datasets: TRACK-TBI and MIMIC-IV. In the following sections, we delve
deeper into the implications of our findings.

5.1. Robustness and generalizability of the SLAC-time clustering approach

The SLAC-Time clustering approach consistently exhibits optimal
performance across both the TRACK-TBI and MIMIC-IV datasets when
using identical hyperparameters, highlighting its reliability. The
model’s capacity to identify three clusters for TBI phenotypes across
datasets suggests that the diverse manifestations of TBI may be
condensed into three primary phenotypes. This finding holds significant
clinical relevance, as it might simplify diagnostic procedures, treatment
strategies, and prognosis assessments by classifying TBI patients into one
of these three phenotypes.

5.2. Demographic distributions: age and sex

There was a noticeable difference in the age demographics between
the two datasets, with MIMIC-IV having an older population. This
discrepancy in age demographics has potential clinical implications.
Older populations often present with a wider range of comorbidities and

may react differently to interventions than younger groups. The
consistent age associations of phenotypes across datasets, where
phenotype α represents the youngest and phenotype γ the oldest, may
indicate underlying biological or physiological mechanisms that war-
rant further investigation.

Regarding sex distribution, both datasets showed a male predomi-
nance for TBI phenotypes. This inclination toward male TBI patients
might reflect environmental and behavioral influences, suggesting that
men may be more frequently exposed to environments or activities with
a higher risk of TBI. This observation underscores the need for preven-
tion strategies that focus on male-centric environments or activities.

5.3. Clinical indicators and outcomes

The consistent patterns observed across datasets indicate that
phenotype α generally presents with milder clinical indicators, while
phenotype β displays more pronounced physiological disturbances.
These patterns have important clinical implications. Rapid and precise
identification of these phenotypes could greatly influence and expedite
the commencement of suitable treatments. The observed mortality rates
underscore the urgency, particularly for phenotype β, which showed
elevated rates. Although the older age demographic in MIMIC-IV may
contribute to this observation, the inherent severity of phenotype β is
evident and necessitates proactive clinical intervention. Furthermore,
factors influencing the duration of ICU stays—whether they relate to
mortality rates, clinical protocols, or specific patient attributes—offer
valuable insights for health systems regarding resource distribution and
patient care strategies.

5.4. Time-series clinical markers

The GCS, glucose, hematocrit, hemoglobin, and WBC count provided
rich insights into the dynamic progression of TBI manifestations across
the early days of ICU admission. Such markers can aid clinicians in
monitoring patient trajectories and adjusting interventions in real-time.
The disparities in GCS scores among phenotypes emphasize the varia-
tion in neurological deficits faced by TBI patients. The marked neuro-
logical impairments in phenotype β, as indicated by their GCS scores,
highlight the acute severity of this phenotype. This observation suggests
that interventions tailored for phenotype β should prioritize addressing
significant neurological dysfunctions. The relatively milder neurological
disturbances in phenotypes α and γ necessitate different intervention
strategies. Importantly, the consciousness levels observed in phenotype

Fig. 10. PCA visualization of TBI phenotypes from TRACK-TBI (a) and MIMIC-IV (b) using two principal components.
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γ being closer to phenotype α rather than β is a clinically significant
observation. It suggests that interventions beneficial for phenotype α
might also be applicable, at least in part, to phenotype γ, but this re-
quires further exploration.

Elevated glucose levels in phenotype β, potentially indicative of a
stress-induced hyperglycemic response, emphasize the need for close
monitoring and management. The consistency in hematocrit and he-
moglobin trends across datasets underscores their value as TBI man-
agement markers. These trends, combined with the WBC count data,
offer insights into the balance between hemorrhagic conditions and
inflammation in TBI patients. Coagulation efficiency observations,
particularly the clotting challenges in phenotype β, stress the importance
of preemptive interventions to manage bleeding disorders. The rising
aPTT trend across all phenotypes necessitates continued clinical
vigilance.

5.5. Validation and reproducibility

The correspondence between the distribution of TBI phenotypes and
their reproduced counterparts in external datasets underscores the po-
tential generalizability and robustness of the identified TBI phenotypes.
This consistent reproducibility reinforces the reliability of the pheno-
types for clinicians and strengthens confidence in their clinical
relevance.

5.6. Limitations

Our study offers novel insights into generalizable TBI phenotypes.
However, it is important to acknowledge several limitations. First, the
scope of our research was limited by the range of clinical variables
available. Amore comprehensive analysis of phenotypic differences may
be possible with inclusion of additional, detailed clinical variables.
Specifically, incorporating data from imaging, detailed neurological
symptoms, and multi-omics data (e.g., transcriptomics, proteomics, and
metabolomics) could enrich the granularity of our phenotype clustering.
In addition, the diversity within our datasets warrants critical exami-
nation. Despite their comprehensiveness, these datasets may not fully
represent the global diversity of TBI patients. Factors such as ethnicity,
geographic location, and socioeconomic status can influence the pre-
sentation and outcomes of TBI, yet these elements may not be
adequately captured in our data. Furthermore, our study’s focus on
acute clinical markers does not encompass significant medical histories
or chronic conditions of the patients. Other factors, such as post-injury
rehabilitation practices, were also outside the scope of this research.

6. Conclusions

In our study, we employed the SLAC-Time clustering approach on
multivariate time-series data from TRACK-TBI and MIMIC-IV datasets to
identify generalizable TBI phenotypes. Our findings delineate three
phenotypes: α, β, and γ, each with distinct characteristics but consis-
tently present across both datasets. Phenotype α represents a group with
favorable outcomes, characterized by the lowest mortality, shorter ICU
stays, and predominantly younger patients. These patients exhibit good
neurological outcomes, moderate metabolic stress, and show effective
hydration, oxygenation, and coagulation profiles, coupled with a mild
inflammatory response. Conversely, phenotype β encompasses patients
with the most challenging clinical scenarios, indicated by the highest
mortality, prolonged ICU stays, and severe neurological impairments.
This group experiences significant metabolic stress, poor hydration and
oxygenation, a strong inflammatory response, and a compromised
coagulation profile. Phenotype γ, predominantly consisting of older
patients, falls in between the other two, displaying moderate clinical
severity. This group’s characteristics are more aligned with phenotype α,
demonstrating moderately elevated metabolic stress and more balanced
hydration, oxygenation, and coagulation profiles. Notably, all

phenotypes exhibit a male predominance, implying potential environ-
mental or behavioral factors affecting TBI incidence. The consistent
performance of SLAC-Time across datasets, with identical hyper-
parameters, underscores its robustness. The identification of three pri-
mary clusters indicates a potential simplification of TBI’s inherent
complexity. Supervised learning tests confirm the reproducibility of
these phenotypes across datasets, suggesting their potential applicability
to a broader TBI population. The findings of this study can serve as a
foundation for the creation of precision interventions and predictive
models tailored to these phenotypes, aiming to enhance TBI diagnosis
and treatment. Future research could consider implementing explain-
ability techniques to enhance the interpretation and transparency of the
clustering results. Additionally, incorporating more detailed clinical
variables, such as imaging, neurological evaluations, and multi-omics
data, may help capture more subtle distinctions within phenotypes.
Extensive studies across diverse demographics are needed for deeper
validation and understanding. Furthermore, since there are no definitive
ground truth labels for TBI phenotypes yet, future work may also focus
on developing innovative phenotype validation methods.
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