
Mitigating Selection Bias with Node Pruning and Auxiliary Options

Hyeong Kyu Choi*1, Weijie Xu2, Chi Xue2, Stephanie Eckman2, Chandan K. Reddy2

1University of Wisconsin-Madison 2Amazon

Abstract

Large language models (LLMs) often ex-
hibit systematic preferences for certain answer
choices when responding to multiple-choice
questions—a behavior known as selection bias.
This bias reduces the accuracy and reliability
of LLM outputs, limiting their usefulness in
decision-critical applications. While prior work
has focused on adjusting model inputs or out-
puts to mitigate this issue, our work takes a
fundamentally different approach by identify-
ing and removing the internal sources of bias.
We introduce two methods: Bias Node Prun-
ing (BNP), which prunes parameters that con-
tribute to selection bias, and Auxiliary Option
Injection (AOI), which introduces an additional
answer choice to reduce bias in both white-
box and black-box settings. To address the
shortcomings of existing evaluation metrics, we
propose Choice Kullback-Leibler Divergence
(CKLD), a new metric that captures distribu-
tional imbalances in model predictions. Experi-
ments on three LLMs across multiple datasets
demonstrate that our methods consistently im-
prove answer accuracy while reducing selection
bias, providing a robust solution for both open-
and closed-source models.

1 Introduction

Large language models (LLMs) excel at many natu-
ral language processing tasks, from machine trans-
lation to data annotation. Although LLMs are most
often used for text generation, some important tasks
require them to answer multiple-choice questions
(MCQs). For example, when LLMs help annotate
data, they must select the best option from sev-
eral choices. However, when performing MCQ
tasks, LLMs often exhibit systematic selection bi-
ases—favoring certain answer positions or labels
(e.g., consistently choosing the last option or the
option labeled “A”) regardless of content relevance
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Figure 1: BNP and AOI reduce selection bias for white-
box and black-box models. The CKLD metric is a
standardized measure of selection bias.

(Zheng et al., 2024; Wei et al., 2024; Pezeshkpour
and Hruschka, 2024). These biases degrade answer
quality and lead to unreliable outputs in down-
stream applications. Previous research has ad-
dressed this problem by reformatting inputs (Li
et al., 2023b; Robinson et al., 2023) or adjusting
output probabilities (Zheng et al., 2024; Reif and
Schwartz, 2024; Wei et al., 2024). However, these
methods overlook the internal mechanisms that
give rise to selection bias within the model itself.

In this work, we investigate the internal sources
of selection bias and propose methods to mitigate
them. By analyzing the connections between in-
termediate embeddings and model parameters, we
identify specific parameters that contribute to bias.
Our first solution, Bias Node Pruning (BNP), a
parameter-level debiasing technique that removes
just 0.002% of the model’s weights, reducing bias
while improving accuracy on MCQ tasks. Our sec-
ond solution, Auxiliary Option Injection (AOI),
a simple yet effective prompting strategy that adds
an "I don’t know" option to reduce bias, applicable
even to black-box models.

Measuring selection bias presents its own chal-



lenges. Metrics such as Standard Deviation of Re-
calls (RStd) (Zheng et al., 2024) and Relative Stan-
dard Deviation (RSD) (Reif and Schwartz, 2024)
look at how model performance varies across dif-
ferent orderings of answer choices. We introduce a
new metric, Choice Kullback-Leibler Divergence
(CKLD), which measures bias by comparing the
distribution of model answers to the true distribu-
tion of correct answers. Figure 1 illustrates how
our proposed solutions integrate into the overall
evaluation pipeline.

Our experiments on multiple benchmark datasets
show that BNP and AOI consistently reduce se-
lection bias and improve answer accuracy across
diverse LLMs. Moreover, our methods are com-
plementary to existing techniques such as Chain-
of-Thought prompting and In-Context Learning,
further enhancing their practical utility. This paper
makes four key contributions:

• We propose Bias Node Pruning (BNP), a debias-
ing method that removes bias-inducing parame-
ters from the final linear layer.

• We introduce Auxiliary Option Injection (AOI), a
simple prompting strategy that, when combined
with BNP, improves MCQ answering accuracy
by up to 24.9%.

• We introduce Choice Kullback-Leibler Diver-
gence (CKLD), a novel distribution-based metric
for measuring selection bias.

• We demonstrate the broad applicability of our
methods, showing that AOI effectively debiases
both white-box and black-box LLMs.

Terminology. We use the following terms: sam-
ples are (question, answer) pairs; choices are the
possible answers; choice options are the content of
each answer; and choice symbols are the labels (A,
B, C, etc.) assigned to each option.

2 Selection Bias in LLMs

This section clarifies the definition of selection
bias (§ 2.1) and discusses when and where the se-
lection bias occurs (§ 2.2).

2.1 Selection Bias Problem
Selection bias occurs when a model systematically
favors certain answers based on their position or
label rather than their content (Zheng et al., 2024).
For example, if the model consistently responds
with the same choice symbol regardless of how
the choices are permuted, it is exhibiting a signif-
icant degree of selection bias. Conversely, if the

Figure 2: Comparison of the original and voting accu-
racy with different LLMs via zero-shot querying. Note,
Claude3-Sonnet is evaluated under the black-box set-
ting (§ 4.4).

correct choice option is selected regardless of its
position, the model has no selection bias for the
given question.

Empirical demonstration. We tested four LLMs
to show how selection bias affects their perfor-
mance. Figure 2 compares the performance of each
model in two scenarios using the ARC-challenge
dataset (Clark et al., 2018). The light bars show
how often each model picks the right answer when
seeing the questions once. The dark bars show the
accuracy when the answers are the majority vote
across all possible orderings of the choices. An
unbiased model would pick the correct answer re-
gardless of how we order the choices. In contrast,
a biased model picks different answers when we
shuffle the choices, leading to a gap between its
original accuracy and voting accuracy. All four
models show improved performance with voting,
which demonstrates that selection bias is common
across LLMs.

2.2 Pilot study: Capturing Selection Bias

While § 2.1 shows that selection bias exists in
LLMs, it does not explain how this bias arises. We
present two analyses that reveal where selection
bias appears in the model and how to measure it.

Incorrect samples exhibit more selection bias.
Figure 3(a) shows how often each answer choice is
selected in the ARC-Challenge data set (Clark et al.,
2018) by Llama-3-8B-Instruct (Meta, 2024) and
Bloomz-7b1 (Muennighoff et al., 2023). Without
bias, each choice should be selected around 25%
of the time (see Table 5 in Appendix A.1). How-
ever, Llama-3 prefers option ‘D’ while Bloomz
prefers ‘A’. This imbalance in preference is more
pronounced in the questions in which the models
give incorrect answers. This highlights the im-



Figure 3: (a) Choice frequency tends to have a sharper distribution when the model’s response is incorrect. (b) In
Llama-3, selection bias is predominantly observed to be in the final output layer of the decoder. Other model figures
are in Appendix D.

portance of analyzing cases with incorrect model
outputs.

Bias is prominently observed in final layers. To
locate where bias emerges in the model, we com-
pare embeddings from correct and incorrect an-
swers. For each question, we create different ver-
sions by shuffling the order of the answer choices.
By comparing embeddings across these choice-
shuffled questions, we can extract the effect of
selection bias from question content.

We extract embeddings from different parts of
the model as zℓ,t = fℓ(xA)t, where zℓ,t is the
embedding in layer ℓ and the token position t, fℓ
represents the model up to layer ℓ, and xA is the
input question with answers A. For brevity of nota-
tion, let z ∈ Rd be the embedding from an arbitrary
layer and token location.

For each question x, we represent bias as the
difference between embeddings from correct and
incorrect answers:

bx =
1

n−

n−∑
i=1

z
(i)
− − 1

n+

n+∑
i=1

z
(i)
+ (1)

where z− and z+ are embeddings from incorrect
and correct answers, with counts n− and n+, re-
spectively. To balance the number of correct and in-
correct samples, we use vector sets {z−, z+} only
when 1 ≤ n+/n− ≤ 2. Then, we average these
bias vectors across 32 questions to get an overall
bias measure:

b =
1

|X |
∑
x∈X

bx (2)

Refer to Figure 4(a) for visual aid.
We use the L2 norm of the average bias vec-

tor retrieved from different layers and tokens as

a proxy for the magnitude of selection bias. Fig-
ure 3(b) shows the norm value of each location as
a heatmap, where the x-axis lists the layer indices,
and the y-axis shows the last 50 token embeddings
of the inputs. The bias is strongest in the final
layers, suggesting that we should focus on the inter-
action between these layers and the model’s output
layer.

3 Methods

Motivated by our findings that selection bias is (1)
more common in incorrect samples and (2) cap-
tured in the final decoder layers, we introduce two
methods for debiasing model predictions: Bias
Node Pruning (BNP) and Auxiliary Option In-
jection (AOI).

3.1 Bias Node Pruning (BNP)
Our analysis in § 2.2 shows that selection bias is
strongest in the model’s final layer, particularly in
the output projection matrix W ∈ Rd×|V|, which
maps model embeddings to vocabulary predictions
(where V is the vocabulary set). Our BNP approach
identifies and removes specific parameters in W
that contribute to selection bias.

To understand which parameters to remove, we
model a biased LLM F as:

F(xA) ≈ (D(xA) + b) ·W (3)

where D represents an unbiased version of the
model and b is the bias vector from (2). The term
b ·W shows how bias affects the model’s outputs.
To reduce bias, we should remove the parameters
in W that interact most strongly with b.

We identify these parameters by computing:

K = Top-k
i∈[1,d]

( |V|∑
j=1

bi ×Wij

)
(4)



Figure 4: Bias Node Pruning with Auxiliary Option Injection. (a) The bias vector bx is computed for each
sample using its choice-permuted embeddings (Eq. (1)). The bias vectors are averaged across a small subset of
training data to retrieve the average bias vector, b (Eq. (2)). Then, b is used to select nodes to prune in W , where⊗

refers to the operation in Eq. (4). (b) The pruned W̃ is used to retrieve answers for the test questions, along with
our Auxiliary Option Injection technique that injects the “I don’t know" option in the inputs (§ 3.2). Our debiasing
approaches may correct potentially erroneous responses retrieved with W and without AOI, as in (c).

where |V| is the vocabulary size of the output.
This equation finds the k rows in W that have
the strongest interaction with the bias vector. We
set these rows (i.e. nodes) to zero to create a pruned
weight matrix W̃ .

BNP is simple to implement: we compute the
bias vector once, identify and remove the prob-
lematic parameters, then use the pruned matrix W̃
for all future predictions. The complexity analysis
appears in Appendix B.

3.2 Auxiliary Option Injection (AOI)
Because selection bias is more likely when mod-
els give incorrect answers (§ 2.2), we hypothe-
sized that giving models a way to indicate that they
are unsure could reduce selection bias. Our AOI
approach adds an “I don’t know” (IDK) answer
choice.

The method works in two steps. First, we add
the IDK option to the set of possible answers:

A := A ∪ {oaux} (5)

Then, we select as the answer the choice with the
highest probability, excluding IDK:

â = argmax
a∈A\oaux

P (ŷ = a |xA) (6)

where A is the set of answer choices and xA is
the sample. Implementation details for computing

answer probabilities appear in § 4.1. We analyze
how AOI affects model behavior in § 5.1.

4 Experiments

This section evaluates the BNP and AOI ap-
proaches. We first discuss experimental details
and evaluation metrics. Then, we propose Choice
Kullback-Leibler Divergence (CKLD) in § 4.2.
We provide our main experimental results in § 4.3
and demonstrate debiasing results on black-box
models in § 4.4.

4.1 Experimental Details

We evaluate our method on Llama-3-8B-
Instruct (Meta, 2024), Mistral-7B-Instruct-
v0.2 (Jiang et al., 2023), and Bloomz-7b1 (Muen-
nighoff et al., 2023). For benchmark datasets,
we use three multiple-choice question answering
data test sets, ARC-Challenge (Clark et al., 2018),
MMLU-Redux (Gema et al., 2024), and Common-
senseQA (Talmor et al., 2019). To retrieve the
average bias vectors (Eq. (2)), a separate set of
out-of-bag samples is used. Further dataset details
are provided in Appendix A.1.

We also detail how we retrieve model predic-
tions and list hyperparameters used for each model-
dataset experiment.



How are predictions retrieved? As discussed in
the main paper, we use the token output probability
distribution to select a token ID for prediction. For
instance, if z ∈ R|V| is the output logit vector of
the first output token, we use z[‘A’] + z[‘_A’] to
retrieve the logit value for choice ‘A’, and do the
same for other choices as well. Note that ’_A’ is a
token that represents "A" with a space in front of it,
whereas ’A’ is a one-character token. Since these
two represent the same choice, we aggregate their
logits, z, for accurate evaluation. Then, we take
the softmax over all the choice logits to retrieve the
final probability distribution over the choices.

System prompt. We use the same system prompt
across all experiments: “You are an AI assistant
that answers multiple choice questions. Please re-
spond with capitalized alphabet(s) that correspond
to the correct answer". For Chain-of-Thought rea-
soning baseline experiments, we use a slightly dif-
ferent version of “You are an AI assistant that an-
swers multiple choice questions. Please think step
by step and respond with capitalized alphabet(s)
that correspond to the correct answer” to encour-
age the model to output a step-by-step reasoning
process.

Hyperparameters. The number of nodes pruned
is the main hyperparameter of our experiments. As
disclosed in the main paper, we pruned 32 nodes
in all experiments with Llama-3 and Mistral, and
pruned 128 nodes in experiments with Bloomz.
We did a simple hyperparameter search among {16,
32, 64, 128} nodes. Results can be found in Fig-
ure 5(a) and Figure 10. Another noteworthy hyper-
parameter is the choice delimiter, which refers to
the type of token used to separate choices. In our
preliminary experiments, we found that different
choice delimiters such as space (‘ ’), line break
tokens (‘\n’), multiple lines (‘\n\n\n’), or special
tags (‘<c>’) have varying impact on performance.
As there were no consistent results, however, we
chose to use the basic space delimiter in all our
experiments, e.g. ‘What is 1 + 1? (A) 2 (B) 3
(C) 4’. Although we do not discuss this in-depth
as it is beyond the scope of our work, we believe
that analyzing the effect of different choice delim-
iters in multiple choice question answering would
introduce an interesting viewpoint.

4.2 Evaluation Metrics
Researchers measure selection bias in different
ways. Some use brute-force methods that test every

possible ordering of the answer choices, including
Proportion of Plurality Agreement (Robinson et al.,
2023), Permutation Sensitivity (Liusie et al., 2024),
and Fluctuation Rate (Wei et al., 2024). Others
measure how models perform consistently across
different answer choices, using metrics like the
Standard Deviation of Recalls (RStd; Zheng et al.
(2024)) and Relative Standard Deviation (RSD;
Croce et al. (2021)). Because brute-force meth-
ods are computationally expensive, we focus on
performance-based metrics. We primarily use RSD,
which measures how much a model’s accuracy
varies across answer choices:

Definition 1. (Relative Standard Deviation) is the
class-wise accuracy standard deviation normalized
by the overall accuracy:

RSD =

√
1
k

∑k
i=1(si − s̄)2

s̄
, (7)

where k is the number of choices, si is the accu-
racy of the ith class, and s̄ is the mean accuracy
averaged across classes (Croce et al., 2021; Reif
and Schwartz, 2024).

We also introduce a new metric, Choice
Kullback-Leibler Divergence (CKLD):

Definition 2. (Choice Kullback-Leibler Diver-
gence) is the KL divergence between the ratio of
each predicted choice and the ratio of each ground
truth choice label:

CKLD =

k∑
i=1

pi log
pi
qi
, (8)

where k is the number of choices, pi is the ratio of
ground truth label choices, and qi is the ratio of
each predicted choice label.

CKLD captures a key aspect of selection bias
that other metrics miss: whether the model chooses
each answer option at the right rate. By measur-
ing the KL divergence between the predicted and
ground-truth choices, we can evaluate any signif-
icant deviation from the original distribution, pre-
sumably caused by selection bias. That is, the
metric reaches its minimum value only when the
model’s answer distribution matches the true dis-
tribution of correct answers, without favoring any
particular choices (proof in Appendix C).

In our evaluation, we use both RSD and CKLD
to measure selection bias, along with standard accu-
racy and F1 scores to measure overall performance.
For a complete discussion of our evaluation ap-
proach, see Appendix A.3 and Appendix A.4.



Table 1: Bias Node Pruning (BNP) and Auxiliary Option Injection (AOI) are tested on three datasets with Llama-3,
Bloomz, and Mistral. The best performances are in bold.

ARC-Challenge MMLU-Redux CSQA
Method Acc. ↑ F1 ↑ RSD ↓ CKLD ↓ Acc. ↑ F1 ↑ RSD ↓ CKLD ↓ Acc. ↑ F1 ↑ RSD ↓ CKLD ↓

Llama-3 52.3 54.1 0.562 0.494 41.8 46.7 1.021 0.589 65.4 66.2 0.261 0.095
Llama-3 + BNP 56.7 57.0 0.434 0.302 43.1 47.2 0.965 0.501 66.6 66.8 0.218 0.074
Llama-3 + AOI 60.7 61.0 0.364 0.231 47.3 49.9 0.807 0.321 67.4 67.8 0.211 0.065
Llama-3 + BNP + AOI 65.3 65.1 0.262 0.124 48.3 50.5 0.531 0.288 68.1 68.2 0.174 0.049

Bloomz 43.9 44.2 0.461 0.283 28.0 32.8 1.003 0.661 58.5 57.2 0.215 0.136
Bloomz + BNP 46.8 47.0 0.352 0.191 31.0 33.0 0.537 0.326 61.4 60.9 0.178 0.083
Bloomz + AOI 48.9 48.5 0.590 0.147 29.5 32.7 0.808 0.456 64.2 63.6 0.134 0.060
Bloomz + BNP + AOI 48.8 48.9 0.208 0.088 32.0 33.3 0.672 0.205 64.9 64.9 0.159 0.052

Mistral 67.4 67.6 0.156 0.040 46.4 47.6 0.366 0.186 63.6 63.9 0.184 0.042
Mistral + BNP 67.2 67.3 0.157 0.040 46.4 47.6 0.366 0.186 63.7 64.0 0.180 0.041
Mistral + AOI 69.8 69.9 0.108 0.019 48.6 49.3 0.308 0.139 66.8 66.8 0.101 0.016
Mistral + BNP + AOI 69.5 69.5 0.108 0.019 48.6 49.3 0.309 0.140 66.8 66.8 0.099 0.016

Table 2: Comparison with Baselines. Ours (BNP + AOI) is compared and applied to baseline methods. Best
performances are in bold, and values denoted with * are Ours with only BNP. Note that Bloomz + DoLa performed
poorly and was meaningless to compare with baselines.

ARC-Challenge MMLU-Redux CSQA
Method Acc. ↑ F1 ↑ RSD ↓ CKLD ↓ Acc. ↑ F1 ↑ RSD ↓ CKLD ↓ Acc. ↑ F1 ↑ RSD ↓ CKLD ↓

Llama-3 52.3 54.1 0.562 0.494 41.8 46.7 1.021 0.589 65.4 66.2 0.261 0.095
Llama-3 + Ours 65.3 65.1 0.262 0.124 48.3 50.5 0.531 0.288 68.1 68.2 0.174 0.049
Llama-3 + CoT 66.2 66.3 0.178 0.050 50.2 51.0 0.641 0.124 65.3 65.7 0.161 0.025
Llama-3 + CoT + Ours 69.2 69.5 0.156 0.024 50.4 51.1 0.281 0.095 65.9 66.0 0.123 0.012
Llama-3 + ICL 62.2 61.7 0.292 0.169 42.6 46.4 0.735 0.486 69.0 69.0 0.116 0.026
Llama-3 + ICL + Ours 70.0 70.0 0.167 0.054 46.9 49.2 0.526 0.280 69.5 69.3 0.124 0.037
Llama-3 + DoLa 51.1 52.8 0.578 0.524 41.5 46.3 1.033 0.581 65.1 65.6 0.244 0.087
Llama-3 + DoLa + Ours 64.1 63.7 0.271 0.139 47.6 49.8 0.545 0.292 66.7 66.7 0.178 0.052

Bloomz 43.9 44.2 0.461 0.283 28.0 32.8 1.003 0.661 58.5 57.2 0.215 0.136
Bloomz + Ours 48.8 48.9 0.208 0.088 32.0 33.3 0.672 0.205 64.9 64.9 0.159 0.052
Bloomz + CoT 47.5 47.2 0.169 0.070 30.7 32.2 0.445 0.162 62.7 62.6 0.093 0.020
Bloomz + CoT + Ours 50.2 50.1 0.058 0.013 34.3 34.7 0.215 0.019 62.8* 62.8* 0.104* 0.020*
Bloomz + ICL 39.9 42.2 0.534 0.298 30.4 32.0 0.566 0.272 50.3 52.1 0.434 0.239
Bloomz + ICL + Ours 42.8* 45.2* 0.433* 0.249* 30.7* 31.1* 0.310* 0.135* 55.5 57.3 0.365 0.167

Mistral 67.4 67.6 0.156 0.040 46.4 47.6 0.366 0.186 63.6 63.9 0.184 0.042
Mistral + Ours 69.5 69.5 0.108 0.019 48.6 49.3 0.309 0.140 66.8 66.8 0.099 0.016
Mistral + CoT 66.6 66.5 0.510 0.021 50.3 50.5 0.551 0.063 63.2 63.4 0.476 0.025
Mistral + CoT + Ours 66.9 66.8 0.071 0.014 50.6 50.7 0.527 0.032 64.5 64.5 0.127 0.021
Mistral + ICL 65.7 66.0 0.183 0.054 43.1 44.5 0.410 0.253 61.7 61.7 0.167 0.046
Mistral + ICL + Ours 65.7 65.7 0.127 0.032 44.6 45.8 0.382 0.203 63.4 63.5 0.118 0.026
Mistral + DoLa 67.4 67.5 0.155 0.040 46.4 47.6 0.363 0.184 63.6 63.9 0.184 0.042
Mistral + DoLa + Ours 69.4 69.4 0.106 0.019 48.7 49.4 0.305 0.135 66.8 66.9 0.098 0.015

4.3 Experimental Results

BNP + AOI consistently improves base model
performance by reducing selection bias. Ta-
ble 1 shows how our methods affect three different
LLMs across multiple datasets. Both BNP and AOI
help in two ways: they increase accuracy and F1
scores while reducing selection bias (measured by
RSD and CKLD). The improvement can be dra-
matic - for example, using both methods increases
Llama-3’s accuracy on the ARC-Challenge dataset
from 52.3% to 65.3%, a 24.9% improvement.

Our method can be applied with other debiasing
and decoding methods. For further insight, we

compare our methods with other debiasing and de-
coding approaches: Chain-of-Thought (CoT; (Wei
et al., 2022)), In-Context Learning (ICL; (Brown
et al., 2020)), and Decoding by Contrasting Lay-
ers (DoLa; (Chuang et al., 2023)). For CoT, we
follow the implementation of OpenAI Evals (Ope-
nAI) by first prompting with “Let’s think step by
step", and then using the generated explanation
to regenerate the final prediction. In the case of
ICL, we take one question from the training set
to retrieve N ! choice-permuted questions, where
N is the number of choices. Then, we randomly
select three questions from the choice-permuted
pool and create demonstrative examples from them,



Table 3: Applying AOI to black-box settings. For Llama-3, Bloomz, and Mistral, we assume that we do not have
access to the parameters nor the probability outputs, identical to black-box models.

ARC-Challenge MMLU-Redux CSQA
Method Acc. ↑ F1 ↑ RSD ↓ CKLD ↓ Acc. ↑ F1 ↑ RSD ↓ CKLD ↓ Acc. ↑ F1 ↑ RSD ↓ CKLD ↓

Llama-3 65.7 65.8 0.086 0.007 51.9 52.2 0.184 0.034 69.9 69.8 0.051 0.003
Llama-3 + AOI 66.9 66.9 0.076 0.007 52.6 53.0 0.177 0.033 71.3 71.2 0.030 0.003

Bloomz 41.9 42.6 0.703 0.208 27.6 31.0 1.102 0.523 55.9 55.3 0.252 0.142
Bloomz + AOI 44.7 45.0 0.305 0.155 29.4 31.8 0.972 0.413 59.2 58.2 0.180 0.105

Mistral 55.2 55.2 0.140 0.036 47.4 47.6 0.216 0.069 54.6 54.8 0.155 0.031
Mistral + AOI 59.0 59.0 0.117 0.020 48.5 48.8 0.217 0.069 62.8 62.8 0.082 0.013

Claude-3-Haiku 65.3 65.0 0.095 0.024 52.1 52.0 0.057 0.008 36.4 37.3 0.587 0.331
Claude-3-Haiku + AOI 71.4 71.5 0.087 0.004 51.7 51.7 0.052 0.004 47.0 47.9 0.302 0.023

Claude-3-Sonnet 86.9 86.9 0.034 0.001 60.6 60.7 0.133 0.024 71.0 70.8 0.072 0.015
Claude-3-Sonnet + AOI 87.6 87.6 0.027 0.001 60.3 60.4 0.111 0.019 73.1 72.7 0.057 0.022

where the LLM agent always answers the choice-
permuted questions correctly.

Combining our methods with these existing
approaches improves both answer accuracy and
bias reduction (Table 2). For some combinations,
marked with ’*’, we found that only BNP (with-
out AOI) worked well. Full implementation details
appear in Appendix A.2.

4.4 Black-box Settings

Many of the best language models are “black-box"
– we can use them but cannot access their internal
parameters. For these models, we cannot use BNP
to reduce selection bias, but we can still use AOI.

We tested AOI with both open-source models
(Llama-3, Bloomz, and Mistral) and closed-source
models (Claude-3 Haiku and Sonnet (Anthropic,
2023)). Since we cannot access model probabilities
in black-box settings, we instead (1) generate text
responses with the same input prompt; (2) compute
the Jaccard similarity between each choice option
and the output text; (3) select the choice with the
highest similarity score, instead of the probability-
based answer selection method used in our main
experiments.

AOI generally improves model performance (ac-
curacy and F1 scores) while reducing selection bias
(RSD and CKLD), even in black-box settings (Ta-
ble 3).

5 Analyses

This section provides in-depth analyses on the
mechanism and efficacy of Bias Node Pruning
and Auxiliary Option Injection (§ 5.1), and demon-
strates the overall distributional effect in § 5.2.

5.1 Ablation Studies

BNP is not sensitive to the number of nodes
pruned. Figure 5(a) shows how performance
changes as we vary the number of nodes removed.
Whether we remove 8 nodes or 128 nodes, BNP
consistently improves over baseline performance
(dashed lines). While the method is robust to this
choice, fine-tuning the number of nodes can help
optimize performance for specific tasks. See Ap-
pendix D.3 for detailed results across all settings.

The average bias vector generalizes across
datasets. The bias vector (Eq. (2)) captures how
selection bias appears in the model’s internal rep-
resentations. If this vector truly captures selection
bias, it should work across different datasets. We
tested this by computing the bias vector on one
dataset and using it to reduce bias in another.

Figure 5(b) shows a heatmap of these cross-
dataset results. Interestingly, we found no ad-
vantage to using a bias vector from the same
dataset (which would appear as a diagonal pattern
in the heatmap). In fact, sometimes using a bias
vector from a different dataset works better. For ex-
ample, using the bias vector from ARC-Challenge
reduces CKLD on the CSQA dataset by 36% – bet-
ter than the 22% reduction we get using CSQA’s
own bias vector.

The choice of extra option affects performance.
While our main experiments used “I don’t know”
as an extra answer choice, we also tested two al-
ternatives: “None of the above” and “I know the
answer.” Table 4 shows these results, where “None”
refers to “None of the above” and “Know” refers
to “I know the answer”.

The extra option generally helps Llama-3 and
Bloomz models - it improves their accuracy and



Figure 5: (a) BNP improves the base performances (dashed lines) regardless of the number of nodes pruned. The
number of nodes to prune can be adjusted to achieve better performance. More figures are in Appendix D. (b) Each
metric improvement (%) from its base Llama-3 performance when using the average bias vector from different
sources is shown in heatmaps.

Table 4: AOI with different option contents on the
MMLU-Redux dataset.

Method Acc. ↑ F1 ↑ RSD ↓ CKLD ↓

Llama-3 41.8 46.7 1.021 0.589
Llama-3 + “None” 42.4 42.7 0.833 0.487
Llama-3 + “Know” 45.6 46.5 0.790 0.366
Llama-3 + Ours 48.3 50.5 0.531 0.288

Bloomz 28.0 32.8 1.003 0.661
Bloomz + “None” 26.5 25.9 0.730 0.518
Bloomz + “Know” 28.0 26.1 0.618 0.314
Bloomz + Ours 32.0 33.3 0.672 0.205

Mistral 46.4 47.6 0.366 0.186
Mistral + “None” 48.0 47.8 0.596 0.159
Mistral + “Know” 9.7 3.9 0.762 1.888
Mistral + Ours 48.6 49.3 0.309 0.140

reduces bias compared to the baseline. However, “I
don’t know” works best in most cases. The results
differ for the Mistral model: using “I know the an-
swer” actually hurts the performance and increases
bias. See Appendix D.5 for complete results across
all datasets and additional experiments.

5.2 Impact on Distribution

In Figure 6, we show how the distribution of the se-
lected answer choices changes when we introduce
BNP and AOI. In all three datasets, the distribution
becomes more uniform when BNP and/or AOI are
applied, indicating lower levels of selection bias.

5.3 Qualitative Results

In addition to disclosing the distributional effect,
we provide below qualitative question-response
examples of Llama-3 and Bloomz in the ARC-
Challenge dataset, in Figure 7. As in Figure 3(a),
Llama-3 often showed a preference for choice ‘D’,
regardless of the order of the choices. Our method
successfully corrects such errors. Bloomz, on the
other hand, showed a preference for choice ‘A’.
Again, our methods corrected the model’s response.

More qualitative examples are in Appendix E.

6 Related Works

Selection Bias. LLMs’ tendency to favor choices
in a certain order or with a specific symbol has
been discussed in many previous works. Some
of the works investigated the skewed pattern of
responses for MCQs (Zheng et al., 2024; Wei
et al., 2024; Pezeshkpour and Hruschka, 2024),
emphasizing that selection bias is a critical prob-
lem. Many works have approached this problem
by calibrating the output probabilities (Wang et al.,
2023; Zheng et al., 2024; Reif and Schwartz, 2024;
Wei et al., 2024; Pezeshkpour and Hruschka, 2024;
Wang et al., 2024; Balepur et al., 2024; Li and Gao,
2024; Gupta et al., 2024), while others change the
way queries are input (Li et al., 2023b; Robinson
et al., 2023). Additional approaches include debi-
asing the LLM through distillation (Liusie et al.,
2024) and training the model to enforce its multiple
choice symbol binding property (Xue et al., 2024).

While researchers often use methods to make
deep learning models more efficient by remov-
ing some of their internal connections (Srinivas
and Babu, 2015; Han et al., 2016; Zhu and Gupta,
2017; Molchanov et al., 2019, 2022), or to help
models forget certain information (Liu et al., 2024;
Pochinkov and Schoots, 2024), parameter pruning
has rarely been discussed for debiasing. Our BNP
offers a new way to approach this problem.

Insights from Surveys on Humans. Recent
work has noted connections between surveys, an-
notation tasks, and how models answer multiple-
choice questions (Tjuatja et al., 2023; Eckman
et al., 2024; Chen et al., 2024). In surveys, in-
cluding an “I don’t know” option can improve the
quality of the data collected (Schuman and Presser,
1996). These findings motivated our AOI approach.



Figure 6: Effect of our methods on choice distributions. Our methods reduce the level of selection bias, and the
choice distributions become flatter. Dashed lines are the uniform ratios (gold standard).

Figure 7: Qualitative Examples.

Further insights from survey science could im-
prove our understanding of how LLMs work (Eck-
man et al., 2024). For example, when answering
questions in surveys, humans show a preference for
certain choices: the first in written surveys (web,
paper, and pencil) and the last in aural surveys
(telephone, face-to-face) (Lavrakas, 2008). Similar
order effects occur in voting (Miller and Krosnick,
1998), suggesting they are widespread in human-
generated data. The psychology literature suggests
these order effects are due to humans’ desire to
reduce the cognitive burden of choosing (Kros-
nick, 1991). Because models are trained on human-
generated data, they may pick up on these biases
and reproduce them.

7 Conclusion

Selection bias is a critical challenge when LLMs an-
swer multiple-choice questions. While prior work
focuses on modifying inputs or outputs, we ad-
dress the internal sources of bias by analyzing
embedding-level discrepancies. Based on this in-
sight, we propose Bias Node Pruning (BNP) and
Auxiliary Option Injection (AOI) to reduce bias
effectively. We also introduce Choice Kullback-
Leibler Divergence (CKLD), a metric that captures
choice imbalance overlooked by existing measures.
Our methods consistently improve MCQ perfor-
mance on both white-box and black-box models,
achieving up to 33.8% improvement on Llama-3
for the ARC-Challenge dataset. BNP and AOI com-
plement existing debiasing methods and generalize
across datasets. We further provide component
analyses and qualitative insights to explain the ef-
fectiveness of our methods. Our work reveals the
internal drivers of selection bias and offers a practi-
cal, generalizable debiasing framework for LLMs.



Limitation

While this work makes progress in mitigating se-
lection bias, the root causes of such bias remain
poorly understood. Existing studies, including ours,
primarily address the effects of selection bias with-
out fully explaining what triggers these systematic
preferences. Future research is needed to uncover
the underlying mechanisms by answering questions
such as: What data characteristics induce selection
bias? or Why do different model families exhibit
distinct choice preferences? Addressing these open
questions is essential for deepening our understand-
ing of LLM behavior, particularly in how models
internally prioritize token selection.

Ethics Statement

This work aims to mitigate selection bias in LLM
outputs, promoting fairer and more reliable model
behavior. By improving the accuracy and con-
sistency of multiple-choice predictions, our meth-
ods contribute to more valid and trustworthy data-
driven decisions, aligning with ethical research
principles. While our focus is on selection bias,
we recognize that LLMs may exhibit other forms
of bias. Ongoing vigilance is essential to address
these broader ethical challenges and to ensure the
responsible deployment of language models in real-
world applications.

AI Assistant Usage

AI assistant tools were utilized to improve clarity,
coherence, and readability while maintaining the
integrity of the original content.
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A Further Experimental Details

A.1 Datasets
We experiment on three datasets: ARC-Challenge (Clark et al., 2018), MMLU-Redux (Gema et al., 2024),
and CommonsenseQA (Talmor et al., 2019). We also provide the ground-truth choice ratios in the test
dataset in Table 5.

ARC-Challenge is a dataset from the AI2 Reasoning Challenge containing grade-school level multiple-
choice science questions. Among the ‘Challenge’ and the ‘Easy’ sets, we use the former set with 1.17K
test and 1.12K training questions. The training questions are used to extract the average bias vectors.

MMLU-Redux is a dataset derived from the original Massive Multitask Language Understand-
ing (MMLU) (Hendrycks et al., 2021) dataset, which comprises multiple-choice questions from 57
different branches of knowledge. (Gema et al., 2024) discovered that this original version contains
numerous errors and curated the dataset to have 3,000 manually re-annotated questions across 30 subjects
in the original MMLU dataset. In the case of MMLU-Redux, no training set is available. So we utilize the
validation set from the original MMLU dataset to pre-compute the average bias vectors.

CommonsenseQA is a dataset of multiple-choice questions that require commonsense knowledge to
respond. The dataset questions are extracted using the knowledge graph, ConceptNet (Speer et al., 2017),
which consists of 9.74K training and 1.22K validation questions. We use the training set to retrieve the
average bias vectors and evaluate on the validation set.

A.2 Baselines
In this section, we provide further details on how the debiasing baselines in Table 2 are designed.



Table 5: Ground-truth Label ratios of each dataset.

Datasets A ratio B ratio C ratio D ratio E ratio

ARC-Challenge 22.4% 25.7% 25.9% 24.1% -
MMLU-Redux 22.3% 24..6% 25.4% 27.7% -
CSQA 19.6% 20.9% 19.7% 20.6% 19.2%

Chain-of-Thought (CoT) first generates the model response that includes explanations by prompting
with “Let’s think step by step" as follows.

System Prompt: You are an AI assistant that answers multiple choice questions. Please think step
by step and respond with capitalized alphabet(s) that correspond to the correct answer.

User: { question }.
Assistant: Let’s think step by step.

Using the explanation that is generated with the prompt, we query the LLM once more with

System Prompt: You are an AI assistant that answers multiple choice questions. Please think step
by step and respond with capitalized alphabet(s) that correspond to the correct answer.

User: { question }.
Assistant: Let’s think step by step. { explanation }. So the correct answer is

and identically use the first token output probability distribution to retrieve the predictions. Note that
the actual prompt format depends on the model and the template above is a generic form.

In-Context Learning (ICL) takes one question out-of-bag sample and retrieve N ! choice-permuted
questions, where N is the number of choices. Then, three of the choice-permuted questions among the
N ! pool are randomly chosen to be used for the ICL demonstrative examples. Concretely, we design the
prompt as follows.

System Prompt: You are an AI assistant that answers multiple choice questions. Please respond
with capitalized alphabet(s) that correspond to the correct answer.

# Example 1
User: What leads to experimental errors? (A) Bias (B) Peer Review (C) Repeated Trials

Assistant : (A)
# Example 2
User: What leads to experimental errors? (A) Repeated Trials (B) Peer Review (C) Bias

Assistant : (C)
# Example 3
User: What leads to experimental errors? (A) Peer Review (B) Bias (C) Repeated Trials

Assistant : (B)
User: { question }.
Assistant:

Again, the prompt template is generic, and the actual input format depends on the model type.

Decoding by Contrasting Layers (DoLa) is a language model decoding method proposed by (Chuang
et al., 2023). Following their implementation, we measure the Jensen-Shannon Divergence between the
final (or mature) output probability distribution and intermediate (or premature) outputs to select the layer
with the highest divergence. Then, we use the selected layer output to divide the final output. Since this is
similar to calibration, we expected DoLa to have debiasing effects. However, the results in Table 2 show
that DoLa alone does not reduce the level of selection bias.

A.3 Metrics
In this section, we provide a full list of selection bias metrics, including RStd, RSD, our CKLD, and other
existing metrics that were not discussed in the main paper. We taxonomize the metrics into three groups:



brute-force evaluation, performance-based evaluation, and distribution-based evaluation.

A.3.1 Brute-force Evaluation
Brute-force evaluation metrics utilize all possible choice permutations to retrieve the metric value. Since
we need to infer the output for each of the choice-permuted questions, the computation increases by a factor
of N !, where N is the number of choices in the question. Here, we list two brute-force evaluation metrics,
Proportion of Plurality Agreement (PPA) and Permutation Sensitivity (PS), and one semi-brute-force
metric that additionally computes only the reverse-order permutation, Fluctuation Rate (FR).

Definition 1. (Proportion of Plurality Agreement) is the proportion of the plurality choice among all
possible choice orderings of a multiple-choice question:

PPA =
1

|X |
∑
X

max
n

(
N !∑
j=1

yj = on

)
N !

, (9)

where X is the set of test samples, N is the number of choices in each question, n is the index of the
choices, yj is the choice content of the j-th choice-permuted sample prediction, and on is the n-th choice
content. (Robinson et al., 2023)

Definition 2. (Permutation Sensitivity) is the expected divergence in output probability distributions of
the choice-permuted questions:

PS = Eσi,j

[
d(P (· | q,Aσi);P (· | q,Aσj )

]
, (10)

where σi is an arbitrary permutation of choices, Aσi is the answer choice with the choice permutation, q
is the input question, d(· ; ·) is the divergence function (e.g., KL-divergence), and P (· | ·) is the output
probability distribution function. (Liusie et al., 2024)

Definition 3. (Fluctuation Rate) is the rate of inconsistent model responses to the original input question
and the question with choices presented in reversed order:

FR =
1

M

M∑
i=1

1(
→
yi ̸=

←
yi), (11)

where M is the number of test questions, 1 is the indicator function,
→
y is the model prediction to the

original question, and
←
y is the prediction to the question with reversed choice order. (Wei et al., 2024)

A.3.2 Performance-based Evaluation
Performance-based evaluation tries to capture the consistency of model performance when measuring
selection bias. The two metrics discussed in the paper, RStd and RSD, fall under this category.

Definition 4. (Standard Deviation of Recalls) is the standard deviation of the class-wise recall:

RStd =

√√√√1

k

k∑
i=1

(ri − r̄)2, (12)

where k is the number of choices, ri is the recall of the i-th class, and r̄ is the arithmetic mean of ri values.
(Zheng et al., 2024)

Definition 5. (Relative Standard Deviation) is the class-wise accuracy standard deviation normalized
by the overall accuracy:

RSD =

√
1
k

∑k
i=1(si − s̄)2

s̄
, (13)

where k is the number of choices, si is the accuracy of the i-th class, and s̄ is the mean accuracy
averaged across classes. Please note that our recalls are calculated at label level since this is multi-class
questions. (Croce et al., 2021; Reif and Schwartz, 2024)



Figure 8: Empirical analyses of selection bias metrics. The metrics are tested on a 4-way classification task
using synthetic data with varying levels of label ratios (outer x axis) and selection rates (inner x axis). We
randomly generate 3000 samples and run 100 times to retrieve the mean and standard deviation of the metrics. The
corresponding ‘A’ Ratios are denoted with dashed lines.

A.3.3 Distribution-based Evaluation
Existing performance-based evaluation metrics are insensitive to an imbalance of choice labels, and
manually adjusting the label distribution does not guarantee fair evaluation and may severely influence
performance. Thus, we propose a new distribution-based evaluation metric, Choice Kullback-Leibler
Divergence (CKLD), to complement the evaluation of the selection bias.

Definition 6. (Choice Kullback-Leibler Divergence) is the KL divergence between the ratio of each
predicted choice and the ratio of each ground truth choice label:

CKLD =
k∑

i=1

pi log
pi
qi
, (14)

where k is the number of choices, pi is the ratio of ground truth label choices, and qi is the ratio of each
predicted choice label.

A.4 Exploratory Analysis of Metrics

We empirically show how performance-based metrics, RStd and RSD, behave across different data
characteristics. We constructed synthetic 4-way MCQ datasets by varying the choice selection ratio under
different ground-truth ratios. For instance, in the third column of Figure 8, labeled “‘A’ Label Ratio =
0.55", answer choice ‘A’ is the correct choice in 55% of the samples and the rest are labeled ‘B’, ‘C’, or
‘D’ 15% of the time, respectively. To simulate realistic predictions, we have the model render correct
predictions half of the time, and predict with respect to the choice selection ratio (i.e., ‘A’ selection rate)
for the other half. For example, if ‘A’ Selection Rate is 0.4, each choice will be sampled with respect to
P (A) = 0.4 and P (B) = P (C) = P (D) = 0.2 half of the time, and will predict the correct answer for
the other half. With this setup, the selection bias metrics should be lowest at the ‘A’ Label Ratio, shown
with a vertical dashed line in Figure 8.

In contrast, the minimum points of RStd and RSD are not in the expected locations (Figure 8).
Both metrics are insensitive to the ground-truth ratios. (RSD is lowest when the ‘A’ Selection Rate is

1
# Choices = 1

4 regardless of the ‘A’ Label Ratio.) These results highlight the inability of RStd and RSD to
measure selection bias in datasets with skewed distributions of the correct label.

B Complexity of Bias Node Pruning

Bias Node Pruning is a two-step process that includes the (1) average bias vector computation, and (2)
node pruning. The first phase utilizes M out-of-bag samples with N choices. This step requires computing



the outputs of N ! choice-permuted questions, translating to a complexity of O(N ! ·M ). Once we retrieve
the average bias vector, we use it to compute the top-k nodes that activate selection bias ((4)). This is also
a one-time process whose node-pruned parameters are applied throughout all test-time inference tasks.
The complexity of inference itself is identical to the original model without Bias Node Pruning, which is
proportional to the number of test samples evaluated.

C Proof of CKLD’s label ratio sensitivity

We want to prove that CKLD is minimized when the prediction has no bias towards a certain choice, and
matches the ratio of ground-truth labels. From the CKLD definition ((14)) of

CKLD =

k∑
i=1

pi log
pi
qi
, (15)

let qi = piri, where ri is the selection bias multiplier applied to the ground-truth choice ratio for each
i = 1, . . . , k. As we want to find out when CKLD is minimized, we formulate the objective as follows:

minimize
k∑

i=1

pi log
pi
qi

s.t. qi = piri and
k∑

i=1

piri = 1.

(16)

By rewriting this as a Lagrangian function L,

L(r1, . . . , rk, λ) =
k∑

i=1

pi log
pi
piri

+ λ(

k∑
i=1

piri − 1)

= −
k∑

i=1

pi log ri + λ(
k∑

i=1

piri − 1),

(17)

where λ is the Lagrangian multiplier, we take the partial derivative of each variable as:

∂L
∂ri

= −pi
ri

+ λpi = 0 (18)

∂L
∂λ

=

k∑
i=1

piri − 1 = 0. (19)

Then, from (18),

ri =
1

λ
, (20)

and by substituting this to (19), we get

0 =

k∑
i=1

pi
λ

− 1

=
1

λ
− 1.

(21)

Therefore, the objective is minimized when λ = 1, which translates to ri = 1 (∵ (20)). This is equivalent
to saying that CKLD is minimized when qi = piri = pi, i.e., when the prediction ratio matches the actual
label ratio and there is no selection bias towards a certain choice. □



Table 6: Statistical significance test results. (Section D.1)

Acc F1 RSD CKLD

ARC-Challenge

Llama-3 53.2 (1.3) 55.4 (1.3) 0.640 (0.142) 0.485 (0.049)
Llama-3 + BNP 57.4 (1.0) 58.0 (1.1) 0.533 (0.145) 0.304 (0.029)
Llama-3 + AOI 62.7 (1.0) 63.0 (1.1) 0.417 (0.133) 0.201 (0.023)
Llama-3 + BNP + AOI 66.8 (1.0) 66.6 (0.9) 0.340 (0.140) 0.121 (0.010)

MMLU-Redux

Llama-3 39.8 (1.6) 44.4 (1.8) 0.982 (0.097) 0.673 (0.063)
Llama-3 + BNP 40.8 (1.7) 44.8 (1.8) 0.936 (0.100) 0.595 (0.065)
Llama-3 + AOI 44.5 (1.8) 47.0 (2.0) 0.657 (0.097) 0.384 (0.042)
Llama-3 + BNP + AOI 45.4 (1.6) 47.5 (1.8) 0.564 (0.018) 0.346 (0.041)

CommonsenseQA

Llama-3 63.3 (1.1) 64.2 (0.9) 0.282 (0.026) 0.106 (0.018)
Llama-3 + BNP 64.9 (1.1) 65.2 (1.1) 0.222 (0.012) 0.073 (0.007)
Llama-3 + AOI 65.9 (0.9) 66.3 (0.8) 0.220 (0.020) 0.069 (0.010)
Llama-3 + BNP + AOI 67.2 (0.6) 67.2 (0.6) 0.175 (0.011) 0.052 (0.004)

C.1 Why does an LLM need to match the ground truth ratio?

Consider a scenario in which an LLM exhibits a bias toward selecting option ‘A’. In cases where the
LLM is uncertain about the correct answer and resorts to random selection, it is more likely to choose
‘A’, resulting in a skewed overall choice distribution that diverges from the ground truth distribution.
In contrast, an unbiased LLM would select options uniformly under uncertainty, producing a choice
distribution that more closely aligns with the original ground truth distribution. Therefore, the extent
to which an LLM’s predictions match the ground truth distribution can serve as a proxy for measuring
Selection Bias.

D More Experiments and Analyses

Here, we provide further experiments and analysis results that were not included in the main manuscript.
In Appendix D.2, we demonstrate an extended experiment result on another dataset. In Appendix D.3, an
extended list of figures of Figure 5 (a) is provided.

D.1 Significance Test

In Table 6, we present the results of a significance test conducted on Llama-3 by performing 8 experiments,
each with randomly permuted choices. The mean values for each dataset are reported, with standard
deviations shown in parentheses. All values are statistically significant compared to the Llama-3 baseline,
with t-test p-values below 0.001.

D.2 Further experiments on HellaSwag dataset

Beyond the three datasets tested in our main paper in Table 1, we disclose results on another widely used
benchmark dataset, HellaSwag (Zellers et al., 2019). HellaSwag is a commonsense natural language
inference (NLI) dataset that contains 4-way MCQ samples that ask the model to select the option that
best ends the given sentence. The experimental results are in Table 7. Bloomz is not included in the table
because the model failed to reasonably respond to most of the questions.

D.3 Extended List of Figures

Here, we provide a comprehensive table of figures on the sensitivity test on the number of nodes pruned
(§ 5.1, Figure 5(a)). In Figure 10, the effect of the number of pruned nodes is shown across the three
models and datasets, as its value is varied from 16 to 128. We also provide the heatmap of the average



Figure 9: More figures on different models other than Llama-3. Left is the bias vector magnitude heatmap from
Mistral-7B-Instruct, and right is from Bloomz-7b1.

Table 7: Further experiments on the HellaSwag dataset.

HellaSwag
Method Acc. ↑ F1 ↑ RSD ↓ CKLD ↓

Llama-3 35.9 42.3 0.988 1.416
Llama-3 + BNP 38.6 43.6 0.861 0.998
Llama-3 + AOI 47.6 51.2 0.599 0.611
Llama-3 + BNP + AOI 50.8 52.9 0.487 0.363

Mistral 46.7 48.7 0.558 0.341
Mistral + BNP 46.5 48.6 0.563 0.345
Mistral + AOI 51.7 53.0 0.414 0.206
Mistral + BNP + AOI 51.6 52.9 0.415 0.207

bias vector magnitude in Figure 9. Similar to what has been shown in Figure 3 (b), selection bias appears
to be prominent in the latter part of the decoder layers.

D.4 Will Bias Node Pruning Affect Text Generation Performance?
Parameter pruning is an extensively researched topic and is a well-established practice in the context of
large language models (Ma et al., 2023; Dong et al.). Considering that our Bias Node Pruning prunes
only a very small fraction of the model parameters, the effect of parameter pruning will be minimal. For
example, in the case of Llama-3, which has 8 billion parameters, we prune just 32 nodes—approximately
0.05% of the total model size.

Figure 10: Full list of plots on the number of nodes pruned.



Table 8: Performance metrics (F1 and Accuracy) for different numbers of pruned nodes.

# Pruned Nodes F1 Acc
0 32.7 22.0
8 32.7 22.7
16 31.7 20.2
32 31.3 20.6

Table 9: ROUGE-L and ROUGE-1 scores for different numbers of pruned nodes.

# Pruned Nodes ROUGE-L ROUGE-1
0 13.8 20.4
8 13.8 20.2

16 11.8 17.1
32 11.5 16.6

Furthermore, we evaluated Llama-3’s performance on two general NLP tasks—Sentiment Analysis and
Text Summarization—by pruning 8, 16, and 32 nodes. For Sentiment Analysis, we used the "Multi-class
Sentiment Analysis Dataset" 1, and for Text Summarization, we used the "CNN/DailyMail Dataset" 2. The
results are presented in Table 8 and Table 9. We observed a slight decline in performance as more nodes
were pruned; however, the degradation was not severe enough to significantly affect general linguistic
performance. Furthermore, Given that our method is specifically designed for multiple-choice question
(MCQ) tasks, we believe that a minor decrease in performance on general NLP tasks is not a significant
concern.

D.5 Different AOI Setup

In this section, in addition to all three dataset ablation studies on the content of auxiliary options in § 5.1,
we provide further ablation study results on the number and location of the auxiliary options.

More auxiliary options have mixed effects on performance. We find that controlling the number of
auxiliary options has a notable impact on performance. That is, we tried adding multiple auxiliary options,
all with the same “I don’t know" content. In most cases in Table 10, adding more auxiliary options did not
help improve performance (see n-Choices AOI). Interestingly, however, both the question-answering and
debiasing performance of Llama-3 significantly improved when using more options. This seems to be a
peculiar property of Llama-3 that we can enhance its performance by simply adding multiple auxiliary
options.

Location of the auxiliary option does not decide performance. The location of the auxiliary option is
another factor to consider. In our main experiments, we have appended the “I don’t know" option to the
end of the choice list. In comparison, we try placing it in the first choice option (i.e., with choice symbol
‘A’), corresponding to ‘First Choice AOI’ in Table 4. In general, there were mixed results, indicating that
the location of the auxiliary option is not a decisive factor in determining performance.

E More Qualitative Examples

Here, we provide more qualitative examples to show how model response changes when our methods are
applied. The examples are retrieved using the Llama-3-8B-Instruct model on the ARC-Challenge dataset.
As observed in Figure 3(a), the original Llama-3 response is skewed towards ‘D’. The provided examples
align with the result, and such ungrounded preference is debiased via our BNP+AOI.

1https://huggingface.co/datasets/Sp1786/multiclass-sentiment-analysis-dataset/tree/main
2https://huggingface.co/datasets/abisee/cnn_dailymail

https://huggingface.co/datasets/Sp1786/multiclass-sentiment-analysis-dataset/tree/main
https://huggingface.co/datasets/abisee/cnn_dailymail


Table 10: Different AOI setups. The content, location, and number of auxiliary options are varied to see its effect
with ARC-Challenge (top table), MMLU-Redux (middle table), and CSQA (bottom table).

Llama-3-8B-Inst. Bloomz-7b1 Mistral-7B-Inst.
Method Acc. ↑ F1 ↑ RSD ↓ CKLD ↓ Acc. ↑ F1 ↑ RSD ↓ CKLD ↓ Acc. ↑ F1 ↑ RSD ↓ CKLD ↓

Model 52.3 54.1 0.562 0.494 43.9 44.2 0.461 0.283 67.4 67.6 0.156 0.040
Model + Ours 65.3 65.1 0.262 0.124 48.8 48.9 0.208 0.088 69.5 69.5 0.108 0.019

Arbitrary AOI 63.4 61.2 0.572 0.179 50.1 50.2 0.548 0.077 11.4 3.9 1.008 2.075

2-Choices AOI 70.2 69.9 0.175 0.067 46.3 47.6 0.381 0.198 69.0 69.0 0.131 0.031
3-Choices AOI 71.9 71.7 0.130 0.039 45.1 46.6 0.418 0.243 68.3 68.3 0.140 0.038
4-Choices AOI 72.4 72.3 0.130 0.036 43.9 45.6 0.438 0.266 68.4 68.4 0.138 0.036

First Choice AOI 67.9 67.6 0.222 0.106 44.2 45.3 0.455 0.232 68.1 68.1 0.109 0.025

Llama-3-8B-Inst. Bloomz-7b1 Mistral-7B-Inst.
Method Acc. ↑ F1 ↑ RSD ↓ CKLD ↓ Acc. ↑ F1 ↑ RSD ↓ CKLD ↓ Acc. ↑ F1 ↑ RSD ↓ CKLD ↓

Base Model 41.8 46.7 1.021 0.589 28.0 32.8 1.003 0.661 46.4 47.6 0.366 0.186
Base Model + Ours 48.3 50.5 0.531 0.288 32.0 33.3 0.672 0.205 48.6 49.3 0.309 0.140

Arbitrary AOI 45.6 46.5 0.790 0.366 28.0 26.1 0.618 0.314 9.7 3.9 0.762 1.888

2-Choices AOI 49.4 50.9 0.442 0.201 30.5 32.7 0.774 0.332 47.7 48.4 0.327 0.157
3-Choices AOI 50.6 51.8 0.387 0.151 30.4 33.4 0.838 0.435 47.5 48.0 0.317 0.159
4-Choices AOI 51.7 52.8 0.352 0.117 30.0 33.4 0.633 0.479 47.1 47.7 0.328 0.169

First Choice AOI 46.1 47.6 0.515 0.295 31.8 35.4 0.647 0.338 44.7 45.0 0.291 0.160

Llama-3-8B-Inst. Bloomz-7b1 Mistral-7B-Inst.
Method Acc. ↑ F1 ↑ RSD ↓ CKLD ↓ Acc. ↑ F1 ↑ RSD ↓ CKLD ↓ Acc. ↑ F1 ↑ RSD ↓ CKLD ↓

Base Model 65.4 66.2 0.261 0.095 58.5 57.2 0.215 0.136 63.6 63.9 0.184 0.042
Base Model + Ours 68.1 68.2 0.174 0.049 64.9 64.9 0.159 0.052 66.8 66.8 0.099 0.016

Arbitrary AOI 67.9 68.0 0.486 0.049 67.6 67.5 0.144 0.043 5.1 0.9 0.851 2.854

2-Choices AOI 68.1 68.2 0.149 0.031 59.5 59.8 0.261 0.129 65.6 65.6 0.134 0.034
3-Choices AOI 70.0 70.3 0.150 0.028 59.4 59.9 0.273 0.132 65.3 65.2 0.123 0.033
4-Choices AOI 70.4 70.5 0.137 0.023 58.7 59.4 0.282 0.130 64.8 64.7 0.137 0.038

First Choice AOI 69.5 69.4 0.142 0.037 48.5 52.7 0.602 0.713 66.2 66.3 0.118 0.018

Original Question: An astronomer observes that a planet rotates faster after a meteorite impact.
Which is the most likely effect of this increase in rotation? (A) Planetary density will decrease. (B)
Planetary years will become longer. (C) Planetary gravity will become stronger. (D) Planetary days
will become shorter.

⇒ Base Model Response: (D) Ground-truth: (D)

Permuted Question : An astronomer observes that a planet rotates faster after a meteorite impact.
Which is the most likely effect of this increase in rotation? (A) Planetary density will decrease. (B)
Planetary years will become longer. (C) Planetary days will become shorter. (D) Planetary gravity
will become stronger.

⇒ Base Model Response: (D) / BNP+AOI Response: (C) Ground-truth: (C)

Original Question: Petrified palm trees are found in sedimentary rock near glaciers. The presence
of the petrified palm trees most likely provides evidence for which statement? (A) There was once
more water in the area. (B) The area was once grassland. (C) There are active faults in the area. (D)
The climate in the area was once tropical.

⇒ Base Model Response: (D) Ground-truth: (D)

Permuted Question : Petrified palm trees are found in sedimentary rock near glaciers. The
presence of the petrified palm trees most likely provides evidence for which statement? (A) There
was once more water in the area. (B) The area was once grassland. (C) The climate in the area was



once tropical. (D) There are active faults in the area.
⇒ Base Model Response: (D) / BNP+AOI Response: (C) Ground-truth: (C)

Original Question: According to cell classification, prokaryotic cells are separated from eukaryotic
cells. Which feature is often used to distinguish prokaryotic cells from eukaryotic cells? (A) plasma
membranes (B) size differences (C) life processes (D) energy molecules

⇒ Base Model Response: (B) Ground-truth: (B)

Permuted Question : According to cell classification, prokaryotic cells are separated from eukary-
otic cells. Which feature is often used to distinguish prokaryotic cells from eukaryotic cells? (A) life
processes (B) size differences (C) plasma membranes (D) energy molecules

⇒ Base Model Response: (D) / BNP+AOI Response: (B) Ground-truth: (B)

Original Question: The morning temperature in a city is 41°F. If a sunny, mild day is forecast, which
temperature is most likely for 2:00 p.m.? (A) 32° F (B) 78° F (C) 98° F (D) 41° F

⇒ Base Model Response: (B) Ground-truth: (B)

Permuted Question : The morning temperature in a city is 41°F. If a sunny, mild day is forecast,
which temperature is most likely for 2:00 p.m.? (A) 32° F (B) 41° F (C) 78° F (D) 98° F

⇒ Base Model Response: (D) / BNP+AOI Response: (C) Ground-truth: (C)

Original Question: All natural resources on Earth are either renewable or nonrenewable. Whether a
resource is renewable or nonrenewable depends on how fast or slow the resource is replaced. If the
resource is used faster than it is replaced, then the resource will, in time, disappear. Which activity
shows the use of a nonrenewable natural resource? (A) A group of people swims in a river. (B) A
person bakes a cake with electricity produced by a hydroelectric power plant. (C) A farmer grows
vegetables to sell at a local market. (D) A construction crew builds an iron bridge.

⇒ Base Model Response: (D) Ground-truth: (D)

Permuted Question : All natural resources on Earth are either renewable or nonrenewable.
Whether a resource is renewable or nonrenewable depends on how fast or slow the resource is
replaced. If the resource is used faster than it is replaced, then the resource will, in time, disappear.
Which activity shows the use of a nonrenewable natural resource? (A) A group of people swims in a
river. (B) A construction crew builds an iron bridge. (C) A farmer grows vegetables to sell at a local
market. (D) A person bakes a cake with electricity produced by a hydroelectric power plant.

⇒ Base Model Response: (D) / BNP+AOI Response: (B) Ground-truth: (B)

Original Question: At which temperature does water freeze? (A) 32 degrees Celsius (B) 0 degrees
Celsius (C) 100 degrees Celsius (D) 212 degrees Celsius

⇒ Base Model Response: (B) Ground-truth: (B)

Permuted Question : At which temperature does water freeze? (A) 0 degrees Celsius (B) 32
degrees Celsius (C) 100 degrees Celsius (D) 212 degrees Celsius

⇒ Base Model Response: (B) / BNP+AOI Response: (A) Ground-truth: (A)

Original Question: Fossil bones and teeth of dinosaurs have been researched for the last century.
Recent discoveries of fossilized dinosaurs have also revealed details of soft tissues, such as skin.
Which is best for a scientist to do when reporting research on dinosaurs now? (A) exclude research
on teeth or bones (B) delete earlier reports that were missing the new findings (C) predict what the
next discovery will be (D) analyze new data as it becomes available

⇒ Base Model Response: (D) Ground-truth: (D)



Permuted Question : Fossil bones and teeth of dinosaurs have been researched for the last century.
Recent discoveries of fossilized dinosaurs have also revealed details of soft tissues, such as skin.
Which is best for a scientist to do when reporting research on dinosaurs now? (A) exclude research
on teeth or bones (B) predict what the next discovery will be (C) analyze new data as it becomes
available (D) delete earlier reports that were missing the new findings

⇒ Base Model Response: (D) / BNP+AOI Response: (C) Ground-truth: (C)

Original Question: What is the main function of photosynthetic cells within a plant? (A) to change
oxygen into carbon dioxide (B) to allow the passage of carbon dioxide into the plant (C) to convert
energy from sunlight into food energy (D) to break down sugar into usable chemicals

⇒ Base Model Response: (C) Ground-truth: (C)

Permuted Question : What is the main function of photosynthetic cells within a plant? (A) to
change oxygen into carbon dioxide (B) to break down sugar into usable chemicals (C) to convert
energy from sunlight into food energy (D) to allow the passage of carbon dioxide into the plant

⇒ Base Model Response: (D) / BNP+AOI Response: (C) Ground-truth: (C)

Original Question: What is the mass of a carbon atom that has 6 protons, 7 neutrons, and 6 electrons?
(A) 7 (B) 19 (C) 6 (D) 13

⇒ Base Model Response: (D) Ground-truth: (D)

Permuted Question : What is the mass of a carbon atom that has 6 protons, 7 neutrons, and 6
electrons? (A) 6 (B) 7 (C) 13 (D) 19

⇒ Base Model Response: (D) / BNP+AOI Response: (C) Ground-truth: (C)

Original Question: Air has no color and cannot be seen, yet it takes up space. What could be done
to show that air takes up space? (A) observe clouds forming (B) blow up a beach ball or balloon (C)
measure the air temperature (D) weigh a glass before and after it is filled with water

⇒ Base Model Response: (B) Ground-truth: (B)

Permuted Question : Air has no color and cannot be seen, yet it takes up space. What could be
done to show that air takes up space? (A) observe clouds forming (B) measure the air temperature
(C) blow up a beach ball or balloon (D) weigh a glass before and after it is filled with water

⇒ Base Model Response: (D) / BNP+AOI Response: (C) Ground-truth: (C)

Original Question: Which geologic process most likely caused the formation of the Mount St.
Helens Volcano? (A) diverging boundaries (B) converging boundaries (C) transform faults (D) rift
zone

⇒ Base Model Response: (B) Ground-truth: (B)

Permuted Question : Which geologic process most likely caused the formation of the Mount St.
Helens Volcano? (A) converging boundaries (B) diverging boundaries (C) transform faults (D) rift
zones

⇒ Base Model Response: (D) / BNP+AOI Response: (A) Ground-truth: (A)

We also provide results with Bloomz-7b1 on ARC-Challenge. Similar to the trend shown in Figure 3
(a), the original response is biased towards ‘A’, which is corrected through our debiasing approach.

Original Question: Devil facial tumor disease (DFTD) is a disease that is decimating the population
of Tasmanian devils. The disease passes from one animal to another through bites and is caused by
parasites. The parasites cause cancerous tumors that spread throughout an infected animal’s body
and kill it. What is the best description of DFTD? (A) a non-infectious, cell-cycle disease (B) a
non-infectious, chronic disease (C) an infectious, cell-cycle disease (D) an infectious, chronic disease



⇒ Base Model Response: (C) Ground-truth: (C)

Permuted Question : Devil facial tumor disease (DFTD) is a disease that is decimating the
population of Tasmanian devils. The disease passes from one animal to another through bites and
is caused by parasites. The parasites cause cancerous tumors that spread throughout an infected
animal’s body and kill it. What is the best description of DFTD? (A) a non-infectious, cell-cycle
disease (B) an infectious, cell-cycle disease (C) a non-infectious, chronic disease (D) an infectious,
chronic disease

⇒ Base Model Response: (A) / BNP+AOI Response: (B) Ground-truth: (B)

Original Question: Which of these gases is the most abundant greenhouse gas in the lower atmo-
sphere of Earth? (A) carbon dioxide (B) methane (C) water vapor (D) ozone

⇒ Base Model Response: (C) Ground-truth: (C)

Permuted Question : Which of these gases is the most abundant greenhouse gas in the lower
atmosphere of Earth? (A) ozone (B) methane (C) water vapor (D) carbon dioxide

⇒ Base Model Response: (D) / BNP+AOI Response: (C) Ground-truth: (C)

Original Question: It was once thought that living organisms could come from non-living matter. For
example, people believed that flies would develop from rotting meat. This idea was later disproved
primarily because of (A) the discovery of the atom. (B) continued experimentation. (C) better
surgical techniques. (D) the invention of the microscope.

⇒ Base Model Response: (B) Ground-truth: (B)

Permuted Question : It was once thought that living organisms could come from non-living
matter. For example, people believed that flies would develop from rotting meat. This idea was later
disproved primarily because of (A) the discovery of the atom. (B) better surgical techniques. (C)
continued experimentation. (D) the invention of the microscope

⇒ Base Model Response: (A) / BNP+AOI Response: (C) Ground-truth: (C)

Original Question: In the spring and early summer, bears often scratch their backs against trees to
remove winter fur. This is an example of an animal (A) responding to its environment (B) beginning
hibernation (C) completing its life cycle (D) preparing for migration

⇒ Base Model Response: (A) Ground-truth: (A)

Permuted Question : In the spring and early summer, bears often scratch their backs against trees
to remove winter fur. This is an example of an animal (A) completing its life cycle (B) beginning
hibernation (C) responding to its environment (D) preparing for migration

⇒ Base Model Response: (A) / BNP+AOI Response: (C) Ground-truth: (C)

Original Question: Which tool would be best to use to determine how long it takes a cup of water to
boil? (A) balance (B) hot plate (C) thermometer (D) stopwatch

⇒ Base Model Response: (D) Ground-truth: (D)

Permuted Question : Which tool would be best to use to determine how long it takes a cup of
water to boil? (A) balance (B) hot plate (C) stopwatch (D) thermometer

⇒ Base Model Response: (D) / BNP+AOI Response: (C) Ground-truth: (C)

Original Question: The salt in ocean water comes from all of the following except (A) melting
glacial ice. (B) volcanic emissions. (C) eroding land. (D) reactions on the sea floor.

⇒ Base Model Response: (A) Ground-truth: (A)

Permuted Question : The salt in ocean water comes from all of the following except (A) eroding
land. (B) melting glacial ice. (C) volcanic emissions. (D) reactions on the sea floor.



⇒ Base Model Response: (A) / BNP+AOI Response: (B) Ground-truth: (B)

Original Question: Which is most useful to a student who is separating aluminum screws from steel
screws? (A) a screen filter (B) a large funnel (C) a magnifying glass (D) a horseshoe magnet

⇒ Base Model Response: (D) Ground-truth: (D)

Permuted Question : Which is most useful to a student who is separating aluminum screws from
steel screws? (A) a large funnel (B) a screen filter (C) a horseshoe magnet (D) a magnifying glass

⇒ Base Model Response: (A) / BNP+AOI Response: (C) Ground-truth: (C)

Original Question: Over a long period of time, running water in a river erodes the riverbed. This
erosion causes the river to (A) move faster and cleaner. (B) become deeper and wider. (C) stop
flowing. (D) create waves

⇒ Base Model Response: (B) Ground-truth: (B)

Permuted Question : Over a long period of time, running water in a river erodes the riverbed.
This erosion causes the river to (A) stop flowing. (B) create waves. (C) move faster and cleaner. (D)
become deeper and wider.

⇒ Base Model Response: (A) / BNP+AOI Response: (D) Ground-truth: (D)

Original Question: A student examined diagrams of two different cells. One cell was prokaryotic,
and the other cell was eukaryotic. What should the student do to identify a major difference between
the diagrams? (A) check to see which diagram shows a nucleus (B) check to see which diagram
shows cytoplasm (C) compare the shapes of the two cells (D) compare the number of vacuoles in the
two cells

⇒ Base Model Response: (A) Ground-truth: (A)

Permuted Question : A student examined diagrams of two different cells. One cell was prokaryotic,
and the other cell was eukaryotic. What should the student do to identify a major difference between
the diagrams? (A) compare the shapes of the two cells (B) check to see which diagram shows a
nucleus (C) check to see which diagram shows cytoplasm (D) compare the number of vacuoles in the
two cells

⇒ Base Model Response: (A) / BNP+AOI Response: (B) Ground-truth: (B)

Original Question: Which structures are common to both plant and animal cells? (A) cell membrane,
nucleus, mitochondrion (B) vacuole, chloroplast, nucleus (C) nucleus, cell wall, cell membrane (D)
mitochondrion, vacuole, cell wall

⇒ Base Model Response: (A) Ground-truth: (A)

Permuted Question : Which structures are common to both plant and animal cells? (A) vacuole,
chloroplast, nucleus (B) cell membrane, nucleus, mitochondrion (C) nucleus, cell wall, cell membrane
(D) mitochondrion, vacuole, cell wall

⇒ Base Model Response: (A) / BNP+AOI Response: (B) Ground-truth: (B)

Original Question: Students use tweezers and magnifying glasses to examine a piece of mold on
bread. Which should they also use for safety in this investigation? (A) bright light (B) breathing
masks (C) dark glasses (D) hot plates

⇒ Base Model Response: (B) Ground-truth: (B)

Permuted Question : Students use tweezers and magnifying glasses to examine a piece of mold on
bread. Which should they also use for safety in this investigation? (A) bright light (B) dark glasses



(C) breathing masks (D) hot plates
⇒ Base Model Response: (A) / BNP+AOI Response: (C) Ground-truth: (C)

Original Question: In 1903 Mary Anderson invented the first windshield wiper. How did this
invention most likely help people? (A) It made cars easier for people to buy. (B) It kept people from
driving too fast. (C) It helped people use less gas. (D) It made cars safer to drive in bad weather.

⇒ Base Model Response: (D) Ground-truth: (D)

Permuted Question : In 1903 Mary Anderson invented the first windshield wiper. How did this
invention most likely help people? (A) It helped people use less gas. (B) It kept people from driving
too fast. (C) It made cars easier for people to buy. (D) It made cars safer to drive in bad weather.

⇒ Base Model Response: (A) / BNP+AOI Response: (D) Ground-truth: (D)

F Broader Impact and Future Work

Broader Impact. This work identifies and mitigates a critical source of bias in modern large language
models (LLMs). As LLMs are increasingly deployed in applications ranging from customer service
to scientific research, unaddressed biases can undermine system reliability and degrade the quality of
model-driven decisions. By reducing selection bias, our methods improve both the fairness and accuracy
of LLM outputs, helping to strengthen user trust in these models. More broadly, this work provides a
foundation for further efforts to diagnose, understand, and improve the reliability of LLM-based systems,
introducing a new lens for analyzing model behavior and performance.

Future Application. A natural extension of our work is its application to LLM-assisted data annotation.
Some recent works discussed ways to leverage LLMs for automated annotation (He et al., 2024; Eckman
et al., 2024), or devised human-machine collaborative frameworks (Li et al., 2023a). By reducing selection
bias in multiple-choice answering, our methods have the potential to improve the reliability of these
annotation systems, leading to higher-quality labeled data and more trustworthy human-AI collaboration.
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