
Chapter 11
Big Data Clustering

Hanghang Tong
IBM T. J. Watson Research Center
Yorktown Heights, NY
htong@us.ibm.com

U Kang
KAIST
Seoul, Korea
ukang@cs.cmu.edu

11.1 Introduction . 259
11.2 One-Pass Clustering Algorithms . 260

11.2.1 CLARANS: Fighting with Exponential Search Space . 260
11.2.2 BIRCH: Fighting with Limited Memory . 261
11.2.3 CURE: Fighting with the Irregular Clusters . 263

11.3 Randomized Techniques for Clustering Algorithms . 263
11.3.1 Locality-Preserving Projection . 264
11.3.2 Global Projection . 266

11.4 Parallel and Distributed Clustering Algorithms . 268
11.4.1 General Framework . 268
11.4.2 DBDC: Density-Based Clustering . 269
11.4.3 ParMETIS: Graph Partitioning . 269
11.4.4 PKMeans: K-Means with MapReduce . 270
11.4.5 DisCo: Co-Clustering with MapReduce . 271
11.4.6 BoW: Subspace Clustering with MapReduce . 272

11.5 Conclusion . 274
Bibliography . 274

11.1 Introduction
With the advance of Web2.0, the data size is increasing explosively. For example, Twitter data

spans several terabytes; Wikipedia data (e.g., articles and authors) is of similar size; web click-
through data is reported to reach petabyte scale [36]; Yahoo! web graph in 2002 has more than 1
billion nodes and almost 7 billion edges [27].

On the other hand, many data clustering algorithms have a high intrinsic time complexity. For
example, the classic k-means clustering is NP-hard even when k = 2. The normalized cut (NCut),
a representative spectral clustering algorithm, is also NP-hard [43]. Therefore, a key challenge for
data clustering lies in its scalability, that is, how we can speed up/scale up the clustering algorithms
with the minimum sacrifice to the clustering quality.

At the high level, many data clustering algorithms have the following procedure: after some

259

260 Data Clustering: Algorithms and Applications

initialization (e.g., randomly choose the k cluster centers in k-means), it takes some iterative pro-
cess until some convergence criteria is met. In each iteration, it adjusts/updates the cluster mem-
bership for each data point (e.g., assign, it to the closest cluster centers in k-means). Therefore,
in order to speed up/scaleup such clustering algorithms, we have three basic ways: (1) by reduc-
ing the iteration number (e.g., one-pass algorithm) [47, 22], (2) by reducing the access to the data
points (e.g., by randomized techniques) [25, 38], and (3) by distributing/parallelizing the compu-
tation [28, 13]. In this chapter, we will review some representative algorithms for each of these
categories.

Notice that another important aspect related to the scalability is for the stream data, that is, how
we can adopt the batch-mode data clustering algorithms in the case the data arrives in the stream
mode, so that ideally the algorithms scale well with respect to the size of the new arrival data as
opposed to that of the entire data set [16, 4, 35]. These issues will be discussed independently in the
chapter on density-based clustering.

11.2 One-Pass Clustering Algorithms
In this section, we will review some earlier, classic clustering algorithms which are designed for

large-scale data sets. CLARANS [39, 40] is one of the earliest algorithms to use randomized search
to fight with the exponential search space in the K-medoid clustering problem. In BIRCH [47],
a new data structure called clustering feature tree (CF-tree) was proposed to reduce the I/O cost
when the input data set exceeds the memory size. Finally, CURE [22] uses multiple representative
data points for each cluster in order to capture the irregular clustering shapes and it further adopts
sampling to speed up the hierarchical clustering procedure. Thanks to these techniques, we can often
largely reduce the iteration number in the clustering procedure. In some extreme cases, they often
generate pretty good clustering results by one pass over the input data set. We collectively call these
algorithms as one-pass clustering algorithms.

11.2.1 CLARANS: Fighting with Exponential Search Space

Let us start with one of the earliest representative clustering algorithms, i.e., Partitioning Around
Medoids (PAM) [32]. The basic idea of PAM is to choose one representative point from each cluster
(e.g., the most central data point in the cluster), which is referred to as a medoid. If we want to
find k clusters for n data points, the algorithm essentially tries to find the k best medoids. Once
such optimal k-medoid is found, the remaining (nonmedoid) data points are assigned to one of the
selected medoids according to their distance to the k-medoid. To this end, it follows an iterative
procedure where in each iteration, it tries to replace one of the current medoids by one of the
nonmedoid data points. It is easy to see that the computational cost for PAM is high: first of all,
in each iteration, we need to check all the (n−k)×k possible pairs; second, the overall search space
is exponential, i.e., we have

(n
k

)
possible k-medoid assignment. To address this issue, Clustering

Large Applications (CLARA) [32] relies on sampling to reduce the search space. Instead of trying
to find the optimal k-medoid from the original entire data set as in PAM, CLARA first takes a
sample of k from the original n data points and then calls PAM on these O(k) sampled data points
to find k-medoid. Once the optimal k-medoid is found, the remaining (nonsampled) data points are
assigned to one of these k clusters based on their distance to the k-medoid.

Conceptually, both PAM and CLARA can be regarded as graph-searching problems. In this
graph, each node is a possible clustering solution (i.e., a k-medoid), and the two nodes are linked to
each other if they only differ in 1-out-of-k medoids. PAM starts with one of the randomly chosen

Big Data Clustering 261

(a) PAM and CLARA (b) CLARANS

FIGURE 11.1: Each node in the graph is a possible clustering assignment (i.e., k-medoid); and each
link means that two nodes differ in only one medoid. PAM (a) starts from a randomly selected node
(e.g., node 3, dark), and greedily moves to the next best neighbor (e.g., node 2). In each iteration, it
searches all the possible neighbors (dashed arrows). It tries to search over the entire graph. CLARA
first samples a subgraph (shadowed area) and restricts the search procedure within this subgraph.
CLARANS also searches the entire graph as in PAM. But in each iteration, it only searches only
randomly sampled neighbors of the current node (dashed arrow).

nodes in the conceptual graph, and it greedily moves to one of its neighbors until it cannot find
a better neighbor. CLARA aims to reduce the search space by only searching a subgraph that is
induced by the sampled O(k) data points.

Based on this observation, Clustering Large Applications based on Randomized Sampling
(CLARANS) [39, 40] has been proposed to further improve the efficiency. As in PAM, CLARANS
aims to find a local optimal solution by searching the entire graph. But unlike in PAM, in each it-
eration, it checks only a sample of the neighbors of the current node in the graph. Notice that both
CLARA and CLARANS use sampling techniques to reduce the search space. But they conduct the
sampling in the different ways. In CLARA, the sampling is done at the beginning stage to restrict
the entire search process within a particular subgraph; whereas in CLARANS, the sampling is con-
ducted dynamically at each iteration of the search process. The empirical evaluation in [39] shows
that such dynamic sampling strategy in CLARANS leads to further efficiency improvement over
CLARA. Figure 11.1 provides a pictorial comparison between PAM, CLARA and CLARANS.

11.2.2 BIRCH: Fighting with Limited Memory

When the data size exceeds the available memory amount, the I/O cost may dominate the in-
memory computational time, where CLARANS and its earlier versions (e.g., PAM, CLARA) suffer.
Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) [47] was one of the first
methods to address this issue, and explicitly tries to reduce the I/O costs given the limited amount
of memory.

The key of BIRCH is to introduce a new data structure called clustering feature (CF) as well as
CF-tree. Therefore, before we present the BIRCH algorithm, let us take a short detour to introduce
these concepts.

CF can be regarded as a concise summary of each cluster. This is motivated by the fact that not
every data point is equally important for clustering and we cannot afford to keep every data point
in the main memory given that the overall memory is limited. On the other hand, for the purpose of

262 Data Clustering: Algorithms and Applications

FIGURE 11.2: An illustration of the CF-tree. Each node represents a cluster which consists of up
to B subclusters. Due to the additive property of CF, the CF of the parent node is simply the sum of
the CFs of its children. All the leaf nodes are chained together for efficient scanning. The diameter
of the subcluster in the leaf node is bounded by the threshold T . The bigger T is, the smaller the
tree is.

clustering, it is often enough to keep up to the second order of data moment. In order words, CF is
not only efficient, but also sufficient to cluster the entire data set.

To be specific, CF is a triple < N,LS,SS > which contains the number of the data points in
the cluster (i.e., the zero-order moment N), the linear sum of the data points in the cluster (i.e., the
first-order moment LS), and the square sum of the data points in the cluster (i.e., the second order
moment SS). It is easy to check that CF satisfies the additive property; that is, if we want to merge
two existing clusters, the CF for the merged cluster is simply the sum of the CFs of the two original
clusters. This feature is critical as it allows us to easily merge two existing clusters without accessing
the original data set.

CF-tree is a height-balanced tree which keeps track of the hierarchical clustering structure for
the entire data set. Each node in the CF-tree represents a cluster which is in turn made up of at
most B subclusters, where B is the so-called balancing factor. All the leaf nodes are chained to-
gether for the purpose of efficient scanning. In addition, for each subcluster in the leaf node, its
diameter is upper-bounded by a second parameter T (the threshold). Apparently, the larger T is, the
smaller the CF-tree is in terms of the tree height. The insertion on CF-tree can be performed in a
similar way as the insertion in the classic B-tree. Figure 11.2 presents a pictorial illustration of the
CF-tree.

There are two main steps in the BIRCH algorithm. First, as it scans the input data points, it builds
a CF-tree by inserting the data points with a default threshold T = 0. By setting the threshold T = 0,
we treat each data point as an individual cluster at the leaf node. Thus, the size of the resulting CF-
tree might be very large, which might lead to an out-of-memory issue in the middle of the scanning
process. If such a situation happens, we will need to increase the threshold T and rebuild the CF-tree
by reinserting all the leaf nodes from the old CF-tree. By grouping close data points together, the
resulting CF-tree builds an initial summary of the input data set which reflects its rough clustering
structure.

Due to the skewed input order and/or the splitting effect by the page size, the clustering struc-
ture from the initial CF-tree might not be accurate enough to reflect the real underlying clustering
structure. To address this issue, the second key step (“global clustering”) tries to cluster all the sub-
clusters in the leaf nodes. This is done by converting a subcluster with n′ data points n′ times at the
centroid and then running either an agglomerative hierarchical clustering algorithm or a modified
clustering algorithm.

Between these two main steps, there is an optional step to refine the initial CF-tree by re-
inserting its leaf entries (“tree condensing”). Usually, this leads to a much more compact CF-tree.
After the global clustering step, there is another optional step (“clustering refinement”), which re-
assigns all the data points based on the cluster centroid produced by the global clustering step.
Figure 11.3 summarizes the overall flowchart of the BIRCH algorithm.

Big Data Clustering 263

FIGURE 11.3: The flowchart of BIRCH algorithm.

The empirical evaluation in [47] indicates that BIRCH consistently outperforms the previous
method CLARANS in terms of both time and space efficiency. It is also more robust to the ordering
of the input data sequence. BIRCH offers some additional advantages, e.g., being robust to outliers
and being more easily parallelized.

11.2.3 CURE: Fighting with the Irregular Clusters

In both CLARANS and BIRCH, we use one single data point to represent a cluster. Conceptu-
ally, we implicitly assume that each cluster has a spherical shape, which may not be the case in some
real applications where the clusters can exhibit more complicated shapes. At the other extreme, we
can keep all the data points within each cluster, whose computational as well as space cost might
be too high for large data sets. To address this issue, clustering using representatives (CURE) [22]
proposes to use a set of well-scattered data points to represent a cluster.

CURE is essentially a hierarchical clustering algorithm. It starts by treating each data point
as a single cluster and then recursively merges two existing clusters into one until we have only
k clusters. In order to decide which two clusters to be merged at each iteration, it computes the
minimum distance between all the possible pairs of the representative points from the two clusters.
CURE uses two major data structures to enable the efficient search. First, it uses a heap to track the
distance of each existing cluster to its closest cluster. Additionally, it uses k-d tree to store all the
representative points for each cluster.

In order to speed up the computation, CURE first draws a sample of the input data set and runs
the above procedure on the sampled data. The authors further use Chernoff bound to analyze the
necessary sample size. When the original data set is large, the different clusters might overlap each
other, which in turn requires a large sample size. To alleviate this issue, CURE further uses partitions
to speed up. To be specific, it first partitions the n′ sampled data points into p partitions. Within each
partition, it then runs a partial hierarchical clustering algorithm until either a predefined number of
clusters is reached or the distance between the two clusters to be merged exceeds some threshold.
After that, it runs another clustering pass on all the partial clusters from all the p partitions (“global
clustering”). Finally, each nonsampled data point is assigned to a cluster based on its distance to the
representative point (“labeling”). Figure 11.4 summarizes the flowchart of the CURE algorithm.

The empirical evaluation in [22] shows that CURE achieves lower execution time compared to
BIRCH. In addition, as with BIRCH, CURE is also robust to outliers by shrinking the representative
points to the centroid of the cluster with a constant factor.

11.3 Randomized Techniques for Clustering Algorithms
In the previous section, we have already seen how sampling can be used to speed up the clus-

tering algorithms, e.g, to reduce the search space as in CLARA and CLARANS and to do pre-

264 Data Clustering: Algorithms and Applications

FIGURE 11.4: The flowchart of CURE algorithm.

clustering/partial clustering as in BIRCH and CURE. In this section, let us take one step further to
see how randomized techniques can be used to address the scalability issue in clustering.

Suppose that we want to cluster n data points in d dimensional space into k clusters. We can
represent these data points by an n×d data matrix A; and each row of this data matrix is a data point
in d dimensional space. The basic idea of various randomized techniques is to reduce the scale of the
input data matrix A, e.g., by transforming (embedding, projecting, etc.) it into a lower t-dimensional
space (t≪ d) and then performing clustering on this reduced space. In this section, we will review
two major types of such techniques.

11.3.1 Locality-Preserving Projection

In the locality-preserving projection (also referred to as random projection) methods, after we
project the original d-dimensional data set into a lower dimensional space, we want the pair-wise
distance to be preserved in a probabilistic sense. In many clustering algorithms, it is mainly the
pair-wise distance measure that determines the clustering structure. Thus we would expect that the
clustering results in the projected subspace would provide a reasonably good approximation to that
in the original space.

In addition to clustering, random projection itself has a broad applicability in various data min-
ing tasks (e.g., similarity search, near-duplicate detection). Here, we will first provide some general
introduction to the typical random projection algorithms and then introduce how to apply them in
the clustering setting.

A classic result for the locality-preserving projection comes from Johnson and Linden-
strauss [25], which can be formally stated as follows:

Lemma 11.3.1 Assume ε > 0, and n is an integer. Let t be a positive integer such that t ≥ t0 =
O(log(n)/ε2). For any set P with n data points in Rd space, there exist f : Rd → Rt such that for all
u,v ∈ P, we have

(1− ε)∥u− v∥2 ≤ ∥ f (u)− f (v)∥2(1+ ε)∥u− v∥2

Big Data Clustering 265

At the algorithmic level, such random projection (also referred to as “JL-embedding”) can be
performed by a linear transformation of the original data matrix A. Let R be a d× t rotation ma-
trix with its elements R(i, j) being independent random variables. Then Ã = A ·R is the projected
data matrix,1 and each of its row is a vector in t dimensional space which is the projection of the
corresponding data point in d dimensional space.

Different random projection algorithms differ in terms of different ways to construct such a
rotation matrix R. Earlier methods suggest R(i, j) as being independent Normal random variables
with mean 0 and variance 1. In [1], the authors propose two database-friendly ways to construct the
rotation matrix R. The first method sets R(i, j) = ±1 with equal probabilities of 0.5. Alternatively,
we can also set R(i, j) = ±

√
3 with equal probabilities of 1/6 and R(i, j) = 0 with the probability

of 2/3.
Once we have projected the original data matrix A into a low-dimensional space, the cluster-

ing can be performed in the projected subspace Ã. In [18], the authors assume that the projected
data points form a Gaussian-mixture model and further propose using the expectation-maximization
(EM) algorithm to find the soft clusters; that is, each data point i is assigned a cluster membership
probability p(l|i,θ), where l is the lth cluster and θ is a parameter for the underlying Gaussian-
mixture model. The rationality of this approach can be traced back to [14], which found that by
random projection, the original high-dimensional distribution tends to be more like Gaussian distri-
bution in the projected subspace. It was also found in [10] that eccentric clusters can be reshaped to
be more spherical by random projection.

Due to its random nature, the clustering result generated by the above procedure (RP+EM) might
be highly unstable; that is, different runs of random projections might lead to very different cluster-
ing assignment despite the fact that each of them might partially reveal the true clustering structure.
Based on this observation, the authors in [18] further propose running this RP+EM procedure mul-
tiple times followed up by an ensemble step. To be specific, after we run RP+EM multiple times
(say T in total), we construct an n× n similarity/affinity matrix P, where each element indicates
the average probability that the corresponding two data points are assigned to the same cluster, i.e.,
P(i, j) = 1

T ∑T
t=1 ∑k

l=1 p(l|i,θt)× p(l| j,θt), where l and t are the indices for clusters and different
runs, respectively. Then, an agglomerative clustering algorithm is run based on this affinity matrix
P to generate the final k clusters. The empirical evaluations show that such ensemble framework
leads to much more robust clustering results. Figure 11.5 summarizes the overall flowchart of this
clustering ensemble framework based on RP+EM.

Given that the k-means clustering is NP-hard even if k = 2, many recent research works have
focused on the so-called γ−approximation algorithms. Let us introduce an n× k cluster indictor
matrix X , where each row of X has only one nonzero element; and X(i, j) ̸= 0 indicates that the data
point i belongs to the jth cluster.2 Optimal k-means searches for an indicator matrix Xopt such that
Xopt = argminX ∥A−XXT A∥2

f ro, where X is the set of all valid n× k indictor matrices.
For any γ > 1 and the failure probability 0 ≤ δγ < 1, a γ−approximation algorithm finds an

indicator matrix Xγ such that with the probability at least 1− δγ, we have ∥A−XXT A∥2
f ro ≤ γ ·

minX ∥A−XXT A∥2
f ro. In [33], the authors propose the first linear time γ−approximation algorithm

by sampling. More recently, the authors in [3] propose further speeding up the computation by
running such a γ−approximation algorithm on the projected subspace.

1Depending on the way we construct the rotation matrix, we might need to do a constant scaling on the elements of the
projected matrix Ã.

2The actual value of such non-zero elements is determined by the size of the clusters. If we have n j data points in the jth

cluster, we have X(i, j) = 1/√n j .

266 Data Clustering: Algorithms and Applications

FIGURE 11.5: The flowchart of clustering ensemble based on Random Projection and EM algo-
rithm.

11.3.2 Global Projection

In the locality-preserving projection, for any two data points, we want their pair-wise distance
approximately unchanged before and after the projection. In global projection, for each data point,
we want its projection to be as close as possible to the original data point. If we use the Euclidian
distance, it is equivalent to saying that we want to minimize the Frobenius norm of (Ã−A), where
Ã is the approximation of the original data matrix A.

We can represent a global projection using the notation of matrix low-rank approximation. For-
mally, a rank-c approximation of matrix A is a matrix Ã; Ã = L ·M ·R where L, M, and R are of
rank-c; and ∥Ã−A∥ is small. Such a low-rank approximation often provides a powerful tool for
clustering. For example, for the spatial data, the left matrix L often provides a good indicator for the
cluster-membership; and the row of the right matrix R provides the description of the corresponding
cluster. For the bipartite graph data, we can represent it by its adjacency matrix A; then the left and
right matrices are often good indicators for row and column cluster memberships; and the middle
matrix M indicates the interaction between the row and the column clusters. We refer the readers
to Chapter 7 for more details on the clustering algorithms based on matrix low-rank approximation.
Here, we introduce how to get such low-rank approximation efficiently so that the overall clustering
procedure is efficient and scalable.

Depending on the properties of those matrices (L, M, and R), many different approximations
have been proposed in the literature. For example, in singular value decomposition (SVD) [21], L
and R are orthogonal matrices whose columns/rows are singular vectors and M is a diagonal matrix
whose diagonal entries are singular values. Among all the possible rank-c approximations, SVD
gives the best approximation in terms of squared error. However, SVD is usually dense, even if the
original matrix is sparse. Furthermore, the singular vectors are abstract notions of best orthonormal
basis, which is not intuitive for the interpretation.

To address the computational challenges in SVD, sparsification was proposed in [1]. The basic
idea is to randomly set a significant portion of the entries in A as zeros and rescale the remaining
entries; and to run SVD on the resulting sparse matrix instead. For instance, with uniform sampling,
each entry A(i, j) is set as zero with the probability of 1−1/s(s > 1) and is scaled as sA(i, j) with
the probability of 1/s.3 The resulting sparse matrix Ā can be viewed as a perturbated version of the

3The authors in [1] also proposed a non-uniform sampling procedure.

Big Data Clustering 267

(a) SVD (b) CX/CUR

(c) CMD (d) Colibri

FIGURE 11.6: An illustrative comparison of SVD, CX/CUR, CMD, and Colibri. Each dot is a
data point in 2-D space. SVD (a) uses all the available data points to generate optimal projection
directions. CX/CUR (b) uses actual sampled data points (dark dots) as projection directions and
there are a lot of duplicates. CMD (c) removes duplicate sampled data points. Colibri (d) further
removes all the linearly correlated data points from sampling.

original matrix A by adding a random matrix E to it. From the random matrix theory [20], it is well
known that the norm of a random matrix is well-bounded. As a result, the SVD on this sparse matrix
Ā provides a near-optimal low-rank approximation of the original data matrix A, at the benefit of
significantly speeding up the computation.

Notice that the sparse SVD provides computational gain compared with the original exact SVD,
but it does not address the issue of the space cost or the interpretability of the resulting low-rank
approximation. For example, as shown in [44], these methods often need a huge amount of space.
More recently, the so-called example-based low-rank approximations have started to appear, such as
CX/CUR [15], CMD [44] and Colibri [45], which use the actual columns and rows of the data matrix
A to form L and R. The benefit is that they provide an intuitive as well as a sparse representation,
since L and R are directly sampled from the original data matrix. However, the approximation is
often sub-optimal compared to SVD and the matrix M is no longer diagonal, which means a more
complicated interaction.

In CX decomposition, we first randomly sample a set of columns C from the original data matrix
A, and then project the A into the column space of C, i.e., Ã =CC†A, where C† is the Moore-Penrose
pseudo inverse of C. In CUR decomposition, we also do sampling on the row side to further reduce
the space cost. One drawback of the original CX/CUR is the repeated sampling, i.e., some sampled
columns/rows are duplicate. Based on this observation, CMD tries to remove such duplicate rows
and columns before performing the projection. In [45], the authors further propose removing all the
linearly correlated sampled columns. Since it does not affect the column/row space if we remove the
linearly correlated columns/rows, these methods (CMD and Colibri) lead to the same approximation
accuracy as CX/CUR, but require much less space and cost. Figure 11.6 provides an illustrative
comparison of these different projection methods.

268 Data Clustering: Algorithms and Applications

11.4 Parallel and Distributed Clustering Algorithms
In this section, we survey parallel and distributed clustering algorithms to handle big data. In

contrast to the typical single machine clustering, parallel and distributed algorithms use multiple
machines to speed up the computation and increase the scalability. The parallel and distributed
algorithms are divided into two groups: traditional memory-based algorithms [13, 19, 5, 6, 41] and
modern disk-based algorithms [11, 9, 29, 26].

The traditional memory-based algorithms assume that the data fit in the memory of multiple
machines. The data is distributed over multiple machines, and each machine loads the data into
memory.

Many of the modern disk-based algorithms use MapReduce [11], or its open-source counterpart
Hadoop, to process disk resident data. MapReduce is a programming framework for processing
huge amounts of data in a massively parallel way. MapReduce has two major advantages: (a) the
programmer is oblivious of the details of the data distribution, replication, load balancing, etc., and
(b) the programming concept is familiar, i.e., the concept of functional programming. Briefly, the
programmer needs to provide only two functions, a map and a reduce. The typical framework is as
follows [34]: (a) the map stage sequentially passes over the input file and outputs (key, value) pairs;
(b) the shuffling stage groups all values by key, and (c) the reduce stage processes the values with
the same key and outputs the final result. Optionally, combiners can be used to aggregate the outputs
from local mappers. MapReduce has been used widely for large scale data mining [29, 26].

We describe both the traditional and modern parallel and distributed clustering algorithms. We
first describe the general principle of parallel and distributed algorithms. Then we survey traditional
algorithms including DBDC and ParMETIS . Finally we survey modern, disk-based MapReduce
algorithms including PKMeans, DisCo, and BoW.

11.4.1 General Framework

Most parallel and distributed clustering algorithms follow the general framework depicted in
Figure 11.7.

1. Partition. Data are partitioned and distributed over machines.

2. Local Clustering. Each machine performs local clustering on its partition of the data.

3. Global Clustering. The cluster information from the previous step is aggregated globally to
produce global clusters.

4. Refinement of Local Clusters. Optionally, the global clusters are sent back to each machine
to refine the local clusters.

Some algorithms (e.g. PKMeans in Section 11.4.4 and DisCo in Section 11.4.5) iteratively per-
form steps 3 and 4 until the quality of clusters becomes reasonably good. One of the main challenges
of a parallel and distributed clustering algorithm is to minimize data traffic between the steps 2 and
3. Minimizing the traffic is important since the advantage of a parallel and distributed clustering al-
gorithms comes from the fact that the output from the local clustering step is much smaller than the
raw data. We will see how different algorithms use different strategies to minimize the data traffic.

Another issue in parallel and distributed clustering is the lower accuracy compared to the serial
counterpart. There are two main reasons for the lower accuracy. First, each machine performing the
local clustering might use a different clustering algorithm than the serial counterpart due to heavy
communication costs. Second, even though the same algorithm is used for the local clustering step

Big Data Clustering 269

FIGURE 11.7: The general framework of most parallel and distributed clustering algorithms. (1)
Data is partitioned. (2) Data is locally clustered. (3) Local clusters are merged to make global clus-
ters. (4) Optionally, local clusters are refined using the global clusters.

as well as the serial algorithm, the divided data might change the final aggregated clusters. We will
survey the clustering quality, too, in the following.

11.4.2 DBDC: Density-Based Clustering

DBDC [24] is a density-based distributed clustering algorithm. Density-based clustering aims
to discover clusters of arbitrary shape. Each cluster has a density of points which is considerably
higher than outside of the cluster. Also, the density within the areas of noise is lower than the density
in any of the clusters.

DBDC is an exemplary algorithm that follows the general framework given in Section 11.4.1.
Initially the data is partitioned over machines. At the local clustering step, each machine performs
a carefully designed clustering algorithm to output a set of a small number of representatives which
has an accurate description of local clusters. The representatives are merged in the global clustering
step using DBSCAN [17], a single-machine density-based clustering algorithm. Then the global
clusters are sent back to all clients sites which relabel all objects located on their site independently
of each other.

The experimental results clearly show the advantage of the distributed clustering. The running
time of DBDC is more than 30 times faster than the serial clustering counterpart. Moreover, DBDC
yields almost the same clustering quality as the serial algorithm.

11.4.3 ParMETIS: Graph Partitioning

ParMETIS [31] is a parallel graph partitioning algorithm. Given a vertex and edge weighted
graph, k-way graph partitioning algorithm partitions the vertices into k subsets so that the sum of
the weight of the vertices in each subset is roughly the same, and the weight of the edges whose
incident edges belong to different subsets is small. For example, Figure 11.8 shows an example of 3-
way graph partitioning of a graph with 14 vertices. The graph partitioning is essentially a clustering
problem where the goal is to find good clusters of vertices.

270 Data Clustering: Algorithms and Applications

FIGURE 11.8: The k-way graph partitioning problem partitions the vertices into k subsets so that
the sum of the weight of the vertices in each subset is roughly the same, and the weight of the edges
whose incident edges belong to different subsets is small. The figure shows 3-way partitioning of a
graph with 14 vertices. A dotted circle represents a partition.

There have been many works on the graph partitioning. One of the state-of-the-art graph par-
titioning algorithms is METIS [30]. ParMETIS is a parallel algorithm of METIS for distributed
memory system.

METIS is a multilevel partitioning algorithm. There are three main phases in the METIS. In the
first coarsening phase, maximal matching on the original graph is performed. Then, the matched
vertices are collapsed together to create a smaller graph. This process is repeated until the number
of vertices is small enough. In the second partitioning phase, k-way partitioning of the coarsened
graph is performed by a multilevel recursive bisection algorithm. In the third uncoarsening phase,
the partitioning from the second phase is projected back to the original graph by a greedy refinement
algorithm.

ParMETIS performs the three phases of METIS using memory-based distributed systems.
ParMETIS does not follow the general framework in Section 11.4.1, since the clustering is mainly
based on the coarsening and the uncoarsening operations which are graph operations different from
clustering operations. Initially each processor receives an equal number of vertices. At the coars-
ening phase, ParMETIS first computes a coloring of a graph and then computes a global graph
incrementally matching only vertices of the same color one at a time. At the partitioning phase, the
coarsened graph is broadcasted to all the machines. Each machine performs recursive bisection by
exploring only a single path of the recursive bisection tree. At the uncoarsening phase, vertices of
the same color are considered for a movement; subsets of the vertices that lead to a reduction in the
edge-cut are moved. When moving vertices, the vertices themselves do not move until the final step:
only the partition number associated with each vertex moves to minimize communication cost.

Experiments were performed on a 128-processor Cray T3D parallel computer with distributed
memories. In terms of partition quality, the edge-cut produced by the parallel algorithm is quite close
to that produced by the serial algorithm. The running time of the ParMETIS using 128 processors
was from 14 to 35 times faster than the serial algorithm.

11.4.4 PKMeans: K-Means with MapReduce

MapReduce has been used for many clustering algorithms. Here we describe PKMeans [48], a
k-means [37, 2, 23, 46] clustering algorithm on MapReduce. Given a set of n objects and the number
of cluster k, the k-means algorithm partitions the objects so that the objects within a cluster are more

Big Data Clustering 271

similar to each other than the objects in different clusters. Initially, k objects are randomly selected
as the center of clusters. Then the k-means algorithm performs the following two tasks iteratively:

• Step 1. Assign each object to the cluster whose center is the closest to the object.

• Step 2. For each cluster, update the center with the mean of the objects in the cluster.

PKMeans uses MapReduce to distribute the computation of k-means. PKMeans follows the
general framework shown in Section 11.4.1. The partitioning is implicitly performed when the data
is uploaded to the distributed file system (e.g., GFS or HDFS) of MapReduce. The local cluster-
ing, which corresponds to Step 1 above, is performed in the mapper. The global clustering, which
corresponds to Step 2 above, is performed in the combiner and the reducer.

Specifically, the objects data x1...xn, for which we assume d-dimensional points, are distributed
in the HDFS. The centers y1...yk, which are also d-dimensional points, of clusters are given to the
mapper in the format of {i,yi} by the parameter passing mechanism of Hadoop. The details of the
mapper, the combiner, and the reducer are as follows:

• Mapper: Read the object data xi, and find the center y j which is closest to xi. That is, j =
argminl ||xi− yl ||2. Emit < j,xi >.

• Combiner: Take < j,{xi} > and emit < j,∑xi,num > where num is the number of objects
that the combiner received with the key j.

• Reducer: Take < j,{(∑xi,num)} >, and compute the new center. Emit the new center <
j,y j > of the cluster.

The outputs of the reducer are the centers of clusters which are fed into the mapper of the next
iteration. We note that the combiner greatly decreases the amount of intermediate data by emitting
only the sum of the input data.

Experimental results show that PKMeans provides good speed up, scale up, and size up. The
speed up is evaluated by the ratio of running time while keeping the dataset constant and increasing
the number of machines in the system. PKMeans shows near-linear speed up. The scale up measures
whether x-times larger system can perform x-times larger job in the same run-time as the original
system. PKMeans shows a good scale up, better than 0.75 for 4 machines. In addition, PKMeans
has a linear size up: given the fixed number of machines, the running time grows linearly with the
data size. Finally, PKMeans is an exact algorithm, and thus the quality of the clustering is the same
as that of the serial k-means.

11.4.5 DisCo: Co-Clustering with MapReduce

DisCo [42] is a distributed co-clustering algorithm with MapReduce. Given a data matrix, co-
clustering groups the rows and columns so that the resulting permuted matrix has concentrated
nonzero elements. For example, co-clustering on a documents-to-words matrix finds document
groups as well as word groups. For an m×n input matrix, co-clustering outputs the row and column
labeling vector r ∈ {1,2, ...,k}m and c ∈ {1,2, ..., l}n, respectively, and k× l group matrix G where
k and l are the number of desired row and column partitions, respectively. Searching for an optimal
cluster is NP-hard [12], and thus co-clustering algorithms perform a local search. In the local search,
each row is iterated to be assigned to the best group that gives the minimum cost while the column
group assignments are fixed. Then in the same fashion each column is iterated while the row group
assignments are fixed. This process continues until the cost function stops decreasing.

There are two important observations that affect the design of the distributed co-clustering algo-
rithm on MapReduce:

272 Data Clustering: Algorithms and Applications

• The numbers k and l are typically small, and thus the k× l matrix G is small. Also, the row
and the column labeling vectors r and c can fit in the memory.

• For each row (or column), finding the best group assignment requires only r, c, and G. It does
not require other rows.

Exploiting the above two characteristics, G, r, and c are broadcast to mappers via parameter
passing mechanism of MapReduce. Then each row (or column) can be independently processed to
be assigned to the best group that minimizes the cost. Each row (or column) iteration requires a
map and a reduce stage, and it follows the general framework shown in Section 11.4.1. The mapper
reads each row and performs local clustering. The reducer performs global clustering by gathering
local cluster information and outputs the updated G matrix and the r row-label vector (c column-
label vector for the column iteration). DisCo minimizes network traffic by transferring only the label
vectors and the G matrix between the mapper and the reducer; the matrix data are not transferred.

Experiments were performed on a 39-node Hadoop cluster on matrix data up to 2.5 million by
1.3 million. The performance, measured by the aggregated throughput, increased linearly with the
number of machines. The quality of DisCo is the same as that of the serial algorithm since DisCo is
an exact algorithm.

11.4.6 BoW: Subspace Clustering with MapReduce

BoW [7] is a distributed subspace clustering algorithm on MapReduce. BoW provides two
subspace clustering algorithms on MapReduce: Parallel Clustering (ParC) and Sample-and-Ignore
(SnI). ParC has three steps as illustrated in Figure 11.9: (1) partition the input data using mappers
so that data with the same partition are aggregated to a reducer, (2) reducers find clusters in their
assigned partitions using any subspace clustering algorithm (e.g., [8]) as a plug-in), and (3) merge
the clusters from the previous step to get final clusters. Steps (1) and (2) are performed in a map and
a reduce stage, respectively, and step (3) is done serially in a machine.

SnI uses sampling to minimize network traffic. SnI comprises two phases as depicted in Fig-
ure 11.10. In the first phase, (1) mappers randomly sample data (e.g., 10% of the data) and send

FIGURE 11.9: The ParC algorithm for subspace clustering. (1) Mappers partition the data. (2) Each
reducer finds clusters. (3) A single machine collects and merges all the clusters from the output of
the reducers to make final clusters.

Big Data Clustering 273

FIGURE 11.10: The SnI algorithm for subspace clustering. (1) Mappers sample the data. (2) A
reducer finds initial clusters from the sampled data. (3) Mappers sends to reducers only the data
which do not belong to the initial clusters from the second step. (4) Reducers find clusters. (5) A
single machine combines the clusters from the second and the fourth steps to make final clusters.

results to a reducer. (2) The reducer runs a subspace clustering algorithm to find initial clusters. In
the second phase, (3) mappers send to reducers only the data points which do not belong to the initial
clusters found in the first phase, (4) the reducers find clusters, and (5) a single machine combines
the clusters from the reducer with the initial clusters from the first phase to make final clusters.

ParC and the second phase of SnI follow the general framework described in Section 11.4.1:
data is partitioned, data is locally clustered, local clusters are aggregated to make global clusters.
The first phase of SnI is a preprocessing step to minimize network traffic.

ParC and SnI have their own pros and cons. In terms of the number of disk I/Os, ParC is bet-
ter since it requires only one map-and-reduce step while SnI requires two map-and-reduce steps.
However, in terms of the network traffic SnI is better due to the sampling in the first phase and the
filtering in the second phase.

The main question is which algorithm runs faster? There are many parameters to consider to
answer the question: e.g., number of reducers used, data size, disk speed, network speed, start-up
cost, the plug-in algorithm cost, ratio of data transferred in the shuffling stage, and the sampling
rate. BoW derives the cost (running time) as a function of the parameters to determine the algorithm
that gives the minimum running time.

Experimental results show that BoW correctly chooses the best algorithm for different numbers
of reducers. BoW also shows linear scalability on the data size. Finally, we note that both ParC and

274 Data Clustering: Algorithms and Applications

SnI are not exact algorithms due to the clustering on the divided data. However, the quality of the
clustering from either ParC or SnI is comparable to the serial version of the algorithm.

11.5 Conclusion
Given that (1) data size keeps growing explosively and (2) the intrinsic complexity of a clustering

algorithm is often high (e.g., NP-hard), the scalability seems to be a “never-ending” challenge in
clustering. In this chapter, we have briefly reviewed three basic techniques to speed up/scale up
a data clustering algorithm, including (a) “one-pass” algorithms to reduce the iteration number in
clustering procedure, (b) randomized techniques to reduce the complexity of the input data size,
and (c) distributed and parallel algorithms to speed up/scale up the computation. A future trend is
to integrate all these available techniques to achieve even better scalability.

Bibliography
[1] Dimitris Achlioptas and Frank McSherry. Fast computation of low-rank matrix approxima-

tions. Journal of the ACM, 54(2), 2007.

[2] Sanghamitra Bandyopadhyay, Chris Giannella, Ujjwal Maulik, Hillol Kargupta, Kun Liu, and
Souptik Datta. Clustering distributed data streams in peer-to-peer environments. Information
Sciences, 176(14):1952–1985, 2006.

[3] Christos Boutsidis, Anastasios Zouzias, and Petros Drineas. Random projections for k-
means clustering. In NIPS, pages 298–306, 2010.

[4] Moses Charikar, Chandra Chekuri, Tomás Feder, and Rajeev Motwani. Incremental clustering
and dynamic information retrieval. In STOC, pages 626–635, 1997.

[5] Wen-Yen Chen, Yangqiu Song, Hongjie Bai, Chih-Jen Lin, and Edward Y. Chang. Parallel
spectral clustering in distributed systems. IEEE Transactons on Pattern Analysis and Machine
Intelligence, 33(3):568–586, 2011.

[6] Cheng-Tao Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary R. Bradski, Andrew Y.
Ng, and Kunle Olukotun. Map-Reduce for machine learning on multicore. In NIPS, pages
281–288, 2006.

[7] Robson Leonardo Ferreira Cordeiro, Caetano Traina Jr., Agma Juci Machado Traina, Julio
López, U. Kang, and Christos Faloutsos. Clustering very large multi-dimensional datasets
with MapReduce. In KDD, pages 690–698, 2011.

[8] Robson Leonardo Ferreira Cordeiro, Agma J. M. Traina, Christos Faloutsos, and Cae-
tano Traina Jr. Finding clusters in subspaces of very large, multi-dimensional datasets. In
ICDE, pages 625–636, 2010.

[9] Abhinandan Das, Mayur Datar, Ashutosh Garg, and ShyamSundar Rajaram. Google news
personalization: Scalable online collaborative filtering. In WWW, pages 271–280, 2007.

[10] Sanjoy Dasgupta. Experiments with random projection. In UAI, pages 143–151, 2000.

Big Data Clustering 275

[11] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters. OSDI,
pages 139–149, 2004.

[12] Inderjit S. Dhillon, Subramanyam Mallela, and Dharmendra S. Modha. Information-theoretic
co-clustering. In KDD, pages 89–98, 2003.

[13] Inderjit S. Dhillon and Dharmendra S. Modha. A data-clustering algorithm on distributed
memory multiprocessors. In Large-Scale Parallel Data Mining, pages 245–260, 1999.

[14] P. Diaconis and D. Freedman. Asymptotics of graphical projection pursuit. Annals of Statistics,
12(3):793–813, 1984.

[15] Petros Drineas, Ravi Kannan, and Michael W. Mahoney. Fast Monte Carlo algorithms for
matrices III: Computing a compressed approximate matrix decomposition. SIAM Journal of
Computing, 36(1):132–157, 2005.

[16] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Michael Wimmer, and Xiaowei Xu. Incre-
mental clustering for mining in a data warehousing environment. In VLDB, pages 323–333,
1998.

[17] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm
for discovering clusters in large spatial databases with noise. In KDD, pages 226–231, 1996.

[18] Xiaoli Zhang Fern and Carla E. Brodley. Random projection for high dimensional data clus-
tering: A cluster ensemble approach. In ICML, pages 186–193, 2003.

[19] George Forman and Bin Zhang. Distributed data clustering can be efficient and exact. SIGKDD
Explorations, 2(2):34–38, 2000.

[20] Z. Fredi and J. Komlos. The eigenvalues of random symmetric matrices. Combinatorica,
1:233–241, 1981.

[21] G. H. Golub and C. F. Van-Loan. Matrix Computations, 2nd edition, The Johns Hopkins
University Press, Baltimore, 1989.

[22] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. CURE: An efficient clustering algorithm
for large databases. Information Systems, 26(1):35–58, 2001.

[23] Geetha Jagannathan and Rebecca N. Wright. Privacy-preserving distributed k-means cluster-
ing over arbitrarily partitioned data. In KDD, pages 593–599, 2005.

[24] Eshref Januzaj, Hans-Peter Kriegel, and Martin Pfeifle. DBDC: Density based distributed
clustering. In EDBT, pages 88–105, 2004.

[25] W. B. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert space.
Contemporary Mathematics, 26:189–206, 1984.

[26] U. Kang, Evangelos E. Papalexakis, Abhay Harpale, and Christos Faloutsos. Gigatensor: Scal-
ing tensor analysis up by 100 times—Algorithms and discoveries. In KDD, pages 316–324,
2012.

[27] U. Kang, Hanghang Tong, Jimeng Sun, Ching-Yung Lin, and Christos Faloutsos. GBASE: A
scalable and general graph management system. In KDD, pages 1091–1099, 2011.

[28] U. Kang, Charalampos E. Tsourakakis, and Christos Faloutsos. Pegasus: A peta-scale graph
mining system. In ICDM, pages 229–238, 2009.

276 Data Clustering: Algorithms and Applications

[29] U. Kang, Charalampos E. Tsourakakis, and Christos Faloutsos. Pegasus: Mining peta-scale
graphs. Knowledge and Information Systems, 27(2):303–325, 2011.

[30] George Karypis and Vipin Kumar. Multilevel k-way partitioning scheme for irregular graphs.
Journal of Parallel and Distributed Computing, 48(1):96–129, 1998.

[31] George Karypis and Vipin Kumar. Parallel multilevel k-way partitioning for irregular graphs.
SIAM Review, 41(2):278–300, 1999.

[32] Leonard Kaufman and Peter J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster
Analysis. John Wiley & Sons, 1990.

[33] Amit Kumar, Yogish Sabharwal, and Sandeep Sen. A simple linear time (1+)-approximation
algorithm for k-means clustering in any dimensions. In FOCS, pages 454–462, 2004.

[34] Ralf Lämmel. Google’s MapReduce programming model—Revisited. Science of Computer
Programming, 70:1–30, 2008.

[35] Jessica Lin, Michail Vlachos, Eamonn J. Keogh, and Dimitrios Gunopulos. Iterative incre-
mental clustering of time series. In EDBT, pages 106–122, 2004.

[36] Chao Liu, Fan Guo, and Christos Faloutsos. BBM: Bayesian browsing model from petabyte-
scale data. In KDD, pages 537–546, 2009.

[37] J.B. MacQueen. Some methods for classification and analysis of multivariate observations.
In Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, pages
281–297. University of California Press.

[38] Andrew McCallum, Kamal Nigam, and Lyle H. Ungar. Efficient clustering of high-
dimensional data sets with application to reference matching. In KDD, pages 169–178, 2000.

[39] Raymond T. Ng and Jiawei Han. CLARANS: A method for clustering objects for spatial data
mining. IEEE Transactions on Knowledge and Data Engineering, 14(5):1003–1016, 2002.

[40] Raymond T. Ng and Jiawei Han. Efficient and effective clustering methods for spatial data
mining. In VLDB, pages 144–155, 1994.

[41] Clark F. Olson. Parallel algorithms for hierarchical clustering. Parallel Computing,
21(8):1313–1325, 1995.

[42] Spiros Papadimitriou and Jimeng Sun. DisCo: Distributed co-clustering with Map-Reduce: A
case study towards petabyte-scale end-to-end mining. In ICDM, pages 512–521, 2008.

[43] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000.

[44] Jimeng Sun, Yinglian Xie, Hui Zhang, and Christos Faloutsos. Less is more: Compact matrix
decomposition for large sparse graphs. In SDM, 2007.

[45] Hanghang Tong, Spiros Papadimitriou, Jimeng Sun, Philip S. Yu, and Christos Faloutsos. Col-
ibri: Fast mining of large static and dynamic graphs. In KDD, pages 686–694, 2008.

[46] Jaideep Vaidya and Chris Clifton. Privacy-preserving k-means clustering over vertically parti-
tioned data. In KDD, pages 206–215, 2003.

[47] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. BIRCH: An efficient data clustering
method for very large databases. In SIGMOD Conference, pages 103–114, 1996.

[48] Weizhong Zhao, Huifang Ma, and Qing He. Parallel k-means clustering based on MapReduce.
In CloudCom, pages 674–679, 2009.

