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ABSTRACT

Identifying the genes that change between two conditions,
such as normal versus cancer, is a crucial task in under-
standing the causes of diseases. Differential networking has
emerged as a powerful approach to achieve this task and to
detect the changes in the corresponding network structures.
The goal of differential networking is to identify the differen-
tially connected genes between two networks. However, the
current differential networking methods primarily depend on
pair-wise comparisons of the genes based on their degrees in
the two networks. Therefore, these methods cannot capture
all the topological changes in the network structure. In this
paper, we propose a novel differential networking algorithm,
DiffRank, to rank the genes based on their contribution to
the differences between two gene co-expression networks. To
achieve this goal, we define two novel scoring measures: a lo-
cal structure measure, differential connectivity, and a global
structure measure, differential betweenness centrality. These
measures are combined within a PageRank-style framework
and optimized by propagating them through the network.
Finally, the genes are ranked based on the their propagated
scores. We demonstrate the effectiveness of DiffRank on sev-
eral gene expression datasets, and we show that our method
provides biologically interesting rankings.
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1. INTRODUCTION

Microarray studies are used to measure the expression
level of thousands of genes under different conditions in dif-
ferent cells. These cells have the same set of genes, but
the gene expression and their activities are different. There
are several examples of such phenotypic variations: differ-
ent tissue types: e.g., normal vs cancerous [1, 8|, different
class types: e.g., acute lymphoblastic leukemia (ALL) vs
acute myeloid leukemia samples (AML) [6], different stages
of cancer: early stage vs developed stage of prostate can-
cer [11] or different time points [5]. Differential analysis of
networks has shown some promising results in studying the
phenotypic differences across different conditions [4]. The
set of genes which cause network topological changes may
serve as biomarkers [20]. The main challenge in the differen-
tial network analysis is to identify the important differences
between two networks. A naive solution is to transfer this
problem to solving the subgraph isomorphism problem. Un-
fortunately, it was shown that solving the subgraph isomor-
phism problem is an NP-complete problem [14]. Hence, we
propose DiffRank as an efficient and approximate solution
to find the differential genes in co-expression networks.

Network A Network B
gene degree Top genes based on 59 gene  |degree
4 4 comparing the degrees = 1 4
1,7 3 Top genes based 01} 7,2,3,6 1,7 3
2,3,5,6,8 2 the proposed algorithm 2,3,6,8 2
9 0 5,9 1

Figure 1: A simple illustration of differential net-
works. Network A and network B have the same set
of genes but different sets of edges. The solid edges
are common in both networks, but the dashed edges
exist only in one network. The size of the nodes rep-
resents the degree of each gene.

1.1 A Simple Illustration

Figure 1 shows a simple illustration of the concept of dif-
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ferential network analysis using two unweighted and undi-
rected networks. The top three hubs from network A based
on their degrees are 1, 4 and 7, which are the same top
three hubs in network B. However, for the differential anal-
ysis purpose, we would like to see the genes 7, 2, 3 and 6
ranked top in the list because they are responsible for the
major differences between the networks. These genes are
referred to as differentially connected genes or differential
genes in short. Considering only the degree of nodes in each
network individually is not an accurate measure for iden-
tifying the differential genes. As shown in Figure 1, gene
7 has the same degree in both networks, but the edges of
gene 7 are different. Therefore, it is crucial to capture the
changes in the edges and the changes in the centrality of each
gene in differential networking. In this paper, we propose a
novel differential network algorithm, DiffRank, to rank the
genes based on their contribution in the differences between
two gene networks. The proposed algorithm can effectively
capture the local and the global changes in the topological
structures between the two gene networks

1.2 Related Work

There are some differential networking methods that have
been proposed in the literature. In [15], the degree distribu-
tion of each network was used to compare two gene networks.
Edge-level comparison was used to identify sets of genes
whose interactions are impacted by radiation exposure in
mice [19]. To compare the genes between two gene networks,
several differential measures such as differential connectivity
have been defined in [16, 4]. Topological overlap of gene co-
expression networks in human and chimpanzee brains was
used to identify key drivers of evolutionary change [12]. It is
also used by DiffCoEx [18] tool to identify differentially co-
expressed modules between two conditions. Differential de-
pendency network (DDN) [20] performs a permutation test
to detect local topological changes in gene subnetworks, and
Ryan et al. [5] proposed another statistical framework for
differential network analysis.

The existing methods depend on pair-wise comparisons of
genes in two networks, and they can not capture the global
changes in the network structures. In this paper, we pro-
pose a new differential network analysis algorithm that can
overcome these drawbacks. The proposed method captures
the changes in the edges (local changes) and the changes in
the centrality of each gene (global changes).

2. THE PROPOSED METHOD

Given two gene networks, represented by graphs G4 (V, E4)
and GP(V, E®), where V is the set of N nodes and E° is
the set of edges in G, ¢ € {A, B}. An edge between two
genes u and v, with a weight w®(u,v) in G¢, determines the
strength of the interaction between the genes. We denote
the degree of gene v in network c as k.

Given two networks, G* and GE, the goal is to find the
top differential genes that best explain the differences between
the networks. The output is a vector Il =< 71, w2, ..., TN >,
where T, denotes the rank of the differential gene v.

Differential Connectivity: Genes with the highest num-
ber of edges, known as hubs, play essential roles in the anal-
ysis of networks. Differential connectivity measures the local
differences between two networks by considering the actual
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weights of all the edges, and it is defined as follows:

i N ’LUAUU —wBuv '7Ti
ACZ(’U):Z | ( ) ) ( ) )| u (1)

N
u=1 Zz:l |wA(u7 Z) - wB(u? Z)|

Where 7% is the differential scores (or rank) of node v at
the i"iteration. It is initialized to % and will be updated in
each iteration. If a given gene has the same set of edges in
both networks with the same weights, then the differential
connectivity of that node will be 0. On the other hand, when
a node has different sets of edges (such as gene 7 in Figure
1), it will get a high value for the differential connectivity.
In addition to the number of edges and their weights, the
differential connectivity of each gene depends also on the
differential scores of the neighbors it is connected to. A
gene will be assigned a higher score if it is connected to
many differential genes.

(a) Network A (b) Network B

Figure 2: An illustration for differential centrality.
The shaded gene has the same betweenness central-
ity value in both networks, but the paths that pass
through that gene are different.

Differential Centrality: Centrality is an important mea-
sure in understanding biological networks because it is dif-
ficult to detect small changes in the expression level of the
central genes. However, these changes could significantly
alter the topology of the gene network [3]. Therefore, we
integrate gene centrality in the proposed algorithm.

Betweenness Centrality (BC') can be used to measure the
centrality of each node, which is proportional to the sum of
the shortest paths passing through it [3]. If Ps; is the number
of the shortest paths from node s to node t, where s # t, and
Pgi(v) is the number of the shortest paths from s to ¢ that
pass through a node v, where s # v and ¢ # v, then the BC
of the node v can be computed as BC(v) = >___, Pj,tig(:) [3].
Comparing the values of BC may not detect the topological
changes. For example, the shaded gene in Figure 2 has the
same value of BC' (which is 6) in both networks. However,
the shortest paths that pass through that gene are different.
Therefore, we propose to consider the shortest paths in our
method. Let SPS be a binary N x N matrix, such that
SPg(s,t) =1 if one of the shortest paths from s to ¢ passes
through the node v in network ¢ = {A, B}, where s # t,
and it is 0 otherwise. We define differential betweenness
centrality of a node v as follows:

N

ABC(’U):iz‘spf(&t)_spf(svt)l (2)

t=1

The proposed DiffRank algorithm is a combination of dif-
ferential connectivity and differential centrality (parameter-
ized by A) within a PageRank-style framework [13], such
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Table 1: Description of the gene expression datasets used in the experiments.

Dataset Genes : C.l ass A - c.lass B Source
Description | Samples Description Samples
Leukemia 3051 AML 11 ALL 27 [6]
Medulloblastoma | 2059 | Metastatic 10 Non-metastatic 13 [10]
Lung cancer 1975 Normal 67 Tumor 102 2
Gastric cancer 7192 Normal 8 Tumor 22 8

Table 2: Degree distribution of the networks used
in the experiments. This table shows the minimum,
the mean and the maximum of the degrees.

Dataset Class min | mean | max
Leukemia AML 5 8.7 96
ALL 5 8.8 120
metastatic 5 8.5 66
Medulloblastoma Non-metastatic 5 9.0 743
Lung cancer Normal 5 9.9 878
tumor 5 9.9 858
Gastric cancer Normal 5 9.4 288
tumor 5 8.5 248

that the rank of each node v is computed as follows:

ABC(v)

mh= (1= 2
> =1 ABC(u)

+A-ACY (v) (3)

The parameter A\ controls the trade-off between differen-
tial connectivity and differential betweenness centrality. It
can be assigned any value in the range [0,1]. When A = 0,
the ranking depends only on the differential betweenness
centrality, and when A = 1, the ranking depends only on
the differential connectivity. Any other value of A combines
both terms in the ranking. In this paper, we set A to 0.75
based on some of the preliminary experiments we performed.

Finding the shortest paths is the most time-consuming
computation in the proposed model. Using the traditional
Dijkstra’s algorithm, computing the shortest paths between
two nodes needs O(m + nlog(n)) where m is the number of
links, and n is the number of nodes in the graph and solv-
ing all-pairs shortest paths requires O(nm + n2logn) time
and O(n?) space [7]. However, Recent methods have been
proposed to reduce the computational overhead by using ap-
proximation methods [7], which helps in efficiently applying
DiffRank on large-scale networks.

It is important to find the genes that are differentially
rewired in the cancer cells. For this purpose, we introduce
a second version of the proposed algorithm based on the
particular network of interest. To find the differential nodes
in network B, the differential connectivity (AC) for each
gene can be redefined as follows:

maz(ws(u,v) — walu,v),0) -7t

ACT () =Y =%

= >y maz(wa(u, z) —wa(u, 2),0)

(4)

This new definition excludes any edge in the network of
interest if the corresponding edge in the other network has
a higher weight. Similarly, the new definition of differential
betweenness centrality, ABC, includes the unique shortest
paths that are in the network of interest and excludes the
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unique shortest paths in the other network.

N N

ABC' (v) = ZZmam(S’P}g(s, t) — SPi(s,t),0) (5)

s=1t=1
The second version of DiffRank is modified as follows:
ABC' (v)
Sa1 ABC (u)
Using the first version of DiffRank, we can find the top
differential genes from two networks to solve the phenotypic

distinction problem. The second version of DiffRank can be
used to find condition-specific differential genes.

=1\ +A-ACT (W) (6)

3. EXPERIMENTS ON REAL DATASETS

We used four gene expression datasets as described in Ta-
ble 1. For each dataset, we built a network for each class;
then, we ran the proposed method on the resulting two net-
works.

3.1 Constructing the Gene Networks

We used Mutual Information (MI) to measure the corre-
lation between different genes in order to construct the gene
co-expression networks. To find the threshold for the MI val-
ues, we followed the rank-based approach proposed in [17].
The MI between each gene and all other genes are computed
and ranked; then, each gene will be connected to the top d
genes that are similar to it. Based on this approach, the
minimum degree is d, the mean degree is between d and
2d and the maximum degree can be N — 1. There are two
main advantages of this approach. First, the network will
contain only reliable edges. Second, there will be no isolated
nodes in the networks [17]. We used d = 5, and the resulting
networks for each class are described in Table 2.

3.2 Biological Evaluation

We used the DAVID functional annotation tool [9] to iden-
tify enriched biological GO terms and biological pathways of
the top 100 ranked genes in each dataset, and we show the
top four biological terms ranked based on their corrected p-
values. In addition, we compared the top 100 ranked genes
with the previously published results in the original papers
from which we obtained the datasets.

3.3 Results

(i) Leukemia Dataset: The leukemia data contains the
expression profiles of 3051 genes in 38 tumor samples. In this
dataset, there are 27 ALL samples and 11 AML samples [6].
For this dataset, we applied the version 1 of the proposed
DiffRank algorithm. The top 3 differential genes are shown
in Table 3. In this Table, we present the degrees of each gene
in network A, network B and the common edges between the
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Table 3: Top 3 differential genes obtained from each dataset.

Dataset Rank Gene EY [ KB [ kAnkP
1 M26692_s_at 21 92 1
Leukemia 2 X03934_at 120 5 1
3 D87459_at 6 96 0
1 196_s_at 5 743 3
Medulloblastoma 2 2008_s_at 5 709 2
3 664_at 25 | 678 6
1 MTHFR 15 | 659 11
Lung cancer 2 BAIl 84 | 492 52
3 CSF1 530 | 851 496
1 HG1751HT1768_s_at | 22 | 248 0
Gastric cancer 2 M10098_5_at 123 | 224 7
3 M11722_at 62 | 181 2

Table 4: Functional enrichment analysis for the
Leukemia cancer dataset.
Term Count | FE p-value
transmembrane protein 14 4.51 | 29F —03
G0O:0005829 cytosol 21 2.66 | 1.1E —02
G0:0033273 response to vitamin 6 15 1.8 — 02
G0:0002520 immune 10 5.98 | 2.3E —02
system development
G0O:0048534 lymphoid 10 6.35 | 2.8E —02
organ development

two networks. The top 5 enriched biological terms are shown
in Table 4 (FE stands for Fold Enrichment). In addition to
the functional enrichment analysis, we compared our results
with the previously published results, and we found some
differential genes, such as M8025/_at (CyP3) and M27891_at
(Cystatin C), were reported in [6] among the most highly
correlated genes with AML-ALL class distinction.

(ii) Medulloblastoma Dataset: This dataset [10] con-
tains gene expression profiles of primary medulloblastomas
clinically designated as either metastatic or non-metastatic.
For this dataset, we applied the version 1 of the DiffRank
algorithm. The top 3 differential genes are shown in Ta-
ble 3, and the top 5 enriched biological terms are shown in
Table 5. We also found some significant pathways such as:
Pathways in cancer, Chemokine signaling pathway, MAPK
signaling pathway which have p-values= 1.7F—06, 4.0E—04
and 1.0FE — 02, respectively. The mitogen-activated protein
kinase MAPK signal transduction pathway was reported
as an up-regulated pathway in the metastatic tumors that
is relevant to the study of the metastatic disease [10]. In
addition, some of the top differential genes were reported
in [10] among the gene differentiating metastatic from non-
metastatic tumors, such as 2042_s_at, 311_s_at and 1001_at.

(iii) Lung Cancer Dataset: This dataset [2] contains
the expression profiles of 1975 genes in normal and lung
cancer samples. For this dataset, we applied the version
2 of the proposed DiffRank algorithm. The top 3 differ-
ential genes are shown in Table 3, and the top 5 enriched
biological terms are shown in Table 6. More qualitatively,
when compared with previous published results on the same
dataset, we found that some of the top ranked genes such
as CLDN1/4, PAX7, SDCBP, TADA3L, ITGA2B were also
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Table 5: Functional enrichment analysis for the
Medulloblastoma dataset.
Term Count | FE p-value
hsa05200:Pathways in cancer 19 4.83 | 1.7E — 06
kinase 18 5.47 | 4.8E — 06
ATP 11 9.75 | 1.3E — 05
domain:Protein kinase 15 6.64 | 1.9E — 05
nucleotide-binding 26 3.22 | 1.9E — 05
Table 6: Functional enrichment analysis for the
Lung cancer dataset.
Term Count FE p-value
acetylation 37 2.73 | 2.3E — 06
Proto-oncogene 12 10.14 | 3.2E — 06
disease mutation 27 3.30 | 4.1E — 06
phosphoproteinr 64 1.71 | 45E — 06
nucleus 47 2.13 | 4.9E — 06

reported in the differential patterns discovered by the sub-
space differential co-expression analysis proposed in [2].
(iv) Gastric Cancer Dataset: The Gastric cancer
dataset [8] contains the expression profiles of 7192 genes in
normal and Gastric cancer samples. For this dataset, we
applied the version 2 of the proposed DiffRank algorithm.
The top 3 differential genes are shown in Table 3, and the
top 5 enriched biological terms are shown in Table 7. We
also found some of the top ranked genes such as X51441 s_at
and Y07755_at had been reported as highly expressed genes
in gastric tumors in [8]. Some of the top ranked genes have
not been annotated yet. For example the top ranked gene,
HG1751HT1768_s_at, has no annotations according to the
NCBI. As shown in Table 3, this gene has 22 edges in the
normal network and 248 different edges in the tumor net-
work. Such gene can further be investigated and validated.

4. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel algorithm, DiffRank, to
rank the differential genes when analyzing two gene networks
that represent two biological conditions. The proposed algo-

L http: / /www.ncbi.nlm.nih. gov/
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Table 7: Functional enrichment analysis for the Gas-

tric

cancer dataset.

Term Count | FE p-value
GO:0005576 31 2.57 | 1.3E - 04
extracellular region

signal peptide 36 2.21 | 1.3E - 03
GO:0005615 15 3.59 | 3.1E — 03
extracellular space

disulfide bond 31 2.10 | 3.5FE — 03
G0:0044459 plasma 27 2.0 | 41E—-03
membrane part

rithm can effectively capture the local and the global changes
in the topological structures between two gene networks.

The

proposed method is independent of the network con-

struction method, and it can be applied on directed and
undirected networks. In this paper, we illustrated the per-
formance of the proposed method on the co-expression net-
works, and in the future we will study DiffRank in the
context of gene regulatory networks (GRN). Moreover, the
ranking obtained by DiffRank can be integrated into a mod-
ule detection framework to obtain differential subnetworks.
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