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Abstract

Unsupervised aspect detection (UAD) aims at automatically
extracting interpretable aspects and identifying aspect-specific
segments (such as sentences) from online reviews. However,
recent deep learning based topic models, specifically aspect-
based autoencoder, suffer from several problems such as ex-
tracting noisy aspects and poorly mapping aspects discovered
by models to the aspects of interest. To tackle these challenges,
in this paper, we first propose a self-supervised contrastive
learning framework and an attention-based model equipped
with a novel smooth self-attention (SSA) module for the UAD
task in order to learn better representations for aspects and
review segments. Secondly, we introduce a high-resolution
selective mapping (HRSMap) method to efficiently assign as-
pects discovered by the model to the aspects of interest. We
also propose using a knowledge distillation technique to fur-
ther improve the aspect detection performance. Our methods
outperform several recent unsupervised and weakly super-
vised approaches on publicly available benchmark user review
datasets. Aspect interpretation results show that extracted as-
pects are meaningful, have a good coverage, and can be easily
mapped to aspects of interest. Ablation studies and attention
weight visualization also demonstrate effectiveness of SSA
and the knowledge distillation method.

Introduction
Aspect detection, which is a vital component of aspect-based
sentiment analysis (Pontiki et al. 2014, 2015), aims at iden-
tifying predefined aspect categories (e.g., Price, Quality)
discussed in segments (e.g., sentences) of online reviews.
Table 1 shows an example review about a television from
several different aspects, such as Image, Sound, and Ease of
Use. With a large number of reviews, automatic aspect de-
tection allows people to efficiently retrieve review segments
of aspects they are interested in. It also benefits many down-
stream tasks, such as review summarization (Angelidis and
Lapata 2018) and recommendation justification (Ni, Li, and
McAuley 2019).

There are several research directions for aspect detection.
Supervised approaches (Zhang, Wang, and Liu 2018) can
leverage annotated labels of aspect categories but suffer from
domain adaptation problems (Rietzler et al. 2020). Another

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Sentence Aspect
Replaced my 27” jvc clunker with this one. General
It fits perfectly inside our armoire. General
Good picture. Image
Easy to set up and program. Ease of Use
Descent sound, not great... Sound
We have the 42” version of this set downstairs. General
Also a solid set. General

Table 1: An example from Amazon product reviews about a
television and aspect annotations for every sentence.

research direction consists of unsupervised approaches and
has gained a lot of attention in recent years. Early unsu-
pervised systems are dominated by Latent Dirichlet Alloca-
tion (LDA) based topic models (Brody and Elhadad 2010;
Mukherjee and Liu 2012; Garcı́a-Pablos, Cuadros, and Rigau
2018; Rakesh et al. 2018; Zhang et al. 2019). However, sev-
eral recent studies have revealed that LDA-based approaches
do not perform well for aspect detection and the extracted
aspects are of poor quality (incoherent and noisy) (He et al.
2017). Compared to LDA-based approaches, deep learning
models, such as aspect-based autoencoder (ABAE) (He et al.
2017; Luo et al. 2019), have shown excellent performance in
extracting coherent aspects and identifying aspect categories
for review segments. However, these models require some
human effort to manually map model discovered aspects to as-
pects of interest, which may lead to inaccuracies in mapping
especially when model discovered aspects are noisy. Another
research direction is based on weakly supervised approaches
that leverage a small number of aspect representative words
(namely, seed words) for the fine-grained aspect detection
(Angelidis and Lapata 2018; Karamanolakis, Hsu, and Gra-
vano 2019). Although these models outperform unsupervised
approaches, they do make use of human annotated data to
extract high-quality aspect seed words, which may limit their
application. In addition, they are not able to automatically
discover new aspects from review corpus.

We focus on the problem of unsupervised aspect detection
(UAD) since massive amount of reviews are generated every
day and many of them are for newer products. It is difficult
for humans to efficiently capture new aspects and manually
annotate segments for them at scale. Motivated by ABAE, we
learn interpretable aspects by mapping aspect embeddings



into word embedding space, so that aspects can be inter-
preted by the nearest words. To learn better representations
for both aspects and review segments, we formulate UAD as
a self-supervised representation learning problem and solve
it using a contrastive learning algorithm, which is inspired by
the success of self-supervised contrastive learning in visual
representations (Chen et al. 2020; He et al. 2020). In addi-
tion to the learning algorithm, we also resolve two problems
that deteriorate the performance of ABAE, including its self-
attention mechanism for segment representations and aspect
mapping strategy (i.e., many-to-one mapping from aspects
discovered by the model to aspects of interest). Finally, we
discover that the quality of aspect detection can be further
improved by knowledge distillation (Hinton, Vinyals, and
Dean 2015). The contributions of this paper are summarized
as follows:
• Propose a self-supervised contrastive learning framework

for the unsupervised aspect detection task.
• Introduce a high-resolution selective mapping strategy to

map model discovered aspects to the aspects of interest.
• Utilize knowledge distillation to further improve the per-

formance of aspect detection.
• Conduct systematic experiments on seven benchmark

datasets and demonstrate the effectiveness of our models
both quantitatively and qualitatively.

Related Work
Aspect detection is an important problem of aspect-based sen-
timent analysis (Zhang, Wang, and Liu 2018; Shi et al. 2019).
Existing studies attempt to solve this problem in several dif-
ferent ways, including rule-based, supervised, unsupervised,
and weakly supervised approaches. Rule-based approaches
focus on lexicons and dependency relations, and utilize manu-
ally defined rules to identify patterns and extract aspects (Qiu
et al. 2011; Liu et al. 2016), which require domain-specific
knowledge or human expertise. Supervised approaches usu-
ally formulate aspect extraction as a sequence labeling prob-
lem that can be solved by hidden Markov models (HMM)
(Jin, Ho, and Srihari 2009), conditional random fields (CRF)
(Li et al. 2010; Mitchell et al. 2013; Yang and Cardie 2012),
and recurrent neural networks (RNN) (Wang et al. 2016;
Liu, Joty, and Meng 2015). These approaches have shown
better performance compared to the rule-based ones, but
require large amounts of labeled data for training. Unsuper-
vised approaches do not need labeled data. Early unsuper-
vised systems are dominated by Latent Dirichlet Allocation
(LDA)-based topic models (Brody and Elhadad 2010; Zhao
et al. 2010; Chen, Mukherjee, and Liu 2014; Garcı́a-Pablos,
Cuadros, and Rigau 2018; Shi et al. 2018). Wang et al. (2015)
proposed a restricted Boltzmann machine (RBM) model to
jointly extract aspects and sentiments. Recently, deep learn-
ing based topic models (Srivastava and Sutton 2017; Luo
et al. 2019; He et al. 2017) have shown strong performance
in extracting coherent aspects. Specifically, aspect-based au-
toencoder (ABAE) (He et al. 2017) and its variants (Luo
et al. 2019) have also achieved competitive results in de-
tecting aspect-specific segments from reviews. The main
challenge is that they need some human effort for aspect map-

ping. Tulkens and van Cranenburgh (2020) propose a simple
heuristic model that can use nouns in the segment to identify
and map aspects, however, it strongly depends on the quality
of word embeddings, and its applications have so far been
limited to restaurant reviews. Weakly-supervised approaches
usually leverage aspect seed words as guidance for aspect
detection (Angelidis and Lapata 2018; Karamanolakis, Hsu,
and Gravano 2019; Zhuang et al. 2020) and achieve better
performance than unsupervised approaches. However, most
of them rely on human annotated data to extract high-quality
seed words and are not flexible to discover new aspects from
a new corpus. In this paper, we are interested in unsuper-
vised approaches for aspect detection and dedicated to tackle
challenges in aspect learning and mapping.

The Proposed Framework
In this section, we describe our self-supervised contrastive
learning framework for aspect detection shown in Fig. 1. The
goal is to first learn a set of interpretable aspects (named as
model-inferred aspects), and then extract aspect-specific seg-
ments from reviews so that they can be used in downstream
tasks.

Problem Statement The Aspect detection problem is
defined as follows: given a review segment x =
{x1, x2, ..., xT } such as a sentence or an elementary dis-
course unit (EDU) (Mann and Thompson 1988), the goal is
to predict an aspect category yk ∈ {y1, y2, ..., yK}, where xt
is the index of a word in the vocabulary, T is the total length
of the segment, yk is an aspect among all aspects that are
of interest (named as gold-standard aspects), and K is the
total number of gold-standard aspects. For instance, when
reviewing restaurants, we may be interested in the following
gold-standard aspects: Food, Service, Ambience, etc. Given
a review segment, it most likely relates to one of the above
aspects.

The first challenge in this problem is to learn model-
inferred aspects from unlabeled review segments and map
them to a set of gold-standard aspects. Another challenge is
to accurately assign each segment in a review to an appro-
priate gold-standard aspect yk. For example, in restaurants
reviews, “The food is very good, but not outstanding.”→Food.
Therefore, we propose a series of modules in our framework,
including segment representations, contrastive learning, as-
pect interpretation and mapping, and knowledge distillation,
to overcome both challenges and achieve our goal.

Self-Supervised Contrastive Learning (SSCL)
To automatically extract interpretable aspects from a review
corpus, a widely used strategy is to learn aspect embeddings
in the word embedding space so that the aspects can be inter-
preted using their nearest words (He et al. 2017; Angelidis
and Lapata 2018). Here, we formulate this learning process
as a self-supervised representation learning problem.

Segment Representations For every review segment in a
corpus, we construct two representations directly based on
(i) word embeddings and (ii) aspect embeddings. Then, we
develop a contrastive learning mechanism to map aspect



Figure 1: The proposed self-supervised contrastive learning
framework. Attract and Repel represent positive and negative
pairs, respectively.

embeddings to the word embedding space. Let us denote
a word embedding matrix as E ∈ RV×M , where V is the
vocabulary size and M is the dimension of word vectors.
The aspect embedding matrix is represented by A ∈ RN×M ,
where N is the number of model-inferred aspects.

Given a review segment x = {x1, x2, ..., xT }, we con-
struct a vector representation sx,E based on its word embed-
dings {Ex1 , Ex2 , ..., ExT

}, along with a novel self-attention
mechanism, i.e.,

sx,E =

T∑
t=1

αtExt
, (1)

where αt is an attention weight and is calculated as follows:

αt =
exp (ut)∑T
τ=1 exp (uτ )

ut = λ · tanh (q> (WEExt
+ bE))

(2)

Here, ut is an alignment score and q = 1
T

∑T
t=1Ext is a

query vector. WE ∈ RM×M , bE ∈ RM are trainable pa-
rameters, and the smooth factor λ is a hyperparameter. More
specifically, we call this attention mechanism as Smooth
Self-Attention (SSA). It applies an activation function tanh
to prevent the model from using a single word to represent
the segment, thus increasing the robustness of our model.
For example, for the segment “plenty of ports and settings”,
SSA will attend both “ports” and “settings”, while regular
self-attention may only concentrate on “settings”. Hereafter,
we will use RSA to represent regular self-attention adopted
in (Angelidis and Lapata 2018). In our experiments, we dis-
cover that RSA without smoothness gets worse performance
compared to a simple average pooling mechanism.

Further, we also construct a vector representation
sx,A for the segment x with global aspect embeddings
{A1, A2, ..., AN} through another attention mechanism, i.e.,

sx,A =

N∑
n=1

βnAn (3)

The attention weight βn is obtained by

βn =
exp (v>n,Asx,E + bn,A)∑N
η=1 exp (v>η,Asx,E + bη,A)

, (4)

Algorithm 1: The SSCL Algorithm
Input: Batch size X; constants λ and τ ; network

structures;
Output: Aspect embedding matrix A; model

parameters WE , bE , vA, bA;

1 Initialize Matrix E with pre-trained word vectors;
matrix A with k-means centroids;

2 for sampled mini-batch of size X do
3 for i=1,X do
4 Calculate si,E with Eq. (1);
5 Calculate si,A with Eq. (3);
6 end
7 for i=1,X; j=1,X do
8 Calculate sim(sj,E , si,A) with Eq. (6);
9 end

10 for i=1,X do
11 Calculate li with Eq. (5);
12 end
13 Calculate regularization term Ω using Eq. (7);
14 Define Loss function L = 1

X

∑X
i=1 li + Ω;

15 Update learnable parameters to minimize L.
16 end

where vn,A ∈ RM and bn,A ∈ R are learnable parameters.
β = {β1, β2, ..., βN} can be also interpreted as soft-labels
(probability distribution) over model-inferred aspects for
a review segment.

Contrastive Learning Inspired by recent contrastive learn-
ing algorithms (Chen et al. 2020), SSCL learns aspect em-
beddings by introducing a contrastive loss to maximize the
agreement between two representations of the same review
segment. During training, we randomly sample a mini-batch
of X examples and define the contrastive prediction task on
pairs of segment representations from the mini-batch, which
is denoted by {(s1,E , s1,A), (s2,E , s2,A), ...(sX,E , sX,A)}.
Similar to (Chen et al. 2017), we treat (si,E , si,A) as a pos-
itive pair and {(sj,E , si,A)}j 6=i as negative pairs within the
mini-batch. The contrastive loss function for a positive pair
of examples is defined as

li = − log
exp (sim(si,E , si,A)/µ)∑X

j=1 I[j 6=i] exp (sim(sj,E , si,A)/µ)
, (5)

where I[j 6=i] ∈ {0, 1} is an indicator function that equals 1
iff j 6= i and µ represents a temperature hyperparameter. We
utilize cosine similarity to measure the similarity between
sj,E and si,A, which is calculated as follows:

sim(sj,E , si,A) =
(sj,E)>si,A
‖sj,E‖‖si,A‖

, (6)

where ‖ · ‖ denotes L2-norm.
We summarize our SSCL framework in Algorithm 1.

Specifically, in line 1, the aspect embedding matrix A is ini-
tialized with the centroids of clusters by running k-means on
the word embeddings. We follow (He et al. 2017) to penalize



Figure 2: Comparison of aspect mappings. For HRSMap,
aspects 3, 7, and 8 are not mapped to gold-standard aspects.

the aspect embedding matrix and ensure diversity of different
aspects. In line 13, the regularization term Ω is defined as

Ω = ‖AA> − I‖, (7)

where each row of matrix A, denoted by Aj , is obtained
by normalizing the corresponding row in A, i.e., Aj =
Aj/‖Aj‖.

Aspect Interpretation and Mapping
Aspect Interpretation In the training stage, we map aspect
embeddings to the word embedding space in order to extract
interpretable aspects. With embedding matrices A and E, we
first calculate a similarity matrix

G = AE>,

where G ∈ RN×V . Then, we use the top-ranked words based
onGn to represent and interpret each model-inferred aspect n.
In our experiments, the matrix with inner product similarity
produces more meaningful representative words compared to
using the cosine similarity (see Table 6).

Aspect Mapping Most unsupervised aspect detection
methods focus on the coherence and meaningfulness of
model-inferred aspects, and prefer to map every model-
inferred aspect (MIA) to a gold-standard aspect (GSA) (He
et al. 2017). Here, we call this mapping as many-to-one map-
ping, since the number of model-inferred aspects are usually
larger than the number of gold-standard aspects. Weakly
supervised approaches leverage human-annotated datasets
to extract the aspect representative words, so that model-
inferred aspects and gold-standard aspects have one-to-one
mapping (Angelidis and Lapata 2018). Different from the
two mapping strategies described above, we propose a high-
resolution selective mapping (HRSMap) strategy as shown
in Fig. 2. Here, high-resolution means that the number of
model-inferred aspects should be at least 3 times more than
the number of gold-standard aspects, so that model-inferred
aspects have a better coverage. Selective mapping means
noisy or meaningless aspects will not be mapped to gold-
standard aspects.

In our experiments, we set the number of MIAs to 30,
considering the balance between aspect coverage and human-

effort to manually map them to GSAs1. First, we automati-
cally generate keywords of MIAs based aspect interpretation
results, where the number of the most relevant keywords for
each aspect is set to 10. Second, we create several rules for
aspect mapping: (i) If keywords of a MIA are clearly related
to one specific GSA (not General), we map this MIA to the
GSA. For example, we map “apps, app, netflix, browser, hulu,
youtube, stream” to Apps/Interface (see Table 6). (ii) If key-
words are coherent but not related to any specific GSA, we
map this MIA to General. For instance, we map “pc, xbox,
dvd, ps3, file, game” to General. (iii) If keywords are related
to more than one GSA, we treat this MIA as a noisy aspect
and it will not be mapped. For example, “excellent, amaz-
ing, good, great, outstanding, fantastic, impressed, superior”
may be related to several different GSAs. (iv) If keywords
are not quite meaningful, their corresponding MIA will not
be mapped. For instance, “ago, within, last 30, later, took,
couple, per, every” is a meaningless MIA. Third, we further
verify the quality of aspect mapping using development sets.

Given the soft-labels of model-inferred aspects β, we cal-
culate soft-labels γ = {γ1, γ2, ..., γK} over gold-standard
aspects for each review segment as follows:

γk =

N∑
n=1

I[f(βn)=γk]βn, (8)

where f(βn) is the aspect mapping for model-inferred aspect
n. The hard-label ŷ of gold-standard aspects for the segment
is obtained by

ŷ = argmax{γ1, γ2, ...γK}, (9)

which can be converted to a one-hot vector with length K.

Knowledge Distillation
Given both soft- and hard-labels of gold-standard aspects
for review segments, we utilize a simple knowledge distil-
lation method, which can be viewed as classification on
noisy labeled data. We construct a simple classification
model, which consists of a segment encoder such as BERT
encoder (Devlin et al. 2019), a smooth self-attention layer
(see Eq. (2)), and a classifier (i.e., a single-layer feed-forward
network followed by a softmax activation). This model is
denoted by SSCLS, where the last S represents student. SS-
CLS learns knowledge from the teacher model, i.e., SSCL.
The loss function is defined as

L = − 1

K

K∑
k=1

I[H(γ)<ξk] · ŷk log(yk), (10)

where yk is the probability of aspect k predicted by SS-
CLS. ŷk is a hard-label given by SSCL. H(γ) represents
the Shannon entropy for the soft-labels and is calculated by
H = −

∑K
k=1 γk log(γk). Here, the scalar ξk = χG if aspect

k is General and ξk = χNG, otherwise. Both χG and χNG are
hyperparameters. Hereafter, we will refer to I[H(γ)<ξk] as an
Entropy Filter.

1Usually, it takes less than 15 minutes to assign 30 MIAs to
GSAs.



Domains Aspects

Bags
Compartments, Customer Service, Handles,
Looks, Price, Quality, Protection, Size/Fit,
General.

Bluetooth Battery, Comfort, Connectivity, Durability,
Ease of Use, Look, Price, Sound, General

Boots Color, Comfort, Durability, Look, Materials,
Price, Size, Weather Resistance, General

Keyboards
Build Quality, Connectivity, Extra Function,
Feel Comfort, Layout, Looks, Noise, Price,
General

TVs
Apps/Interface, Connectivity, Customer Ser-
vice, Ease of Use, Image, Price, Size/Look,
Sound, General

Vacuums
Accessories, Build Quality, Customer Service,
Ease of Use, Noise, Price, Suction Power,
Weight, General

Table 2: The annotated aspects for Amazon reviews across
different domains.

Entropy scores have been used to evaluate the confidence
of predictions (Mandelbaum and Weinshall 2017). In the
training stage, we set thresholds to filter out training samples
with low confidence predictions from the SSCL model, thus
allowing the student model to focus on training samples for
which the model prediction are more confident. Moreover,
the student model also benefits from pre-trained encoders
and overcomes the disadvantages of data pre-processing for
SSCL, since we have removed out-of-vocabulary words and
punctuation, and lemmatized tokens in SSCL. Therefore,
SSCLS achieves better performance in segment aspect pre-
dictions compared to SSCL.

Experiments
Datasets
We train and evaluate our methods on seven datasets: City-
search restaurant reviews (Ganu, Elhadad, and Marian 2009)
and Amazon product reviews (Angelidis and Lapata 2018)
across six different domains, including Laptop Cases (Bags),
Bluetooth Headsets (B/T), Boots, Keyboards (KBs), Televi-
sions (TVs), and Vacuums (VCs).

The Citysearch dataset only has training and testing sets.
To avoid optimizing any models on the testing set, we use
restaurant subsets of SemEval 2014 (Pontiki et al. 2014) and
SemEval 2015 (Pontiki et al. 2015) datasets as a development
set, since they adopt the same aspect labels as Citysearch.
Similar to previous work (He et al. 2017), we select sentences
that only express one aspect, and disregard those with mul-
tiple and no aspect labels. We have also restricted ourselves
to three labels (Food, Service, and Ambience), to form a fair
comparison with prior work (Tulkens and van Cranenburgh
2020). Amazon product reviews are obtained from the OPO-
SUM dataset (Angelidis and Lapata 2018). Different from
Citysearch, EDUs (Mann and Thompson 1988) are used as
segments and each domain has eight representative aspect
labels as well as aspect General (see Table 2).

Dataset Vocab W2V Train Dev Test
Citysearch 9,088 279,862 279,862 2,686 1,490

Bags 6,438 244,546 584,332 598 641
B/T 9,619 573,206 1,419,812 661 656

Boots 6,710 408,169 957,309 548 611
KBs 6,904 241,857 603,379 675 681
TVs 10,739 579,526 1,422,192 699 748
VCs 9,780 588,369 1,453,651 729 725

Table 3: The vocabulary size and the number of segments in
each dataset. Vocab and W2V represent vocabulary size and
word2vec, respectively. Refer to Appendix for more details.

In order to train SSCL, all reviews are preprocessed by
removing punctuation, stop-words, and less frequent words
(<10). For Amazon reviews, reviews are segmented into ele-
mentary discourse units (EDUs) through a Rhetorical Struc-
ture Theory parser (Feng and Hirst 2014). We have converted
EDUs back to sentences to avoid training word2vec (Mikolov
et al. 2013) on very short segments. However, we still use
EDU-segments for training and evaluating different mod-
els following previous work (Angelidis and Lapata 2018).
Table 3 shows statistics of different datasets.

Comparison Methods
We compare our methods against five baselines on the City-
search dataset. SERBM (Wang et al. 2015) is a sentiment-
aspect extraction restricted Boltzmann machine, which jointly
extracts review aspects and sentiment polarities in an unsu-
pervised manner. W2VLDA (Garcı́a-Pablos, Cuadros, and
Rigau 2018) is a topic modeling based approach, which com-
bines word embeddings (Mikolov et al. 2013) with Latent
Dirichlet Allocation (Blei, Ng, and Jordan 2003). It auto-
matically pairs discovered topics with pre-defined aspect
names based on user provided seed-words for different as-
pects. ABAE (He et al. 2017) is an autoencoder that aims at
learning highly coherent aspects by exploiting the distribu-
tion of word co-occurrences using neural word embeddings,
and an attention mechanism that can put emphasis on aspect-
related keywords in segments during training. AE-CSA (Luo
et al. 2019) improves ABAE by leveraging sememes to en-
hance lexical semantics, where sememes are obtained via
WordNet (Miller 1995). CAt (Tulkens and van Cranenburgh
2020) is a simple heuristic model that consists of a contrastive
attention mechanism based on Radial Basis Function kernels
and an automated aspect assignment method.

For Amazon reviews, we compare our methods with sev-
eral weakly supervised baselines, which explicitly leverage
seed words extracted from human annotated development
sets (Karamanolakis, Hsu, and Gravano 2019) as supervi-
sion for aspect detection. ABAEinit (Angelidis and Lapata
2018) replaces each aspect embedding vector in ABAE with
the corresponding centroid of seed word embeddings, and
fixes aspect embedding vectors during training. MATE (An-
gelidis and Lapata 2018) uses the weighted average of seed
word embeddings to initialize aspect embeddings. MATE-
MT extends MATE by introducing an additional multi-task
training objective. TS-* (Karamanolakis, Hsu, and Gravano
2019) is a weakly supervised student-teacher co-training



Methods Bags B/T Boots KBs TVs VCs AVG
Unsupervised Methods

ABAE (2017) 38.1 37.6 35.2 38.6 39.5 38.1 37.9
ABAE + HRSMap 54.9 62.2 54.7 58.9 59.9 54.1 57.5

Weakly Supervised Methods
ABAEinit (2018) 41.6 48.5 41.2 41.3 45.7 40.6 43.2
MATE (2018) 46.2 52.2 45.6 43.5 48.8 42.3 46.4
MATE-MT (2018) 48.6 54.5 46.4 45.3 51.8 47.7 49.1
TS-Teacher (2019) 55.1 50.1 44.5 52.0 56.8 54.5 52.2
TS-Stu-W2V (2019) 59.3 66.8 48.3 57.0 64.0 57.0 58.7
TS-Stu-BERT (2019) 61.4 66.5 52.0 57.5 63.0 60.4 60.2
SSCL 61.0 65.2 57.3 60.6 64.6 57.2 61.0
SSCLS-BERT 65.5 69.5 60.4 62.3 67.0 61.0 64.3
SSCLS-DistilBERT 64.7 68.4 61.0 62.0 66.3 59.9 63.7

Table 4: Micro-averaged F1 scores for 9-class EDU-level aspect detection in Amazon reviews. AVG denotes the average of F1
scores across all domains.

Food Staff Ambience Overall
Methods P R F P R F P R F P R F
SERBM (2015) 89.1 85.4 87.2 81.9 58.2 68.0 80.5 59.2 68.2 86.0 74.6 79.5
ABAE (2017) 95.3 74.1 82.8 80.2 72.8 75.7 81.5 69.8 74.0 89.4 73.0 79.6
W2VLDA (2018) 96.0 69.0 81.0 61.0 86.0 71.0 55.0 75.0 64.0 80.8 70.0 75.8
AE-CSA (2019) 90.3 92.6 91.4 92.6 75.6 77.3 91.4 77.9 77.0 85.6 86.0 85.8
CAt (2020) 91.8 92.4 92.1 82.4 75.6 78.8 76.6 80.1 76.6 86.5 86.4 86.4
ABAE + HRSMap 93.0 88.8 90.9 85.8 75.3 80.2 67.4 89.6 76.9 87.0 85.8 86.0
SSCL 91.7 94.6 93.1 88.4 75.9 81.7 79.1 86.1 82.4 88.8 88.7 88.6
SSCLS-BERT 89.6 97.3 93.3 95.5 71.9 82.0 84.0 87.6 85.8 90.0 89.7 89.4
SSCLS-DistilBERT 91.3 96.6 93.9 92.4 75.9 83.3 84.4 88.0 86.2 90.4 90.3 90.1

Table 5: Aspect-level precision (P), recall (R), and F-scores (F) on the Citysearch testing set. For overall, we calculate weighted
macro averages across all aspects.

framework, where TS-Teacher is a bag-of-words classifier
(teacher) based on seed words. TS-Stu-W2V and TS-Stu-
BERT are student networks that use word2vec embeddings
and the BERT model to encode text segments, respectively.

Implementation Details
We implemented all deep learning models using PyTorch
(Paszke et al. 2017). For each dataset, the best parameters
and hyperparameters are selected based on the development
set.

For our SSCL model, word embeddings are pre-loaded
with 128-dimensional word vectors trained by skip-gram
model (Mikolov et al. 2013) with negative sampling and
fixed during training. For each dataset, we use gensim2 to
train word embeddings from scratch and set both window and
negative sample size to 5. The aspect embedding matrix is
initialized with the centroids of clusters by running k-means
on word embeddings. We set the number of aspects to 30
for all datasets because the model can achieve competitive
performance while it will still be relatively easier to map
model-inferred aspects to gold-standard aspects. The smooth
factor λ is tuned in {0.5, 1.0, 2.0, 3.0, 4.0, 5.0} and set to 0.5
for all datasets. The temperature µ is set to 1. For SSCLS, we

2https://radimrehurek.com/gensim/

have experimented with two pretrained encoders, i.e., BERT
(Devlin et al. 2019) and DistilBERT (Sanh et al. 2019). We
tune smooth factor λ in {0.5, 1.0}, χG in {0.7, 0.8, 1.0, 1.2},
and χNG in {1.4, 1.6, 1.8}. We set χG < χNG to alleviate the
label imbalance problem, since the majority of sentences in
the corpus are labeled as General.

For both SSCL and SSCLS, model parameters are opti-
mized using the Adam optimizer (Kingma and Ba 2014)
with β1 = 0.9, β2 = 0.999, and ε = 10−8. Batch size is
set to 50. For learning rates, we adopt a warmup sched-
ule strategy proposed in (Vaswani et al. 2017), and set
warmup step to 2000 and model size to 105. Gradient clip-
ping with a threshold of 2 has also been applied to pre-
vent gradient explosion. Our codes are available at https:
//github.com/tshi04/AspDecSSCL.

Performance on Amazon Product Reviews
Following previous works (Angelidis and Lapata 2018; Kara-
manolakis, Hsu, and Gravano 2019), we use micro-averaged
F1 score as our evaluation metric to measure the aspect de-
tection performance among different models on Amazon
product reviews. All results are shown in Table 4, where we
use bold font to highlight the best performance values. The
results of the compared models are obtained from the corre-
sponding published papers. From this table, we can observe



Aspects Representative Keywords
Apps/Interface apps app netflix browser hulu youtube

Connectivity channel antenna broadcast signal station
optical composite hdmi input component

Customer Serv. service process company contact support
call email contacted rep phone repair

Ease of Use button remote keyboard control use qwerty

Image setting brightness mode contrast color
motion scene blur action movement effect

Price dollar cost buck 00 pay tax
Size/Look 32 42 37 46 55 40
Sound speaker bass surround volume sound stereo

General

forum read reading review cnet posted
recommend research buy purchase decision
plastic glass screw piece metal base
foot wall mount stand angle cabinet
football watch movie kid night game
pc xbox dvd ps3 file game
series model projection plasma led sony

Table 6: Left: Gold-standard aspects for TVs reviews. Right:
Model-inferred aspects presented by representative words.

that weakly supervised ABAEinit, MATE and MATE-MT
perform significantly better than unsupervised ABAE since
they leverage aspect representative words extracted from
human-annotated datasets and thus leads to more accurate as-
pect predictions. TS-Teacher outperforms MATE and MATE-
MT on most of the datasets, which further demonstrates that
these words are highly correlated with gold-standard aspects.
The better performance of both TS-Stu-W2V and TS-Stu-
BERT over TS-Teacher demonstrates the effectiveness of
their teacher-student co-training framework.

In our experiments, we conjecture that low-resolution
many-to-one aspect mapping may be one of the reasons for
the low performance of traditional ABAE. Therefore, we
have reimplemented ABAE and combined it with HRSMap.
The new model (i.e., ABAE + HRSMap) obtains signifi-
cantly better results compared to the traditional ABAE on
all datasets (performance improvement of 51.7%), showing
HRSMap is effective in mapping model-inferred aspects to
gold-standard aspects. Compared to the TS-* baseline meth-
ods, our SSCL achieves better results on Boots, KBs, and
TVs, and competitive results on Bags, B/T, and VCs. On
average, it outperforms TS-Teacher, TS-Stu-W2V, and TS-
Stu-BERT by 16.9%, 3.9%, and 1.3%, respectively. SSCLS-
BERT and SSCLS-DistilBERT further boost the performance
of SSCL by 5.4% and 4.4%, respectively, thus demonstrat-
ing that knowledge distillation is effective in improving the
quality of aspect prediction.

Performance on Restaurant Reviews
We have conducted more detailed comparisons on the City-
search dataset, which has been widely used to benchmark
aspect detection models. Following previous work (Tulkens
and van Cranenburgh 2020), we use weighted macro aver-
aged precision, recall and F1 score as metrics to evaluate the
overall performance. We also evaluate performance of differ-
ent models for three major individual aspects by measuring
aspect-level precision, recall, and F1 scores. Experimental
results are presented in Table 5. Results of compared models

Aspects Representative Keywords
Battery charge recharge life standby battery drain

Comfort uncomfortable hurt sore comfortable tight
pressure

Connectivity usb cable charger adapter port ac
paired htc galaxy android macbook connected

Durability minute hour foot day min second
Ease of Use button pause track control press forward
Look red light blinking flashing color blink
Price 00 buck spend paid dollar cost

Sound
bass high level low treble frequency
noisy wind environment noise truck back-
ground

General

rating flaw consider star design improvement
christmas gift son birthday 2013 new husband
warranty refund shipping contacted sent email
motorola model plantronics voyager backbeat
jabra
gym walk house treadmill yard kitchen
player video listen streaming movie pandora
read reading website manual web review
purchased bought buying ordered buy pur-
chase

Table 7: Left: Gold-standard aspects for Bluetooth Headsets
reviews. Right: Model inferred aspects presented by repre-
sentative words.

are obtained from the corresponding published papers.
From Table 5, we also observe that ABAE + HRSMap per-

forms significantly better than traditional ABAE. Our SSCL
outperforms all baselines in terms of weighted macro aver-
aged F1 score. SSCLS-BERT and SSCLS-DistilBERT further
improve the performance of SSCL, and SSCLS-DistilBERT
achieves the best results. From aspect-level results, we can
observe that, for each individual aspect, our SSCL, SSCLS-
BERT and SSCLS-DistilBERT performs consistently bet-
ter than compared baseline methods in terms of F1 score.
SSCLS-DistilBERT gets the best F1 scores across all three
aspects. This experiment demonstrates the strength of the
contrastive learning framework, HRSMap, and knowledge
distillation, which are able to capture high-quality aspects,
effectively map model-inferred aspects to gold-standard as-
pects, and accurately predict aspect labels for the given seg-
ments.

Aspect Interpretation
As SSCL achieves promising performance quantitatively on
aspect detection compared to the baselines, we further show
some qualitative results to interpret extracted concepts. From
Table 6, we notice that there is at least one model-inferred
aspect corresponding to each of the gold-standard aspects,
which indicates model-inferred aspects based on HRSMap
have a good coverage. We also find that model-inferred con-
cepts, which are mapped to non-general gold-standard as-
pects, are fine-grained, and their representative words are
meaningful and coherent. For example, it is easy to map
“app, netflix, browser, hulu, youtube” to Apps/Interface. Com-
pared to weakly supervised methods (such as MATE), SSCL
is also able to discover new concepts. For example, for as-
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Figure 4: Parameter sensitivity analysis on Citysearch.

pects mapped to General, we may label “pc, xbox, dvd, ps3,
file, game” as Connected Devices, and “plastic glass screw
piece metal base” as Build Quality. Similarly, we observe
that model-inferred aspects based on Bluetooth Headsets re-
views also have sufficient coverage for gold-standard aspects
(see Table 7). We can easily map model inferred aspects to
gold-standard ones since their keywords are meaningful and
coherent. For instance, it is obvious that “red, light, blink-
ing, flashing, color, blink” are related to Look and “charge,
recharge, life, standby, battery, drain” are about Battery. For
new aspect detection, “motorola, model, plantronics, voyager,
backbeatjabra” can be interpreted as Brand. “player, video,
listen, streaming, movie, pandora” are about Usage.

Ablation Study and Parameter Sensitivity

In addition to self-supervised contrastive learning framework
and HRSMap, we also attribute the promising performance
of our models to (i) Smooth self-attention mechanism, (ii)
Entropy filters, and (iii) Appropriate batch size. Hence, we
systematically conduct ablation studies and parameter sensi-
tivity analysis to demonstrate the effectiveness of them, and
provide the results in Fig. 3 and Fig. 4.

First, we replace the smooth self-attention (SSA) layer
with a regular self-attention (RSA) layer used in (Angelidis
and Lapata 2018) and an average pooling (AP) layer. The
model with SSA performs better than the one with AP or
RSA. Next, we examine the entropy filter for SSCLS-BERT,
and observe that adding it has a positive impact on the model
performance. Then, we study the effect of smoothness factor
λ in SSA and observe that our model achieves promising
and stable results when λ ≤ 1. Finally, we investigate the
effect of batch size. F1 scores increase with batch size and
become stable when batch size is greater than 20. However,
very large batch size increases the computational complexity;
see Algorithm 1. Therefore, we set batch size to 50 for all
our experiments.
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Figure 5: Visualization of attention weights. SSA and RSA
represent smooth and regular self-attention, respectively.

Case Study

Fig. 5 compares heat-maps of attention weights obtained from
SSA and RSA on two segments from the Amazon TVs test-
ing set. In each example, RSA attempts to use a single word
to represent the entire segment. However, the word may be
either a representative word for another aspect (e.g., “scene”
for Image in Table 6) or a word with no aspect tendency (e.g.,
“great” is not assigned to any aspect). In contrast, SSA cap-
tures phrases and multiple words, e.g., “volume scenes” and
“great value, 499”. Based on the results in Fig. 3 and Fig. 5,
we argue SSA is more robust and intuitively meaningful than
RSA for aspect detection.

Conclusion

In this paper, we propose a self-supervised contrastive learn-
ing framework for aspect detection. Our model is equipped
with two attention modules, which allows us to represent ev-
ery segment with word embeddings and aspect embeddings,
so that we can map aspect embeddings to the word embed-
ding space through a contrastive learning mechanism. In the
attention module over word embeddings, we introduce a SSA
mechanism. Thus, our model can learn robust representations,
since SSA encourages the model to capture phrases and mul-
tiple keywords in the segments. In addition, we propose a
HRSMap method for aspect mapping, which dramatically
increases the accuracy of segment aspect predictions for both
ABAE and our model. Finally, we further improve the per-
formance of aspect detection through knowledge distillation.
BERT-based student models can benefit from pretrained en-
coders and overcome the disadvantages of data preprocessing
for the teacher model. During training, we introduce entropy
filters in the loss function to ensure student models focus on
high confidence training samples. Our models have shown
better performance compared to several recent unsupervised
and weakly-supervised models on several publicly available
review datasets across different domains. Aspect interpreta-
tion results show that extracted aspects are meaningful, have a
good coverage, and can be easily mapped to gold-standard as-
pects. Ablation studies and visualization of attention weights
further demonstrate the effectiveness of SSA and entropy
filters.
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Supplementary Materials
Datasets
In this section, we provide more details about the datasets
used in our experiments.

Amazon Reviews We obtain Amazon product reviews
from the OPOSUM dataset (Angelidis and Lapata 2018),
which has six subsets across different domains, including
Laptop Cases, Bluetooth Headsets, Boots, Keyboards, Televi-
sions, and Vacuums. For each subset, reviews are segmented
into elementary discourse units (EDUs) through a Rhetorical
Structure Theory parser (Feng and Hirst 2014). Then, each
segment in development and test sets is manually annotated
with eight representative aspect labels as well as aspect Gen-
eral. We show the annotated aspect labels in Table 2. In our
experiments, we use exactly the same segments and aspect
labels as (Angelidis and Lapata 2018).

Restaurant Reviews For restaurant reviews, training and
testing sets are from the Citysearch dataset (He et al. 2017),
while the development set is a combination of restaurant
subsets of SemEval 2014 and SemEval 2015 Aspect-Based
Sentiment Analysis datasets (Pontiki et al. 2014, 2015). Sim-
ilar to previous work (He et al. 2017), sentences are treated
as segments. In the development and testing sets, we select
sentences that only express one aspect, and disregard those
with multiple and no aspect labels. We have also restricted
ourselves to three labels (i.e., Food, Service, and Ambience),
to form a fair comparison with prior work (He et al. 2017;
Tulkens and van Cranenburgh 2020).

In our experiments, we have also exploited the English
restaurant review dataset from SemEval-2016 Aspect-based
Sentiment Analysis task (Pontiki et al. 2016) containing re-
views for multiple domains and languages, which has been
used in prior work (Karamanolakis, Hsu, and Gravano 2019)
for aspect detection. However, we find that the dataset suffers
from severe label-imbalance problem. For example, there are
only 3 and 13 out of 676 sentences labeled as drinks#prices
and location#general, respectively.

Aspect Mapping
In this section, we provide more details of high-resolution se-
lective mapping (HRSMap). High-resolution refers to the fact
that the number of model-inferred aspects (MIAs) should be
at least 3 times more than the number of gold-standard as-
pects (GSAs), so that model-inferred aspects have a better
coverage. Selective mapping implies that noisy or meaning-
less aspects will not be mapped to gold-standard aspects.

In our experiments, we set the number of MIAs to 30,
considering the balance between aspect coverage and human-
effort to manually map them to gold-standard aspects. Usu-
ally, it takes less than 15 minutes to assign 30 MIAs to GSAs.
First, we automatically generate keywords of MIAs and dump
them into a text file, where the number of the most relevant
keywords for each aspect is 10. Second, we create several
rules for aspect mapping: (i) If keywords of a MIA are clearly
related to one specific GSA (not General), we map this MIA
to the GSA. For example, we map “apps, app, netflix, browser,
hulu, youtube, stream” to Apps/Interface. (ii) If keywords

Aspects Representitive Keywords
Compartments zippered velcro flap main zipper front

Customer Serv.
service customer warranty shipping contacted
email
shipping arrived return shipped sent amazon

Handles shoulder strap chest comfortable weight waist
Looks color blue pink purple green bright
Price 50 cost spend paid dollar price

Protection protect protection protects protecting pro-
tected safe

Quality scratch dust drop damage scratched bump
material plastic fabric soft foam leather

Size/Fit
inch perfectly snug tight dell nicely
plenty lot amount enough ton extra
17 15 13 14 11 16

General

purchased bought ordered buying buy owned
review read people mentioned reviewer read-
ing
airport security tsa friendly checkpoint lug-
gage
trip travel carry seat traveling school

Table A1: Left: GSAs for Laptop Cases reviews. Right: MIAs
presented by representative words.

are coherent but not related to any specific GSA, we map
this MIA to General. For instance, we map “football, watch,
movie, kid, night, family” to General. (iii) If keywords are
related to more than one GSA, we treat this MIA as a noisy
aspect and it will not be mapped. For example, “excellent,
amazing, good, great, outstanding, fantastic, impressed, su-
perior” may be related to several different GSAs. (iv) If
keywords are not quite meaningful, their corresponding MIA
will not be mapped. For instance, “ago, within, last 30, later,
took, couple, per, every” is a meaningless MIA. Third, we fur-
ther verify the quality of aspect mapping using development
sets.

We provide more qualitative results to demonstrate: (i)
MIAs are meaningful and interpretable. (ii) MIAs based on
HRSMap have good coverage. (iii) Our model is able to dis-
cover new aspects. All results are summarized in Tables A1,
A2, A3, A4, and A5.

Ablation Study and Parameter Sensitivity
In this section, we provide more results for ablation study
and parameter sensitivity. Tables A6 and A7 show models
with SSA achieve better performance than those with RSA
and AVGP. Tables A8 and A9 show effects of the smoothness
factor on the performance of our SSCL model. We find that
our model achieves promising and stable results when λ ≤
1.0 and λ is fixed to 0.5 for all datasets. From Table A10 and
A11, we can see that F1 scores increase with batch size and
become stable when batch size is greater than 20. According
to Algorithm 1 line 7-8, we calculate similarities forX2 times
at each training step, where X is the batch size. Since large
batch size requires extra computations, we set batch size to
50 for all our experiments as a trade-off between performance
and computational complexity.



Aspects Representative Keywords
Color color darker brown dark grey gray

Comfort calf leg ankle shaft top knee
hurt blister pain sore break rub

Durability ago wore apart worn started last
Look casual stylish cute compliment dressy sexy

Materials slippery traction sole grip tread rubber
insole lining insert wool liner padding

Price price paid pay spend cost money

Size 16 13 14 knee circumference 15
room large big wide tight bigger

Weather Resist. snow dry water cold wet weather

General

box rubbed weird near cut make
brand owned miz marten mooz clark
walking walk floor office town walked
christmas store local gift daughter birthday
suggest recommend buy probably consider
thinking
amazon best description future satisfied nee-
dle
reviewer review people others everyone some-
one
shipping service seller return delivery amazon

Table A2: Left: GSAs for Boots reviews. Right: MIAs pre-
sented by representative words.

Aspects Representative Keywords
Build Qual. plastic case stand cover bag angle
Connectivity cable port receiver cord usb dongle
Extra Func. volume pause mute medium music player
Feel Comfort wrist hand pain easier typing finger

Layout smaller size larger sized layout bigger
backspace shift delete fn arrow alt

Looks
black white see finish color wear lettering
print show glossy
lighting light color bright lit dark

Noise feedback tactile cherry sound loud noise
Price price cost dollar buck pay money

General

galaxy tablet pair ipad samsung android
web email text video movie document
microsoft ibm natural purchased hp dell
amazon sent customer seller contacted service
driver software window install download
recommend buy highly purchase gaming buy-
ing
month week stopped ago year started
room couch tv living pc desk
star negative flaw complain complaint review

Table A3: Left: GSAs for Keyboards reviews. Right: MIAs
presented by representative words.

Aspects Representative Keywords

Accessories
extension powered turbo tool attachment ac-
cessory
container cup bin bag canister tank

Build Quality plastic screw clip tube tape hose
Customer Serv. repair warranty send service called contacted
Ease of Use height switch button setting adjust turn
Noise difference quality noise design sound flaw
Price 00 cost dollar buck paid shipping
Suction Power crumb food litter hair sand fur

Weight easier difficult heavy awkward cumbersome
lug

General

recommend thinking suggest money regret
thought
read mentioned reading negative agree com-
plained
purchased bought buying ordered buy purchas-
ing
died lasted broke stopped within last
eureka kenmore electrolux hoover model up-
right
corner table bed ceiling chair furniture

Table A4: Left: GSAs for Vacuums reviews. Right: MIAs
presented by representative words.

Aspects Representative Keywords

Ambience

room wall ceiling wood floor window
music dj bar fun crowd band
atmosphere romantic cozy feel decor intimate
wall ceiling wood high black lit

Food

steak medium cooked fry dry tender
pork chicken potato goat rib roast
tuna shrimp pork lamb salmon duck
chocolate coffee cake cream tea dessert
large small big three four huge
tomato sauce cheese onion oil crust
american menu variety japanese italian cui-
sine

Staff
staff waiter server waitress waitstaff manager
friendly attentive helpful prompt knowledge-
able courteous

General

per tip bill 20 fixe dollar
sunday night saturday friday weekend evening
ago birthday anniversary recently last cele-
brate
overpriced worth average quality bit pretty
street west east park manhattan village
minute year month min hour week
review say heard believe read reading

Table A5: Left: GSAs for Restaurant reviews. Right: MIAs
presented by representative words.



Smooth Bags B/T Boots KBs TVs VCs AVG
SSA 61.0 65.2 57.3 60.6 64.6 57.2 61.0
RSA 55.9 62.3 52.9 59.5 59.5 53.9 57.3
AVGP 61.6 65.5 52.7 60.5 64.0 56.0 60.1

Table A6: Effects of SSA on micro-averaged F1 scores for
Amazon review datasets. SSA, RSA, AVGP represent smooth
self-attention, regular self-attention and average-pooling, re-
spectively.

Smooth Food Staff Ambience WMF
SSA 93.1 81.7 82.4 88.6
RSA 91.2 78.4 76.3 85.7
AVGP 92.4 79.1 79.3 87.0

Table A7: Effects of SSA on aspect-level F1 scores and
weighted macro-averaged F1 scores for the Citysearch
dataset. WMF represents weighted macro averaged F1-score.

λ Bags B/T Boots KBs TVs VCs AVG
0.5 61.0 65.2 57.3 60.6 64.6 57.2 61.0
1.0 61.6 65.1 58.3 61.8 66.4 55.6 61.5
2.0 60.7 63.9 57.3 59.8 67.0 55.0 60.6
3.0 61.8 64.6 57.6 59.9 63.0 55.3 60.4
4.0 58.2 64.2 54.0 59.9 64.3 56.1 59.4
5.0 57.4 63.0 54.2 59.3 66.4 54.9 59.2

Table A8: Effects of smoothness factor λ on micro-averaged
F1 scores for Amazon review datasets.

λ Food Staff Ambience WMF
0.5 93.1 81.7 82.4 88.6
1.0 92.6 79.6 80.5 87.5
2.0 91.5 79.8 79.2 86.6
3.0 92.0 79.9 77.8 86.7
4.0 89.4 75.4 73.4 83.4
5.0 91.7 79.0 76.2 86.1

Table A9: Effects of smoothness factor λ on aspect-level
F1 scores and weighted macro-averaged F1 scores for the
Citysearch dataset.

Bsize Bags B/T Boots KBs TVs VCs AVG
20 60.2 66.9 56.0 60.4 66.7 56.3 61.1
50 61.0 65.2 57.3 60.6 64.6 57.2 61.0
100 61.8 66.0 55.8 61.4 63.4 57.4 61.0
200 59.4 64.6 56.3 60.8 64.6 56.6 60.4

Table A10: Effects of batch size on micro-averaged F1 scores
for Amazon review datasets.

Bsize Food Staff Ambience WMF
10 92.3 80.4 79.5 87.3
20 93.3 81.3 81.4 88.5
50 93.1 81.7 82.4 88.6
100 92.9 81.7 80.9 88.2
200 93.0 82.6 82.9 88.9

Table A11: Effects of batch size on aspect-level F1 scores
and weighted macro-averaged F1 scores for the Citysearch
dataset.


