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Abstract

Feature transformation aims to reconstruct the feature space
of raw features to enhance the performance of downstream
models. However, the exponential growth in the combina-
tions of features and operations poses a challenge, making
it difficult for existing methods to efficiently explore a wide
space. Additionally, their optimization is solely driven by the
accuracy of downstream models in specific domains, neglect-
ing the acquisition of general feature knowledge. To fill this
research gap, we propose an evolutionary LLM framework
for automated feature transformation. This framework con-
sists of two parts: 1) constructing a multi-population database
through an RL data collector while utilizing evolutionary al-
gorithm strategies for database maintenance, and 2) utiliz-
ing the ability of Large Language Model (LLM) in sequence
understanding, we employ few-shot prompts to guide LLM
in generating superior samples based on feature transforma-
tion sequence distinction. Leveraging the multi-population
database initially provides a wide search scope to discover
excellent populations. Through culling and evolution, high-
quality populations are given greater opportunities, thereby
furthering the pursuit of optimal individuals. By integrating
LLMs with evolutionary algorithms, we achieve efficient ex-
ploration within a vast space, while harnessing feature knowl-
edge to propel optimization, thus realizing a more adaptable
search paradigm. Finally, we empirically demonstrate the ef-
fectiveness and generality of our proposed method.

Code — https://github.com/NanxuGong/ELLM-FT

Introduction
In many real-world applications, ML models struggle to
fight complex and imperfect data (e.g., bias, outliers,
noises). The quality of data, as a fundamental element in
machine learning (ML), plays a significant role in the pre-
dictive performance of ML. To alleviate this issue, feature
transformation is proposed to reconstruct an optimized fea-
ture space based on original features and mathematical op-
erations (e.g., +, -, *, /, sqrt). In industrial practices, tradi-
tional feature transformations are typically labor intensive,
time costly, and lack generalization. Therefore, we focus on
the task of Automated Feature Transformation (AFT) (Wang
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et al. 2024, 2022; Kanter and Veeramachaneni 2015) that
aims to reconstruct a discriminative feature space through
an automatic model.

There are two main challenges in solving AFT: 1) effi-
cient search in massive discrete space; and 2) teaming be-
tween general feature knowledge and task-specific feature
knowledge. First, a feature space comprises exponentially
growing possibilities of combinations of features and op-
erations as candidate feature transformations, resulting in
an immensely large search space. Efficient search in mas-
sive discrete space aims to answer: How can we improve
the efficiency of identifying the optimal search path given a
large feature combination space? Second, we need knowl-
edge to steer the optimal search path. A widely used idea
is to exploit task-specific feature knowledge, defined as pre-
dictive accuracy feedback of a transformed feature set on a
downstream ML model. This strategy ignores general fea-
ture knowledge from Artificial General Intelligence (AGI)
like ChatGPT and other LLMs. Teaming between general
feature knowledge and task-specific knowledge aims to an-
swer: How can we steer the optimal search path by leverag-
ing both task-specific feature knowledge and LLM-like AGI?

Prior literature can partially address the challenges. These
methods can be divided into three categories: (1) expansion-
reduction methods (Kanter and Veeramachaneni 2015; Khu-
rana et al. 2016). These methods employ operators and ran-
domly combine features to generate new feature samples,
expanding the feature space. Subsequently, useful features
are further filtered through feature selection. However, such
methods rely on stochasticity, and lack optimization trajec-
tories. (2) evolution-evaluation methods (Wang et al. 2022;
Khurana, Samulowitz, and Turaga 2018). These methods,
rooted in reinforcement learning or evolutionary algorithms,
amalgamate features and operator sets within a unified learn-
ing framework. They iteratively generate improved individu-
als until the model reaches the maximum iteration threshold.
Such methods generally harbor explicit objectives. However,
achieving maximal rewards over the long term is challeng-
ing. In open environments, they tend to fall into local optima.
(3) Neural Architecture Search (NAS)-based methods (Chen
et al. 2019; Zhu et al. 2022). These methods are constructed
upon NAS, which was proposed to search the optimal net-
work architectures. Given that the objectives of AFT align
closely with those of NAS, related methods have also been



applied in this domain. However, such methods struggle to
model the expansive feature transformation space while ex-
hibiting diminished efficiency. Existing studies show limita-
tions on jointly addressing efficiency and task-specific and
general feature knowledge teaming in feature transforma-
tion. As a result, we need a novel perspective to derive a
new formulation for AFT.

Our insights: an evolutionary LLM generation per-
spective. We formulate the feature transformation as a se-
quential generation task. We regard a transformed feature set
as a token sequence comprising feature ID symbols and op-
erators. The emerging LLM (e.g., ChatGPT) has shown its
few-shot and in-context learning ability to optimize and gen-
erate through seeing demonstrations. Additionally, LLMs
can robustly optimize the feature space using both general
feature knowledge and task-specific knowledge. Our first in-
sight is to leverage LLMs as a feature transformation gen-
erator by demonstrating sample feature transformation op-
eration sequence and corresponding priority to LLMs, so
that LLMs can progressively learn complex feature knowl-
edge, capture feature-feature interactions, and discern opti-
mization directions. Our second insight is to combine LLM
with Evolutionary Algorithms (EA) to obtain an evolution-
ary LLM. In feature transformation contexts, EA can serve
as a decision science model to decide the order, quality, and
diversity of few-shot demonstrations, strengthen few-shot
learning, and alleviate the hallucination of LLMs.

Summary of Proposed Approach. In this paper, we pro-
pose a novel Evolutionary Large Language Model frame-
work for automated Feature Transformation (ELLM-FT).
The framework has two goals: 1) LLM as a feature trans-
formation operation sequence generator; and 2) teaming
LLMs with EA for better few-shot demonstrations to iden-
tify the optimal search direction. To achieve these goals, we
first leverage a reinforcement learning data collector to con-
struct a multi-population dataset. Within the database, each
population evolves independently. We progressively elimi-
nate subpar individuals while adding generated high-quality
ones, and likewise eliminate inferior populations, granting
superior populations more opportunities for evolution. We
keep the diversity of the database from a multi-population
perspective while continuously enhancing the quality of
samples within the population. We craft meticulously de-
signed prompts for the pre-trained LLM. By leveraging the
feature knowledge of few-shot samples, we guide the LLM
to uncover optimization directions. Throughout the iterative
process, we continuously update the database to enhance the
performance of the LLM with diverse and high-quality sam-
ples. By employing Llama-2-13B-chat-hf as the backbone
of LLM, ELLM-FT demonstrates competitive performance
in diverse datasets.

Our contributions: 1) We formulate feature transforma-
tion as LLM generative few-shot learning to show that LLM
can learn complex feature interaction knowledge and gen-
erate improved feature spaces by observing demonstrations
of feature transformation operation sequences; 2) We de-
velop an evolutionary LLM framework to show that team-
ing LLM with EA can enable collaboration between task-
specific knowledge and general knowledge, improve demon-

Figure 1: An example of feature transformation sequence. si
denotes the feature sequence.

stration quality, and identify a better optimization direc-
tion; 3) We compare ELLM-FT with 7 widely used methods
across 12 datasets. Our experimental results demonstrate the
effectiveness and robustness of ELLM-FT.

Problem Statement
Feature transformation utilizes mathematical operations to
cross original features, in order to generate new features and
reconstruct a better feature space. Learning feature trans-
formation usually requires general feature knowledge and
task-specific knowledge. Pre-trained on large-scale datasets,
LLMs can leverage general knowledge to understand fea-
tures and operators at the token level. Maintaining a diverse
and high-quality database through evolutionary algorithms
provides LLMs with task-specific knowledge, facilitating
the generation of novel and superior samples. Thus, the task
of feature transformation can be formulated in the evolution-
ary LLM perspective.

Formally, we define the mathematical operation set O
(e.g., “log”, “sin”, “plus”) and the original feature set X =
[f1, f2, ..., fn] . A transformed feature set (e.g., f1, f2 +
f1, f3/f2,

√
f4) is regarded as a token sequence of fea-

ture IDs and operators (Figure 1). The feature transforma-
tion task is then seen as a sequential generation task. We
leverage LLM to generate feature transformation sequences
by demonstrating few-shot examples. Specifically, we firstly
construct a database of feature sets and corresponding task
performance, denoted by D = {X, y}. We denote a pre-
trained LLM with the parameter θ byFθ. We feed a designed
prompt p, including instructions and few-shot examples, de-
noted byX ∼ Fθ(·|p), to LLM in order to generate feature
transformation sequences. Our goal is to maximize the util-
ity score Scoreϕ(X, t), where ϕ denotes the specific prob-
lem and t denotes the target. Finally, the ELLM-FT problem
is given by: argmaxX∼Xθ

Scoreϕ(X, t), whereXθ is the set
of sequences generated by Fθ.

Evolutionary LLM For Generative Feature
Transformation

Overview of the ELLM-FT Framework
Figure 2 shows our method includes two steps: 1) rein-
forcement multi-population training database construction;
2) LLM-based feature transformation sequence generation.
Step 1 is to develop a reinforcement training data collec-
tor. This collector has two feature selection agents and an
operation selection agent. In each reinforcement step, fea-
ture crossing-generated features are added to the previous
feature set to create a transformed feature set. Each rein-
forcement episode includes multiple steps and thus collects
multiple feature transformation sequences as a population.
Step 2 is to iteratively guide the LLM through few-shot
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Figure 2: Framework overview. Firstly, we utilize the RL data collector to construct the database, Then, we leverage pre-trained
LLM to iteratively generate new feature transformation sequences while simultaneously updating the database.

prompts to discover optimization directions from the dif-
ferences among ranked samples, thereby generating better
samples. Step 2 includes four components: sequential pro-
moting design, feature transformation sequence generation,
verification and evaluation, and database updating.

Reinforcement Multi-Population Training
Database Construction
Why Constructing A Multi-Population Database? We
propose to see LLM as a feature transformation sequence
generator. We want LLM to learn from few shot exam-
ples of historical feature transformation sequences via smart
prompting. Therefore, it is needed to develop a database
of feature transformation sequences training samples along
with corresponding downstream task performance. The
multi-population concept is to diversify the training database
so its distribution can robustly cover most areas of the true
distribution of the feature transformation sequence space.
Reinforcement Transformation-Performance Data Col-
lection. It is traditionally challenging to collect diverse and
high-quality training data of feature transformations. Man-
ual data collection is time-costly. Inspired by (Wang et al.
2022; Xiao et al. 2023), we develop a reinforcement training
data collector to explore and collect various feature transfor-
mations and corresponding downstream task performance.
The reinforcement data collector includes: 1) Three agents:
a head feature agent, an operation agent, and a tail feature
agent, respectively denoted by αh, αo, and αt. 2) Actions:
two feature agents select features from the feature set X and
the operation agent selects operators from the operator set
O. At the t-th iteration, the three agents collaborate to gen-
erate a new feature, denoted by ft = αh(t)⊕αo(t)⊕αt(t).
3) State: to help agents understand the current feature space,
we extract the first-order and second-order descriptive statis-
tics of the feature set as a state representation vector, denoted
by St = Rep(Xt). Specifically, given a data matrix, we first
compute the 7 descriptive statistics (i.e. count, standard devi-
ation, minimum, maximum, first, second, and third quartile)
of each column, then compute the same 7 descriptive statis-
tics of the column-wise descriptive statistics row by row. The
row-wise statistics of column-wise statistics of the data ma-
trix form a representation vector of 49 variables. 4) Reward:

we define the reward as the improvement of downstream
model accuracy, denoted by: R(t) = yt − yt−1. Finally, we
minimize the mean squared error of the Bellman Equation to
optimize the procedure. Algorithm 1 shows in the t-th step,
a transformed feature set is created, in the i-th episode, a
group of transformed feature sets, also known as, a popula-
tion of feature transformation sequences, is created. Specif-
ically, during the t-th step, with the previous feature space
denoted as Xt−1 = [f1, f2, ..., ft−1], three agents collabo-
rate to select two features and one operator to generate a new
feature ft. By adding ft into Xt−1, we obtain a new sample
{Xt, yt}, where Xt denotes the new transformed feature set
and yt is the corresponding downstream ML model accu-
racy. The state is updated by Rep(Xt), where Rep is the
representative function to extract the descriptive statistics of
Xt.
Creating Populations Per Episode. To create a multi-
population database, we regard the samples collected in one
episode (indexed by t) as a population. Be sure to notice
that in one population (i.e., episode), the collected feature
transformation sequences (also known as transformed fea-
ture sets) can be seen as a Markov decision process (MDP)
with current-previous dependency. In other words, in this
population, a feature transformation token sequence is built
yet improved based on another MDP-dependent sequence.
So, LLM can easily identify shared patterns and contrast dif-
ferences to better learn optimization directions.
Representing Feature Transformation Sequences with
Postfix Expressions. A sequence of feature transformations
can be presented by infix, prefix, or postfix. Postfix has a
number of advantages over other expressions. Compared
with infix, a token sequence can be expressed without paren-
theses via postfix. Second, compared with prefix, postfix is
easier to implement evaluation. Therefore, we convert fea-
ture transformation sequences into postfix expressions. For
example, the sequence {f0, (f1 + f2), ((f0 + f2) ∗ f3)} can
be represented by {f0, f1f2+, f0f2 + f3∗}.

LLM-based Feature Transformation Operation
Sequence Generation
Why Generating Feature Transformation Sequences via
LLM? Firstly, LLM is a generic generator, and, thus, can



Figure 3: An example of our prompt consisting of the instruction and few-shot feature transformation operation sequence
samples.

Algorithm 1: RL-based data collection

Input: The original feature set X , downstream ML model
ϕ, representative function Rep, episode number M , step
number T .

Output: Feature transformation dataset τ .
1: for i = 1 to M do
2: Initialize the state s0
3: for t = 1 to T do
4: ft ← αh(t)⊕ αo(t)⊕ αt(t)
5: Xt ← Xt−1 + ft
6: yt ← ϕ(Xt)
7: st ← Rep(Xt)
8: Rt ← yt − yt−1

9: τ ← τ + {Xt, yt}
10: Updated by Bellman Equation
11: end for
12: end for
13: return τ .

be used to generate feature transformation sequences. Sec-
ondly, LLM exhibits few-shot learning abilities; in other
words, there is to enable LLM to learn feature space knowl-
edge and the optimization direction of sequence generation,
by demonstrating a list of feature transformation sequence
examples in an instructional prompt. Thirdly, by developing
an evolutionary prompt, LLM can iteratively self-optimize
the generation quality over time.
Step 1: Sequential Prompting Design. To enable LLM
to perceive the optimization direction of generating fea-
ture transformation sequences, we need a unique sequential
prompting design. Existing studies on sequential prompting
have proposed two design strategies: 1) randomly sample
M examples from a population (Meyerson et al. 2023); 2)
sample M top-performing examples from a population and
arrange the M examples in terms of performance (Romera-
Paredes et al. 2024). However, both strategies have limi-
tations. The former is limited by its randomness and thus
lacks the articulate optimization direction information for
LLM to leverage. The latter always selects top-M samples;
in other words, top-performing samples are repeatedly se-
lected, lacking novelty and diversity. To fill this gap, we pro-
pose a prompt that balances randomness and quality. Fig-
ure 3 shows an example of our prompt. Our prompt in-
cludes two components: instruction and examples. The in-
struction component consists of a task description, an oper-

ator set, and original feature IDs. The examples component
includes few-shot examples of feature transformation oper-
ation sequences. Consider the existence of K populations,
during each iteration, we create K prompts corresponding
to K populations. For the k-th prompt, we randomly select
a certain number of feature transformation sequence sam-
ples from the k-th population. Then, we rank these samples
in the k-th prompt in terms of their downstream task per-
formance (namely priority v0, priority v1, ...). In this way,
LLM can observe a list of progressively improving feature
transformation sequences in the k-th prompt, examine the
differences between these sequences, moreover, uncover op-
timization direction to produce a better feature transforma-
tion sequence. At the end of this iteration, the K prompts
corresponding to K populations trigger LLM to generate K
feature transformation sequences. Here, the randomness of
samples is from the random selection of samples in a popu-
lation. The quality of samples is from the quality of the pop-
ulation, which is maintained by a database updating strategy
(refer to Step 4: database updating).

Step 2: Feature Transformation Operation Sequence
Generation by LLM. We regard LLM as a feature transfor-
mation sequence generator. We utilize Llama-2-13B-chat-
hf as a pre-trained LLM. In each iteration, we first select
a population and then select a subset of feature transforma-
tion sequences from the selected population. We use the fea-
ture transformation sequence subset, ranked by correspond-
ing performance, to create a prompt that includes instruc-
tions and examples. This prompt is later fed into LLM to
guide LLM to generate an improved feature transformation
sequence. Our insight is to leverage the generic knowledge
of LLM, and the domain knowledge of the prompt (task in-
struction and the ranked list of feature transformation se-
quences) to inspire LLM to perceive optimization directions
and generate a better feature transformation sequence.

Step 3: Verification and Evaluation. During each iteration,
after LLM generates a feature transformation sequence trig-
gered by a prompt, we conduct the verification of the LLM-
generated feature transformation sequence from three per-
spectives: 1) Are the tokens of the LLM-generated feature
transformation sequence from our predefined operator set
and feature ID set? 2) Is the LLM-generated feature transfor-
mation sequence formulated as a postfix expression? 3) Has
the LLM-generated feature transformation sequence never
appeared in the database before? Based on the three criteria,
we identify valid feature transformation sequences and store



these sequences to the corresponding populations. After ver-
ification, we conduct the evaluation of the LLM-generated
feature transformation sequence. We leverage a fixed down-
stream ML model to evaluate the performance of the LLM-
generated feature transformation sequence and associate the
performance score with the corresponding feature transfor-
mation sequence.
Step 4: Database Updating. The quality of samples in the
database influences the quality of a prompt, thus, affecting
the performance of LLM-generated feature transformation
sequences. After new samples are added to the database,
we propose a two-step database updating strategy: 1) low-
quality individual elimination and 2) low-quality population
elimination. Specifically, to conduct low-quality individual
elimination, we devise a population size threshold P . Given
a population of the size T and T > P , we keep top-P
quality feature transformation sequences and eliminate top
T−P low-quality feature transformation sequences. To con-
duct low-quality population elimination, we score each pop-
ulation using the best performance of all the feature trans-
formation sequences in this population. We then use the top
50% high-quality populations to replace the top 50% low-
quality populations. The updating strategy on the individual
and population levels can ensure the quality of populations
is improving over time.

Experimental Results
Experimental Setup
Data Descriptions. We collected 12 datasets from
UCIrvine, LibSVM, Kaggle, and OpenML. We evaluated
our method and baseline methods on two major predictive
tasks: 1) Classification (C); and 2) Regression (R). Table 1
shows the detailed statistics of the data sets.
Evaluation Metrics. We adopted Random Forest (RF) as
the downstream model. We used the F-1 score to measure
the accuracy of classification tasks, and use the 1 - relative
absolute error (RAE) to measure the accuracy of regression
tasks. We performed 5-fold stratified cross-validation to re-
duce random errors in experiments.
Baseline Algorithms. We compared our method with 7
widely-used feature generation algorithms: (1) RDG, which
randomly generates feature-operation-feature transforma-
tions to obtain new features. (2) ERG, which applies op-
eration on each feature to expand the feature space, then
selects valuable features. (3) LDA (Blei, Ng, and Jordan
2003), which learn new features through matrix factoriza-
tion. (4) AFAT (Horn, Pack, and Rieger 2020), which iter-
atively generate new features and leverage multi-step fea-
ture selection to pick useful features. (5) NFS (Chen et al.
2019), which models each feature transformation trajectory
and optimizes feature generation processes via reinforce-
ment learning. (6) TTG (Khurana, Samulowitz, and Turaga
2018), which regard feature transformation as a graph and
search the best feature set over the graph via reinforcement
learning. (7) GRFG (Wang et al. 2022), which leverages a
cascading agent structure and feature group crossing to gen-
erate new features.

Aside from comparing with the baseline algorithms, we

developed variants of ELLM-FT to investigate the impacts
of each technical component. Specifically, (i) ELLM-FTf

adopts the prompt design of (Romera-Paredes et al. 2024)
to select the top-M samples from a population and rank the
samples in ascending order in each iteration. (ii) ELLM-
FTc exploits the prompt design of (Meyerson et al. 2023) to
randomly select M samples in each iteration. (iii) ELLM-
FTr randomly collect the datal, insteady of using the rein-
forcement training data collector.

Overall Comparisons
This experiment aims to answer: can our feature transfor-
mation method outperform other baseline methods on im-
proving downstream task performance? Table 1 shows the
comparisons of our method and 7 baselines on 12 datasets.
First, although our method fell behind the baseline accuracy
by 0.4% on the single “SpamBase” dataset, our method out-
performed the best baselines by an average margin of 2.4 %
in overall. The underlying driver is that evolutionary LLM
can self-optimize the prompt over iterations to let LLM per-
ceive the optimization direction of feature transformation
sequences. Second, an interesting finding is that ELLM-FT
is more resistant to noisy datasets (e.g., Openml 616) than
baseline algorithms. This can be explained by the argument
that optimizing LLM’s sequential generation direction by
feature knowledge is more generic than downstream task
performance feedback-guided search. Third, we observed
that ELLM-FT generalizes well and strives a balance per-
formance over both large sample (e.g., Amazon Employee)
and low sample (others) datasets.

Examining The Performance Trajectory of
Iterative Explorations
This experiment aims to answer: Can our evolutionary
LLM method effectively and efficiently learn and gener-
ate an optimal sequence of feature transformation oper-
ations? We benchmarked our method, ELLM-FT, against
GRFG, a state-of-the-art fast reinforcement feature gener-
ation method. Figure 4 shows the comparative performance
trajectories of ELLM-FT and GRFG on the German Credit
and Openml-586 datasets. Our findings are: Our key find-
ings are as follows: 1. Early Iterations (First 50 Iterations):
ELLM-FT demonstrates a sharper optimization trajectory,
quickly generating feature transformation sequences with
higher accuracy. This early advantage is likely due to the
robust database constructed by our RL data collector, which
offers a strong initial foundation for the search process. 2.
Long-Term Performance (Overextended iterations): ELLM-
FT consistently evolves superior feature transformation se-
quences, showing more performance improvements com-
pared to GRFG. This indicates that ELLM-FT not only
leverages general feature knowledge but also excels in per-
ceiving optimization directions even with few-shot samples.
3. Overall Efficiency: ELLM-FT achieves high-performance
results more rapidly than GRFG, showcasing its ability to
optimize feature transformation sequences efficiently. More-
over, the continuous optimization observed in ELLM-FT’s
trajectory suggests that it has the potential to uncover even
more optimal results with further iterations.



Dataset Soruce C/R Samples Features RDG ERG LDA AFT NFS TTG GRFG ELLM-FT

Amazon Employee Kaggle C 32769 9 0.744 0.740 0.920 0.943 0.935 0.806 0.946 0.946
SVMGuide3 LibSVM C 1243 21 0.789 0.764 0.732 0.829 0.831 0.804 0.850 0.856

German Credit UCIrvine C 1001 24 0.695 0.661 0.627 0.751 0.765 0.731 0.772 0.775
Messidor Features UCIrvine C 1150 19 0.673 0.635 0.580 0.678 0.746 0.726 0.757 0.760

SpamBase UCIrvine C 4601 57 0.951 0.931 0.908 0.951 0.955 0.961 0.958 0.957
Ionosphere UCIrvine C 351 34 0.919 0.926 0.730 0.827 0.949 0.938 0.960 0.963

Openml 586 OpenML R 1000 25 0.595 0.546 0.472 0.687 0.748 0.704 0.783 0.801
Openml 589 OpenML R 1000 25 0.638 0.560 0.331 0.672 0.711 0.682 0.753 0.781
Openml 607 OpenML R 1000 50 0.579 0.406 0.376 0.658 0.675 0.639 0.680 0.793
Openml 616 OpenML R 500 50 0.448 0.372 0.385 0.585 0.593 0.559 0.603 0.739
Openml 618 OpenML R 1000 50 0.415 0.427 0.372 0.665 0.640 0.587 0.672 0.778
Openml 620 OpenML R 1000 25 0.575 0.584 0.425 0.663 0.698 0.656 0.714 0.725

Table 1: Comparison of the proposed method with baselines over 12 datasets, where the best results are in bold.
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Figure 4: The performance trajectory of the proposed
method compared to GRFG on two datasets.

A Study of Prompt Design
This experiment aims to address the question: Why is this
particular prompt design necessary? Our method leverages
the Funsearch and randomness to balance the diversity (over
populations) and quality (measured by performance) of fea-
ture transformation sequences in prompts presented to LLM.
We developed two variants of our model: 1) ELLM-FTf :
This variant employs the prompt design inspired by Fun-
search (Romera-Paredes et al. 2024), where the top-M sam-
ples in each iteration are selected based on their perfor-
mance. 2) ELLM-FTc: This variant uses the prompt strat-
egy from LMX (Meyerson et al. 2023), which selects M
random samples in each iteration. 1) Figure 5(a) shows that
our proposed prompt design enables the model to achieve
superior downstream task performance on both datasets. 2)
Figure 5(b) presents the number of valid samples gener-
ated by each model after the same number of iterations. Al-
though ELLM-FTc generates the highest number of valid
samples, its reliance on random and unordered samples hin-
ders the model’s ability to identify optimization directions,
especially on noisier datasets, leading to suboptimal perfor-
mance. The ELLM-FTf variant assists the LLM in feature
optimization by focusing on the top-M samples. However,
this approach can lead to under-utilization of other poten-
tially useful data. As iterations progress, the model strug-
gles to generate diverse and valid samples from repetitive
inputs, resulting in a significantly lower number of valid
samples compared to the other two models. Consequently,
its long-term effectiveness is limited. 3) When considering
both the number of valid samples and downstream task accu-
racy, ELLM-FT demonstrates the best overall performance.

This highlights the efficacy of the proposed prompt design,
as it balances the need for diversity with the ability to discern
optimization directions effectively.
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Figure 5: Results of the proposed method using three dif-
ferent prompts. We compared (a) downstream task accuracy
across two datasets, and (b) valid sample numbers.

Examining the Impact of RL Data Collector
This experiment seeks to address the question: Is the
database constructed by the RL data collector effective?
To assess this, we introduce a model variant, ELLM-FTr,
specifically designed to evaluate the impact of the RL
data collector on feature transformation. Figure 6 indicates
that ELLM-FT consistently outperforms ELLM-FTr across
both datasets. This outcome suggests that the database con-
structed by the RL data collector inherently captures the
optimization trajectories guided by reinforcement learning.
This enables the model to generate more effective and opti-
mized samples. Additionally, the RL data collector gathers a
diverse and high-quality dataset, which further enhances the
model’s overall performance.
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Figure 6: Results of the proposed method using the RL data
collector and random selection.



Robustness Check
This experiment aims to answer: Is ELLM-FT robust to
different downstream models? We replace the downstream
models with K-Nearest Neighborhood (KNN), Decision
Tree (DT), Support Vector Machine (SVM) and Ridge
to study the variance of performance on the SVMGuide3
dataset. Table 2 shows that ELLM-FT consistently achieves
the best performance regardless of the downstream mod-
els compared with baselines. The potential driver is that
ELLM-FT can customize optimization strategies for var-
ious downstream models. Based on the feedback of the
downstream models, it continually optimizes the feature
sequence, thereby evolving the optimal individual. Thus,
ELLM-FT demonstrates robustness to the downstream mod-
els. More experiments can be found in the Appendix.

KNN DT SVM Ridge RF

RDG 0.717 0.780 0.780 0.773 0.789
ERG 0.631 0.731 0.638 0.780 0.764
LDA 0.699 0.680 0.719 0.719 0.732
AFT 0.800 0.769 0.820 0.816 0.829
NFS 0.717 0.760 0.801 0.781 0.831
TTG 0.721 0.768 0.774 0.781 0.804

GRFG 0.812 0.806 0.821 0.826 0.850

ELLM-FT 0.823 0.810 0.830 0.843 0.856

Table 2: The robustness check with different downstream
models on SVMGuide3.

Related Work
Automated Feature Transformation
AFT aims to reconstruct the feature space by automatically
transforming the original features through mathematical op-
erations. (Ying et al. 2024, 2023; Hu et al. 2024) The prior
literature can be categorized into three classifications: 1)
expansion-reduction methods. These methods expand the
feature space and filter out valuable features. DFS (Kan-
ter and Veeramachaneni 2015) is first proposed to trans-
form all original features and select significant ones. Cog-
nito (Khurana et al. 2016) performs feature transformation
searches on a transformation tree and devises an incremen-
tal search strategy to efficiently explore valuable features.
Furthermore, Autofeat (Horn, Pack, and Rieger 2020) itera-
tively samples features based on beam search. 2) evolution-
evaluation methods. These methods are primarily grounded
in genetic programming and reinforcement learning, itera-
tively navigating the decision process.. Binh et al. (Tran,
Xue, and Zhang 2016) apply genetic programming to fea-
ture transformation. TransGraph (Khurana, Samulowitz, and
Turaga 2018) uses Q-learning to decide on feature transfor-
mation. GRFE (Wang et al. 2022) introduces three agents
to collaborate in generating new feature transformations. 3)
NAS-based methods. NAS (Zoph and Le 2016) regards the
network architecture as a variable-length string. The use of
reinforcement learning enables iterative exploration of net-
work architecture. These methods can also be used in AFT.
For example, NFS (Chen et al. 2019) employs an RNN-
based controller to generate new feature transformations and

train them through reinforcement learning. In this paper, we
propose an evolutionary LLM framework for feature trans-
formation. Our method distinguishes itself from prior lit-
erature in three main aspects: 1) diverse and high-quality
search. We maintain a multi-population database, enabling
us to explore a wider range of potential populations at the
search outset. Subsequently, through elimination and evo-
lution, we conduct high-quality iterations; 2) implicit opti-
mization direction. Existing methods often lack an optimiza-
tion direction or possess explicit ones. We introduce an im-
plicitly optimized approach, encouraging LLMs to perceive
potential optimization directions from few-shot prompts, fa-
cilitating flexible optimization; 3) generalization. Our model
demonstrates the ability to generalize across diverse do-
mains, requiring only few-shot samples for generating new
instances.

LLM and Evolutionary Algorithms
The Large Language Model (LLM) plays a significant role
across various domains due to its formidable generative ca-
pabilities and understanding of natural language. However,
LLM sometimes provides inaccurate responses due to in-
sufficient external knowledge or memory biases, referred to
as the hallucination of LLM (Shojaee et al. 2024; Tonmoy
et al. 2024). Various works have been proposed to address
this issue (Lewis et al. 2020; Gao et al. 2022; Varshney et al.
2023; Cheng et al. 2023; Jones et al. 2023), among which
the perspective of self-refinement through feedback and rea-
soning has garnered considerable attention (Madaan et al.
2024; Yang et al. 2024). In this context, recent research has
revealed that the integration of LLM with evolutionary al-
gorithms not only alleviates the hallucination of LLM but
also improves efficiency (Suzuki and Arita 2024). LLM har-
nesses prior knowledge to continually engage in adaptive
crossover and mutation, yielding significant strides in fields
such as neural architecture search (Chen, Dohan, and So
2024), symbolic regression (Shojaee et al. 2024), and math-
ematical discovery (Romera-Paredes et al. 2024). In this pa-
per, we propose an evolutionary LLM framework for auto-
mated feature transformation. By leveraging LLM’s capac-
ity for understanding sequential knowledge, the proposed
method captures correlations between features and opera-
tions, thereby facilitating implicit optimization.

Conclusion
We introduce an evolutionary LLM-based feature transfor-
mation model. Our approach achieves automated feature
transformation through two steps: 1) automatic construc-
tion of a multi-population database via RL data collectors;
2) feature transformation operation sequence search by few-
shot prompting LLM. We optimize feature transformation
using LLM based on the pairing of general feature knowl-
edge and task-specific knowledge. Within the framework
of evolutionary algorithms, we continuously iterate through
evolutionary processes and culling operations. By maintain-
ing multiple population databases, we achieve diverse and
high-quality searches. Through extensive experimentation,
we substantiate the effectiveness and practical impact of
ELLM-FT.
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